SCALING DISTRIBUTED CACHE
HIERARCHIES THROUGH COMPUTATION
AND DATA CO-SCHEDULING

NATHAN BECKMANN, PO-AN TsAI AND DANIEL SANCHEZ
MIT CSAIL

I I I I Massachusetts Institute of Technology |

CSAIL

Executive Summary

Near -
| ! -

Thread - Private L2
? L1l |[LiD
Core ?

LLC Data

Private L2
RN L1l L1D

N Core

Executive Summary

Thread L
? - - - -
LL;]TCI o ——
Many misses Moderate misses Few misses
Low hit latency Medium hit latency High hit latency

More capacity does not always

mean better performance

Executive Summary

% v

Threads access
different data

v

Threads access

same data

Executive Summary

1 CDCS jointly places threads and data to reduce data
movement

L

o1 Improves performance by 46% on average and by up to 76%
o1 Saves 36% of system energy

o1 Uses low-overhead algorithms that perform within 1% of
impractical, idealized solutions

Agenda

1 Background
0 CDCS Design

0 Evaluation

Capacity vs latency

6x6 mesh, 18 MB NUCA

App: 47 1.omnetpp
from SPECCPU2006

\\

Thread running [on this [tile "‘@

=
f—

Acc. Latency

(00]
O

MPKI

0 2.5MB
Cache size

Capacity vs latency

Place data in local bank

App: 47 1.omnetpp
from SPECCPU2006

e
f—

Acc. Latency

(00]
O

MPKI

0 2.5MB
Cache size

Capacity vs latency

Use closest banks that just fit working set

App: 47 1.omnetpp
from SPECCPU2006

3.7x speedup

Acc. Latency

(00]
O

MPKI

0 2.5MB
Cache size

Capacity vs latency

Place data across the chip

App: 47 1.omnetpp
from SPECCPU2006

L>;

o

o 2.4x speedup
<

85

Y

& 5 3.7x

0 2.5MB In NUCA, using more capacity

Cache size

than needed is detrimental! 10

Thread placement matters

App: 47 1.omnetpp Capacity contention changes

Acc. Latency

(00]
O

MPKI

o)

47 1.omnetpp " achievable access latency!
47 1.omnetpp

47 1.omnetpp

— = = Contended

£

7’
’ _ %~ - Not contended
/ /‘
, ~

3.3x speedup each

/
/

1 1x

5 3.7x
36 2.4x

2.5MB
Cache size

11

Thread placement matters

App: 47 1.omnetpp Spread out threads

Acc. Latency

(00]
O

MPKI

o)

47 1.omnetpp
47 1.omnetpp

47 1.omnetpp

@~
. 3.7x speedup

1 1x

5 3.7x
36 2.4x

/

2.5MB
Cache size

12

Thread placement matters

App: 4-thread 360.ilbdc
from SPECOMP2012

Acc. Latency

MPKI

0

0.5MB
Cache size

Spread out threads

Threads are far-
away from data

12

3

13

Thread placement matters

App: 4-thread 360.ilbdc
from SPECOMP2012

Acc. Latency

MPKI

0

_ 4~ Spread
-
Y
© -

Cache size

Cluster threads

Clustered

1.4x speedup

One scheduler does not fit
all applications!

14

Dynamic NUCA

Mix:
4 x 471.omnetpp
4-thread 360.ilbdec

OSOC)>~

v Place data

)4 Control capacity
) "4 Place threads

R-NUCA [Hardavellas’09]

Partitioned NUCA

Mix:
4 x 471.omnetpp
4-thread 360.ilbdec

Jigsaw [Beckmann’13]

e

\)(/V \{\\OQ
= Q¢ 0@‘*

Q

X X <
X < <0

Place data

Control capacity

When capacity is managed well,
thread placement becomes important!

16

CDCS

Mix: CDCS
4 x 471.omnetpp

4-thread 360.ilbdc

e

@
Cy“ \4‘\0 S
N > o<
e

v « « Place data

X ' « Control capacity
X R« Place threads

17

Agenda

0 Background

-1 CDCS Design
Operation

Optimization

0 Evaluation

18

CDCS Overview

Place threads & data

7

———
|
|

Optimization | -

e — — — — 7 Miss curves

Hardware

Software

\ Sample accesses

19

Operation

-1 Group partitions from different banks to create virtual
caches (VCs)

o Similar to Jigsaw [Beckmann’1 3]

4x4 mesh NUCA LLC

LLC Bank

Private L2

L1l

L1D

Core

20

Optimization

71 Minimize sum of on-chip latency and off-chip latency by deciding:
Thread placement
Virtual cache capacity

Virtual cache data placement

o1 It’s an NP-hard problem
Thread and data placement are interrelated

Similar to VLSI place & route, HPC cluster scheduling

Thread Data

Placement Placement

21

Insight: Decouple the dependency

Optimistic
Assumption

\ Optimistic
Data
/ Placement
inform

Thread
Placement

Placement

\ Refined
Data

By placing data twice, CDCS disentangles the dependencies
22

Latency-aware allocation 0/8

Assume no contention

Best size

S

-~
-
.....

Virtual Cache size

On-chip latency = = =
Off-chip latency ===

Total latency E—

23

—>

Latency-aware allocation 0/8

Use total latency curve to partition cache among VCs

Capacity
VCI 1y
C
o
©
vCc2 O
O
O
o
(@)
ve3
0]

Cache size

24

Optimistic VC placement 0/8

Place VC as compactly as possible

=0

_/,

o

Estimating contention VC placed around
of every bank for VC least-contended tile

25

Thread placement 048

Place threads at center of mass of their accesses

g%
o —s

26

Refined VC placement

Move /trade cache lines between VCs

Q

%

g — S

O
00

Greedily place VC close to thread first

27

Scalable reconfiguration & monitoring

Incremental reconfiguration

Allows chip to reconfigure smoothly, without pausing cores

Geometric monitor

Monitors large LLC with low overhead

See paper for details

28

Agenda

0 Background
0 CDCS design

1 Evaluation
Methodology
Performance

Sensitivity

29

Methodology

Systems:
é64-core, 512KB /L3 bank
OOO cores (Silvermont-like)

8x8 Mesh network
Similar to Knights Landing

Mem /10

64-core; 8x8 mesh network

Mem /10]

+1 L3Bank

L2

[L1t || LiD

| 000 core

Mem /10]

Zsim [Sanchez’1 3]: Pin-based simulator

Workloads: SPEC CPU2006, SPEC OMP2012

30

Methodology

Schemes
S-NUCA (baseline) with clustering thread scheduler
R-NUCA with clustering thread scheduler

Jigsaw
Jigsaw with thread scheduler
Jigsaw with thread scheduler
CDCS Partitioned
D-NUCA NUCA CDCS
v v v Place data
X v v Control capacity

X X YV Place threads 31

Multi-programmed mixes

Workloads that do not share data

CDCS avoids capacity
contention more effectively

Zt) 2.0H CDCS === R-NUCA}-1| than random scheduler
) Jigsaw+R S-NUCA
Z 1.8} Jigsaw+C
N 5
7 QR Y MRS S P p = .
S ? \
= SO N Vol DN el :
()] ! S
(D) : 46%
Q. 12 —"';'_'_'_‘;_"_"_"_"_"-'-"_".'.;-';;'-;-H'--—-'-:"""'EE: 34% >GMEAN
2 - : 18% >GMEAN
; : }GMEAN
1.0 e e [e EEEETTTEeS = ot ~
0 10 20 30 40 50 2, . /{%% Q)C
Workload 3 " J

Multi-threaded mixes

Workloads that share data

WSpeedup vs S-NUCA

N N G |
0]

—_—

o

N

w

N}

—_—

o

CDCS guards against
pathological behavior

' ' ! ! incurred by fixed thread
S-NUCA Jigsaw+C scheduling policies
[==- R-NUCA CDCS 1
i Jigsaw+R |
' ' Clustering is better now
I ORI SRR ARROORRE N o i .
| e ety 1 ™
: : : Jp—— d »21%
T ™ ____P__-—""'-_’—-. """"" N >]90/° GMEAN
=== : : 9% GMEAN
=’ : 1 E GMEAN
S — S S— — . / /
‘//.
0 10 20 30 40 50 %00 b, Q)Qy
Workload ?

Undercommitted multi-threaded mixes

SPECOMP mixes using half of the cores

1.6 , , , , With more flexibility,
EE) CDCS ==+ R-NUCA| | | CDCS dynamically clusters
) 1.5F Jigsaw+R S-NUCA [| or spreads out threads
= .
. Jigsaw+C]
H 14+ | i
% 5
> A3 AT e /
% /| A
O 1.2F il 20 T)
3 A= 260/
Q1= ;;;‘2""":::: """""" e T >21% >GMI(E)AN
g = }11% GMEAN
1.0 | e e SR {) CMEAN))
0 10 20 30 40 50 %, Yo, Q)(*
Workload S o CS

CDCS vs idealized algorithms

Integer Linear Programming (ILP)

Simulated annealing
0O 008 008 02 68 19

1.6

. < 15L...... Within 1% _———_ i
Multi-programmed O \o
° D 14 -~ -~~""~"°"~°"°"°"°"°"°"°"°"°"~°"=°"7°"/°7°~7*7°7°7/°"~"°"°~"°"°"°-"°"° - BE - y/_

mixes <
D 13} s) Je § R R .

(7))
= 12k i f) I -

o
E= ST USSR SR I S B S5 B R O -

. ()]

Same for multi- Q

threaded mixes (é’

See paper for additional results

Under-committed system
Traffic breakdown
Energy breakdown
Factor analysis

Other sensitivity studies
Reconfiguration interval sweep

Incremental reconfiguration IPC trace

36

Conclusions

Thread placement has a large impact on NUCA
performance when capacity is well managed

CDCS reduces the distance to data through joint thread
and data placement

CDCS outperforms state-of-the-art NUCA techniques with
different thread scheduling policies and prevents
pathological behavior of fixed policies

37

QUESTIONS

