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 CDCS jointly places threads and data to reduce data 
movement

 Improves performance by 46% on average and by up to 76%
 Saves 36% of system energy
 Uses low-overhead algorithms that perform within 1% of 

impractical, idealized solutions
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 Background

 CDCS Design

 Evaluation
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App: 471.omnetpp
from SPECCPU2006
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App: 471.omnetpp
from SPECCPU2006
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App: 471.omnetpp
from SPECCPU2006
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In NUCA, using more capacity 
than needed is detrimental!
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App: 4-thread 
from SPECOMP2012
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App: 4-thread 
from SPECOMP2012
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One scheduler does not fit 
all applications!
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Mix: 
4 x 471.omnetpp
4-thread 

R-NUCA [Hardavellas’09]

Place data 

Control capacity

Place threads 



Partitioned NUCA
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Mix: 
4 x 471.omnetpp
4-thread 

Jigsaw [Beckmann’13] 

Place data 

Control capacity

Place threads When capacity is managed well, 
thread placement becomes important!



CDCS

17

Mix: 
4 x 471.omnetpp
4-thread 

CDCS

Place data 

Control capacity

Place threads 



Agenda

18

 Background

 CDCS Design

 Operation

 Optimization

 Evaluation
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 Group partitions from different banks to create virtual 

caches (VCs)

 Similar to Jigsaw [Beckmann’13]
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 Minimize sum of on-chip latency and off-chip latency by deciding:

 Thread placement

 Virtual cache capacity

 Virtual cache data placement

 It’s an NP-hard problem

 Thread and data placement are interrelated 

 Similar to VLSI place & route, HPC cluster scheduling

Thread
Placement

Data
Placement



Insight: Decouple the dependency
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 Assume no contention
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Latency-aware allocation
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 Use total latency curve to partition cache among VCs
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Optimistic VC placement
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 Place VC as compactly as possible

Estimating contention 
of every bank for VC

VC placed around 
least-contended tile



Thread placement
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 Place threads at center of mass of their accesses



Refined VC placement
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Move/trade cache lines between VCs

Greedily place VC close to thread first



Scalable reconfiguration & monitoring
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 Incremental reconfiguration
 Allows chip to reconfigure smoothly, without pausing cores

 Geometric monitor
 Monitors large LLC with low overhead

See paper for details
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 Background

 CDCS design

 Evaluation

 Methodology

 Performance

 Sensitivity
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 Systems:

 64-core, 512KB/L3 bank 

 OOO cores (Silvermont-like)

 8x8 Mesh network

 Similar to Knights Landing

 Zsim [Sanchez’13]: Pin-based simulator

 Workloads: SPEC CPU2006, SPEC OMP2012
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 Schemes

S-NUCA (baseline) with clustering thread scheduler

R-NUCA with clustering thread scheduler

 Jigsaw

 Jigsaw+C: Jigsaw with clustering thread scheduler

 Jigsaw+R: Jigsaw with random thread scheduler

CDCS
D-NUCA

Partitioned 
NUCA CDCS

Place data 

Control capacity

Place threads 



Multi-programmed mixes
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Workloads that do not share data

18% 
GMEAN

34% 
GMEAN

38% 
GMEAN

46% 

GMEAN

CDCS avoids capacity 
contention more effectively 
than random scheduler



Multi-threaded mixes
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Workloads that share data
CDCS guards against 
pathological behavior 

incurred by fixed thread 
scheduling policies

9% 
GMEAN
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19% 
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GMEAN

Clustering is better now



Undercommitted multi-threaded mixes
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 SPECOMP mixes using half of the cores

11% 
GMEAN

17% 
GMEAN

21% 
GMEAN

26% 

GMEAN

With more flexibility, 
CDCS dynamically clusters 
or spreads out threads



CDCS vs idealized algorithms
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 Integer Linear Programming (ILP)

 Simulated annealing

Within 1%
Multi-programmed 
mixes

Same for multi-
threaded mixes

Algorithm runtime overhead (%)

0 0.08 0.08 0.2 6.8 196



See paper for additional results
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 Under-committed system

 Traffic breakdown

 Energy breakdown

 Factor analysis

 Other sensitivity studies

 Reconfiguration interval sweep

 Incremental reconfiguration IPC trace
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 Thread placement has a large impact on NUCA 
performance when capacity is well managed

 CDCS reduces the distance to data through joint thread 
and data placement

 CDCS outperforms state-of-the-art NUCA techniques with 
different thread scheduling policies and prevents 
pathological behavior of fixed policies
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