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Executive Summary

1 CDCS jointly places threads and data to reduce data
movement

L

o1 Improves performance by 46% on average and by up to 76%
o1 Saves 36% of system energy

o1 Uses low-overhead algorithms that perform within 1% of
impractical, idealized solutions
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Capacity vs latency

6x6 mesh, 18 MB NUCA

App: 47 1.omnetpp
from SPECCPU2006
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Capacity vs latency

Place data in local bank

App: 47 1.omnetpp
from SPECCPU2006
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Capacity vs latency

Use closest banks that just fit working set

App: 47 1.omnetpp
from SPECCPU2006

3.7x speedup
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Capacity vs latency

Place data across the chip

App: 47 1.omnetpp
from SPECCPU2006

L>;

o

o 2.4x speedup
<

85

Y

& 5 3.7x

0 2.5MB In NUCA, using more capacity

Cache size

than needed is detrimental! 10




Thread placement matters

App: 47 1.omnetpp Capacity contention changes
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Thread placement matters

App: 47 1.omnetpp Spread out threads
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Thread placement matters

App: 4-thread 360.ilbdc
from SPECOMP2012
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Thread placement matters

App: 4-thread 360.ilbdc
from SPECOMP2012
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all applications!
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Dynamic NUCA

Mix:
4 x 471.omnetpp
4-thread 360.ilbdec
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Partitioned NUCA

Mix:
4 x 471.omnetpp
4-thread 360.ilbdec

Jigsaw [Beckmann’13]
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When capacity is managed well,
thread placement becomes important!
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CDCS

Mix: CDCS
4 x 471.omnetpp

4-thread 360.ilbdc
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CDCS Overview

Place threads & data
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Operation

-1 Group partitions from different banks to create virtual
caches (VCs)

o Similar to Jigsaw [Beckmann’1 3]

4x4 mesh NUCA LLC
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Optimization

71 Minimize sum of on-chip latency and off-chip latency by deciding:
Thread placement
Virtual cache capacity

Virtual cache data placement

o1 It’s an NP-hard problem
Thread and data placement are interrelated

Similar to VLSI place & route, HPC cluster scheduling

Thread Data

Placement Placement
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Insight: Decouple the dependency

Optimistic
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By placing data twice, CDCS disentangles the dependencies
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Latency-aware allocation 0/8

Assume no contention

Best size
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Latency-aware allocation 0/8

Use total latency curve to partition cache among VCs
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Optimistic VC placement 0/8

Place VC as compactly as possible
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Thread placement 048

Place threads at center of mass of their accesses
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Refined VC placement

Move /trade cache lines between VCs
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Greedily place VC close to thread first
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Scalable reconfiguration & monitoring

Incremental reconfiguration

Allows chip to reconfigure smoothly, without pausing cores

Geometric monitor

Monitors large LLC with low overhead

See paper for details
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Methodology

Systems:
é64-core, 512KB /L3 bank
OOO cores (Silvermont-like)

8x8 Mesh network
Similar to Knights Landing

Mem /10

64-core; 8x8 mesh network

Mem /10 ]
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Zsim [Sanchez’1 3]: Pin-based simulator

Workloads: SPEC CPU2006, SPEC OMP2012
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Methodology

Schemes
S-NUCA (baseline) with clustering thread scheduler
R-NUCA with clustering thread scheduler

Jigsaw
Jigsaw with thread scheduler
Jigsaw with thread scheduler
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Multi-programmed mixes

Workloads that do not share data

CDCS avoids capacity
contention more effectively
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Multi-threaded mixes

Workloads that share data

WSpeedup vs S-NUCA
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Undercommitted multi-threaded mixes

SPECOMP mixes using half of the cores
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CDCS vs idealized algorithms

Integer Linear Programming (ILP)

Simulated annealing
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See paper for additional results

Under-committed system
Traffic breakdown
Energy breakdown
Factor analysis

Other sensitivity studies
Reconfiguration interval sweep

Incremental reconfiguration IPC trace
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Conclusions

Thread placement has a large impact on NUCA
performance when capacity is well managed

CDCS reduces the distance to data through joint thread
and data placement

CDCS outperforms state-of-the-art NUCA techniques with
different thread scheduling policies and prevents
pathological behavior of fixed policies
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