
SCALING DISTRIBUTED CACHE

HIERARCHIES THROUGH COMPUTATION

AND DATA CO-SCHEDULING

NATHAN BECKMANN, PO-AN TSAI AND DANIEL SANCHEZ

MIT CSAIL

Near



Executive Summary

2

Thread Private L2

Core

L1I L1D

LLC Bank

LLC Data

Private L2

Core

L1I L1D

LLC Bank

Private L2

Core

L1I L1D

LLC BankNear

FarFar

FarFar



Executive Summary

3

Thread

LLC Data

Many misses
Low hit latency

Moderate misses
Medium hit latency

Few misses
High hit latency

More capacity does not always 
mean better performance



Executive Summary

4

Threads access 
different data

Threads access 
same data



Executive Summary

5

 CDCS jointly places threads and data to reduce data 
movement

 Improves performance by 46% on average and by up to 76%
 Saves 36% of system energy
 Uses low-overhead algorithms that perform within 1% of 

impractical, idealized solutions



Agenda

6

 Background

 CDCS Design

 Evaluation



Capacity vs latency

7

App: 471.omnetpp
from SPECCPU2006

M
P
K
I

Cache size

85

0

6x6 mesh, 18MB NUCA

Thread running on this tile

A
cc

. 
La

te
nc

y

2.5MB



Capacity vs latency

8

App: 471.omnetpp
from SPECCPU2006

M
P
K
I

Cache size

85

0 2.5MB

A
cc

. 
La

te
nc

y

Place data in local bank



Capacity vs latency

9

App: 471.omnetpp
from SPECCPU2006

M
P
K
I

Cache size

85

0 2.5MB

A
cc

. 
La

te
nc

y

Use closest banks that just fit working set

3.7x speedup

Banks Perf

1 1x



Capacity vs latency

10

App: 471.omnetpp
from SPECCPU2006

M
P
K
I

Cache size

85

0 2.5MB

A
cc

. 
La

te
nc

y

Place data across the chip

2.4x speedup

Banks Perf

1 1x

5 3.7x

In NUCA, using more capacity 
than needed is detrimental!



Thread placement matters

11

App: 471.omnetpp
471.omnetpp
471.omnetpp
471.omnetpp

M
P
K
I

Cache size

85

0 2.5MB

A
cc

. 
La

te
nc

y

3.3x speedup each

Capacity contention changes 
achievable access latency!

Not contended

Contended

Banks Perf

1 1x

5 3.7x

36 2.4x



Thread placement matters

12

App: 471.omnetpp
471.omnetpp
471.omnetpp
471.omnetpp

M
P
K
I

Cache size

85

0 2.5MB

A
cc

. 
La

te
nc

y

3.7x speedup

Spread out threads

Banks Perf

1 1x

5 3.7x

36 2.4x



Thread placement matters

13

App: 4-thread 
from SPECOMP2012

M
P
K
I

Cache size

85

0 0.5MB

A
cc

. 
La

te
nc

y

Spread out threads

Threads are far-
away from data



Thread placement matters

14

App: 4-thread 
from SPECOMP2012

M
P
K
I

Cache size

85

0 0.5MB

A
cc

. 
La

te
nc

y

1.4x speedup

Cluster threads

Clustered

Spread

One scheduler does not fit 
all applications!



Dynamic NUCA

15

Mix: 
4 x 471.omnetpp
4-thread 

R-NUCA [Hardavellas’09]

Place data 

Control capacity

Place threads 



Partitioned NUCA

16

Mix: 
4 x 471.omnetpp
4-thread 

Jigsaw [Beckmann’13] 

Place data 

Control capacity

Place threads When capacity is managed well, 
thread placement becomes important!



CDCS

17

Mix: 
4 x 471.omnetpp
4-thread 

CDCS

Place data 

Control capacity

Place threads 



Agenda

18

 Background

 CDCS Design

 Operation

 Optimization

 Evaluation



CDCS Overview

19

Optimization

Steady-state
Operation

Monitoring

Place threads & data

Sample accesses

Miss curves

Hardware

Software



Operation

20

 Group partitions from different banks to create virtual 

caches (VCs)

 Similar to Jigsaw [Beckmann’13]

Private L2 VC1

VC3

VC2

…
…

4x4 mesh NUCA LLC

Core

L1I L1D

LLC Bank NoC



Optimization

21

 Minimize sum of on-chip latency and off-chip latency by deciding:

 Thread placement

 Virtual cache capacity

 Virtual cache data placement

 It’s an NP-hard problem

 Thread and data placement are interrelated 

 Similar to VLSI place & route, HPC cluster scheduling

Thread
Placement

Data
Placement



Insight: Decouple the dependency

22

Thread
Placement

By placing data twice, CDCS disentangles the dependencies

Data
Placement

Data
Placement

Optimistic
Data

Placement

Refined 
Data

Placement

Optimistic
Assumption

Done

inform



Latency-aware allocation

23

 Assume no contention

Best size

Virtual Cache size
La

te
nc

y

On-chip latency

Off-chip latency

Total latency

Miss curve x MemLatency



Latency-aware allocation

24

 Use total latency curve to partition cache among VCs

To
ta

l 
a
cc

e
ss

 l
a
te

nc
y

Cache size
0

VC2

VC3

VC1

Capacity



Optimistic VC placement

25

 Place VC as compactly as possible

Estimating contention 
of every bank for VC

VC placed around 
least-contended tile



Thread placement

26

 Place threads at center of mass of their accesses



Refined VC placement

27

Move/trade cache lines between VCs

Greedily place VC close to thread first



Scalable reconfiguration & monitoring

28

 Incremental reconfiguration
 Allows chip to reconfigure smoothly, without pausing cores

 Geometric monitor
 Monitors large LLC with low overhead

See paper for details



Agenda

29

 Background

 CDCS design

 Evaluation

 Methodology

 Performance

 Sensitivity



Methodology

30

 Systems:

 64-core, 512KB/L3 bank 

 OOO cores (Silvermont-like)

 8x8 Mesh network

 Similar to Knights Landing

 Zsim [Sanchez’13]: Pin-based simulator

 Workloads: SPEC CPU2006, SPEC OMP2012

M
e
m

/ IO

L3 Bank

OOO Core

L1I L1D

L2

Mem / IO

M
e
m

/ 
IO

Mem / IO
64-core; 8x8 mesh network



Methodology

31

 Schemes

S-NUCA (baseline) with clustering thread scheduler

R-NUCA with clustering thread scheduler

 Jigsaw

 Jigsaw+C: Jigsaw with clustering thread scheduler

 Jigsaw+R: Jigsaw with random thread scheduler

CDCS
D-NUCA

Partitioned 
NUCA CDCS

Place data 

Control capacity

Place threads 



Multi-programmed mixes

32

Workloads that do not share data

18% 
GMEAN

34% 
GMEAN

38% 
GMEAN

46% 

GMEAN

CDCS avoids capacity 
contention more effectively 
than random scheduler



Multi-threaded mixes

33

Workloads that share data
CDCS guards against 
pathological behavior 

incurred by fixed thread 
scheduling policies

9% 
GMEAN

14% 
GMEAN

19% 
GMEAN

21% 

GMEAN

Clustering is better now



Undercommitted multi-threaded mixes

34

 SPECOMP mixes using half of the cores

11% 
GMEAN

17% 
GMEAN

21% 
GMEAN

26% 

GMEAN

With more flexibility, 
CDCS dynamically clusters 
or spreads out threads



CDCS vs idealized algorithms

35

 Integer Linear Programming (ILP)

 Simulated annealing

Within 1%
Multi-programmed 
mixes

Same for multi-
threaded mixes

Algorithm runtime overhead (%)

0 0.08 0.08 0.2 6.8 196



See paper for additional results

36

 Under-committed system

 Traffic breakdown

 Energy breakdown

 Factor analysis

 Other sensitivity studies

 Reconfiguration interval sweep

 Incremental reconfiguration IPC trace



Conclusions

37

 Thread placement has a large impact on NUCA 
performance when capacity is well managed

 CDCS reduces the distance to data through joint thread 
and data placement

 CDCS outperforms state-of-the-art NUCA techniques with 
different thread scheduling policies and prevents 
pathological behavior of fixed policies



QUESTIONS

38


