
Core Count vs Cache Size for Manycore Architectures in the Cloud

David Wentzlaff, Nathan Beckmann, Jason Miller, and Anant Agarwal
CSAIL, Massachusetts Institute of Technology

Cambridge, MA 02139
{wentzlaf, beckmann, jasonm, agarwal}@csail.mit.edu

Abstract—The number of cores which fit on a single chip
is growing at an exponential rate while off-chip main memory
bandwidth is growing at a linear rate at best. This core count to
off-chip bandwidth disparity causes per-core memory bandwidth
to decrease as process technology advances. Continuing per-
core off-chip bandwidth reduction will cause multicore and
manycore chip architects to rethink the optimal grain size of
a core and the on-chip cache configuration in order to save
main memory bandwidth. This work introduces an analytic
model to study the tradeoffs of utilizing increased chip area
for larger caches versus more cores. We focus this study on
constructing manycore architectures well suited for the emerging
application space of cloud computing where many independent
applications are consolidated onto a single chip. This cloud
computing application mix favors small, power-efficient cores.
The model is exhaustively evaluated across a large range of
cache and core-count configurations utilizing SPEC Int 2000
miss rates and CACTI timing and area models to determine the
optimal cache configurations and the number of cores across four
process nodes. The model maximizes aggregate computational
throughput and is applied to SRAM and logic process DRAM
caches. As an example, our study demonstrates that the optimal
manycore configuration in the 32nm node for a 200mm2 die uses
on the order of 158 cores, with each core containing a 64KB L1I
cache, a 16KB L1D cache, and a 1MB L2 embedded-DRAM
cache. This study finds that the optimal cache size will continue
to grow as process technology advances, but the tradeoff between
more cores and larger caches is a complex tradeoff in the face of
limited off-chip bandwidth and the non-linearities of cache miss
rates and memory controller queuing delay.

I. INTRODUCTION

Multicore and manycore architectures containing anywhere
from four cores to 64 cores are commonplace today [11], [19],
[20], [12], [8]. As technology advances, the core count has the
potential to increase by a factor of two every generation, even
with a fixed chip area. Architects must however weigh several
factors in order to determine the right number of cores and the
composition of each core. In the absence of other constraints,
increasing the number of cores can increase performance pro-
portionally for throughput oriented workloads such as cloud
computing, or for applications with high degrees of paral-
lelism. Several architectural constraints limit the benefits of
the increasing number of cores. Chief among these constraints
is the bandwidth limits of the interconnect architecture that is
used to connect the cores, and the bandwidth limits to off-chip
DRAM memory.

To address the on-chip interconnect challenge, multicores
are replacing the traditional bus architecture with point-to-
point interconnects such as crossbars [11], [1], [19] and
rings [12], [18]. Even these do not scale to more than 10

or 20 cores, so manycore architectures have begun to adopt
meshes [23], which can scale to a few hundred cores.

The off-chip DRAM bandwidth challenge is a much harder
problem with no immediate solution in sight. Although growth
in the number of cores on a chip is exponential according to
Moore’s Law, off-chip memory bandwidth is growing linearly
at best. Growth in external DRAM bandwidth will come from
a combination of gradual increases in the pin count and the
frequency at which the pins are driven. This imbalance in the
growth rates of core count and external bandwidth will cause
a decrease in the external bandwidth available to each core
as technology advances. Technologies such as stacked DRAM
will offer a one-time boost in the available external DRAM
bandwidth, but will not provide a permanent solution to the
problem.

To mitigate the external DRAM bandwidth bottleneck,
multicore architectures will integrate increasing amounts of
cache on each core.1 Furthermore, integrating dense DRAM on
the multicore die as an additional level of cache will become
increasingly fruitful. Increasing the amount of on-chip cache
per core (whether implemented as SRAM or DRAM) will
reduce the bandwidth demand imposed on off-chip DRAM.
However, it will also reduce the number of cores that can be
integrated on a die of fixed area.

Given the large number of design parameters in multi-
core and manycore designs, multicore architects need aids
in determining the appropriate values for parameters such as
cache sizes, number of cores, cache organization, number of
execution units, and on-chip network configurations. In this
work, we derive an analytic model to compare the tradeoff
between different cache configurations within a core and
number of cores for a fixed die area. We build a framework
for homogeneous multicores around our analytic model using
SPEC Int 2000 cache miss rates and the CACTI 5.3 [22] cache
and DRAM timing and area models to determine optimal
cache size and core count configurations across four process
technology nodes. This work studies candidate configurations
which use SRAM or embedded DRAM for L2 caches.

In this study, we utilize the growing industry of Cloud
computing as a motivational application area for this work.
We believe that Cloud computing and Infrastructure as a

1In recent times, we have seen a decrease in the amount of cache per core
in order to make space for more cores. This decrease simply reverses the
uniprocessor trend of integrating increasing amounts of cache per chip in the
absence of any other way to use exponentially increasing transistors. This
trend will be reversed yet again as the increasing number of cores hits against
the off-chip DRAM bandwidth constraint.



Service will be a killer application for future manycore proces-
sors. Infrastructure as a Service providers such as Amazon’s
EC2 [2] and Platform as a Service services such as Google’s
App Engine [5] today utilize large amounts of computation
and in the future could grow to a tremendous amount of
parallel computation. Because of this huge potential we have
decided to choose an application mix which is comprised of
many independent sequential applications being aggregated
onto future manycore processors. This models the data center
aggregation workload endemic of Infrastructure as a Service
and Platform as a Service workloads.

The model presented in this work can easily be configured
to model a wide range of processor types, sizes, and config-
urations. For our cloud application motivated study we focus
on power-conscious processor configurations. Cloud comput-
ing and data center aggregation optimizes for a throughput
oriented workload and are motivated by providing the highest
throughput for the lowest power. As such this study inves-
tigates small low-power in-order, two to three way issue
processors such as the Tilera core or MIPS32 24k core in
contrast to large out-of-order superscalar processors which
are less well area and power efficient for throughput oriented
computations.

From this study, we find that the optimal per-core cache
size grows as process technology advances. The optimal core
count also increases, but the tradeoff is more subtle as some of
the increased area provided by process scaling is better used
for cache in the face of off-chip bandwidth constraints. We
find that the area density benefits of using embedded DRAM
as an L2 cache always outweigh the latency overhead when
compared to SRAM.

This paper begins by deriving an analytic model of multi-
core memory performance in Section II. Section III describes
the experimental setup, Section IV details the results found.
Section V and Section VI describe related and future work,
and finally we conclude.

II. AN ANALYTIC MEMORY MODEL OF MULTICORE
PROCESSORS

We present an analytic model of multicore performance,
with emphasis on the memory system. Our model describes
a processor with N homogeneous cores. Each core has con-
ventional L1 instruction and data caches backed by an L2
cache. The L2 is connected via the on-chip network to main
memory off chip. The model is constrained on the area of a
chip and off-chip bandwidth. Our model allows for parameters
from many different technologies and process nodes to be
evaluated and compared in the same framework. Table I lists
the parameters to the model.

A. Derivation of the Model.

1) Cycles Per Instruction: We begin by modeling the cycles
per instruction (CPI) of a single core. The foundation of the
model is standard equations for modeling stalls from misses at
different levels of the memory hierarchy [13]. In addition, the

Name Description
CPI0 Cycles per instruction of non-memory operations.
fmem Frequency of memory references (data references

per instruction).
N Number of cores.
mi Miss rate in level i of the memory hierarchy.
ti Access time to level i of the memory hierarchy.
�i The cache line size of level i of the memory

hierarchy.
A Area of chip.

Acore Area of a single core, not including caches.
Ai Area of level i of the memory hierarchy.
B Off-chip bandwidth, in bytes per second.

fcore Clock frequency of each core.
M The number of memory controllers.
wnet The width of the on-chip network.

TABLE I
MODEL PARAMETERS.

model accounts for network latency and off-chip contention
with the values TN and TQ.

The basic form of the CPI equation is:

CPI = CPI of non-memory instructions + I-cache miss penalty + CPI of memory-instructions
+ Network congestion + Memory congestion

This is expressed in the parameters above as:

CPI = CPI0(1− fmem) + mIL1(tIL1 + tL2 + mL2tmem) (1)
+ fmem(tDL1 + mDL1(tL2 + mL2tmem))
+ (mIL1 + fmemmDL1)mL2(TN + TQ)

2) Modeling Off-Chip Contention.: We model contention
for off-chip bandwidth as a bus using a standard M/D/1
queueing model. Let λ be the mean arrival rate of messages in
the queue, modeled as a Poisson process.2 Let µ be the service
rate, a constant. Define ρ, the line utilization, as ρ = λ

µ . Then
the queuing delay, W , is derived to be,

W =
ρ

2µ(1− ρ)
(2)

In our case, the arrival rate in the queue is the rate of off-
chip memory references. This can be expressed in terms of
the misses to main memory per core per cycle, λcore. λcore
is derived using the misses to main memory per instruction,
divided by the cycles per instruction.

λcore =
1

CPI
(mIL1 + fmemmDL1) mL2

There are N cores and we assume that memory references are
divided evenly among M memory controllers, so λ = Nλcore

M .
The service rate is the number of cycles required by the bus

to transfer the request. This depends on the off-chip memory

2Although memory accesses from individual cores are bursty, with many
independent cores the bursts are smoothed, and we believe Poisson is a good
model of system behavior. In the same setting memory accesses will be
distributed uniformly, assuming memory addresses are striped across memory
controllers.



bandwidth at each memory controller and the size of each
request. With wbus as the width of the off-chip bus and fbus as
the frequency of the bus,

µ =
wbus

fbus
fcore

�L2
=

B/M

�L2fcore

To derive the line utilization, it is useful to define Λ, the
byte-rate of memory requests off chip.

ρ =
λ

µ
=

N�L2fcoreλcore

B
=

Λ
B

Thus, the line utilization is the ratio of the off-chip request
rate to the off-chip bandwidth, as expected.

TQ can be computed directly from Eq. 2 with these param-
eters. Define Λ0 as the request rate with a nominal CPI of 1,
Λ0 = Λ · CPI.

TQ =
Λ

2µ(B − Λ)
=

Λ0

2µ(B · CPI− Λ0)
(3)

Now CPI appears on both sides of the earlier CPI equation
(Eq. 1). Intuitively, this is because the request rate to main
memory is self-limiting. As off-chip bandwidth becomes a
limiting factor in performance, CPI of each processor will
increase from queueing delay. This in turn reduces the request
rate to main memory from each processor.

We now solve for CPI. For clarity, define CPIbase as the CPI
without off-chip contention. This is essentially the CPI of each
processor with infinite off-chip bandwidth.

CPIbase = CPI− (mIL1 + fmemmDL1)mL2TQ

Substituting Eq. 3 into Eq. 1, we get a quadratic formula in
CPI. Solving for CPI,

CPI =
CPIbase

2
+

Λ0

2B
±

�
2MΛ2

0
N + (Λ0 −B · CPIbase)

2

2B
(4)

Note that the “+” form of the above equation should be used,
because CPI increases as Λ0 increases.

3) Modeling Network Latency.: Network latency is mod-
eled by the number of hops needed for a packet to reach a
memory controller. Our model assumes the N processors are
arranged in a square two-dimensional mesh with dimension-
order wormhole routing and single-cycle latency per hop.
There are four memory controllers at the midpoint of each
edge of the chip, and memory references are uniformly dis-
tributed among them. The average number of network hops
for any core is twice the average distance in each dimension,
or,

2 · 1
4
·
�

2 ·
√

N

2
+ 2 ·

√
N

4

�
=

3
√

N

4

Our model also must account for the length of the message.
There is additional serialization latency for each flit past the
first. Each message is �L2

wnet
flits long. This gives a network

latency of,

TN =
3
4
√

N +
�

�L2

wnet
− 1

�
(5)

Finally, our model assumes that network congestion (queue-
ing delay) will not play a significant factor in the latency of
memory requests. This is justified because congestion only
becomes a significant factor when utilization of the network
is high. Generally speaking, off-chip memory bandwidth is the
bottleneck, not on-chip bandwidth — the network will easily
support the off-chip bandwidth, which is the limiting factor in
overall performance (Section II-B).

However, it is simple to model congestion within this
framework using analytical mesh models. Using the model
in [7], the average hops in each dimension is kd = 3

√
N

8 . This
gives network utilization of,

ρnet = λcore

�
�L2

wnet

�
kd

Which yields additional congestion delay of,

3
2
·

ρnet
�L2
wnet

(1− ρnet)
· (kd − 1)

k2
d

The only complication is that λcore still depends on CPI, so
the network congestion does as well. The same method used
in the last section to solve for CPI with off-chip contention
can be used to solve for CPI.

We repeated all experiments using the above network con-
gestion model with a variety of network sizes, both constrained
and over-provisioned. Iterative numerical methods were used
to solve for the correct value of CPI. We found that in all
cases, the inclusion of network congestion made no significant
change in results. Only the most restrictive network config-
urations produced any change at all in Table IV, including
the Chip IPC values down to the second decimal place. This
justifies excluding network congestion from the model. In
particular, its inclusion yields a more complicated equation
for CPI that we believe clouds the main performance trends.

4) Chip IPC.: Our overall fitness metric is IPC for the chip
as a whole. This is simply,

IPCchip =
N

CPI
(6)

N can be computed from the area of the chip and the area
of a core. Using a separate cache model (Section III), one can
also compute the area of the memory subsystem per tile. This
gives,

N =
A

Acore + Acache
(7)

Where, Acache = AIL1 + ADL1 + AL2.

B. Limits of Performance.
We now consider the approximate behavior of Eq. 4 as off-

chip bandwidth is exceeded. For reasonable values of M (say,
4), it is safe to eliminate the M term in Eq. 4 to observe
its approximate behavior. When this is done, the equation
becomes,

CPI ≈
�

CPIbase if Λ0 ≤ B · CPIbase
Λ0
B = ρ0 otherwise

(8)



200 400 600 800 1000

1

2

3

4

Fig. 1. CPI (Eq. 4) versus approximation (Eq. 8). Parameters are taken from
those used to generate final results.

The point Λ0 = B ·CPIbase corresponds to Λ|CPI=CPIbase = B.
So the behavior changes when the request rate of the processor
exceeds off-chip bandwidth. If the processor does not exceed
off-chip bandwidth, CPI is approximately the base CPI (no
impact from bus contention). Once the off-chip bandwidth is
exceeded, however, CPI increases due to the limited service
rate off-chip. The M term in Eq. 4 smooths out the curve for
values of N near the saturation point, when queueing latency
begins to lower CPI, but before throughput is completely
dominated by off-chip bandwidth (Figure 1).

To confirm the model, consider the off-chip request rate, Λ,
with CPI as derived by Eq. 8.

Λ =
Λ0

CPI
≈

�
Λ0

CPIbase
if B > Λ0

CPIbase

B otherwise

Λ ≤ B, as required, and the model is consistent.
Finally, the most important metric is the overall chip IPC.

The off-chip request rate per core, Λcore,0 = Λ0
N , is the rate of

memory requests per core in bytes per second. Λcore,0 depends
only on the parameters of a single core, and is therefore
independent of N . Using Eq. 8, our models shows how chip
IPC scales the number of cores increases,

IPCchip ≈
�

N
CPIbase

if N < B·CPIbase
Λcore,0

B
Λcore,0

otherwise
(9)

IPC scales linearly with N until off-chip bandwidth has
been exceeded. At this point, IPC is independent of N (in our
model we assumed infinite queues at buffer points, so there
is no degradation in performance). Thus, any N larger than
B·CPIbase
Λcore,0

does not contribute to performance.
We define the wasted area as the percentage of overall chip

area that does not contribute to increased chip IPC. This is
equivalent to,

Waste =





0 if N ≤ B·CPIbase

Λcore,0

N−B·CPIbase
Λcore,0
N otherwise

(10)

Intuitively, one expects that optimal processor configurations
would have no waste. If there were waste, then some chip area

would be better employed by increasing the size of caches
to lower bandwidth requirements. Our results generally agree
with this assessment (§IV-C).

III. EXPERIMENTAL METHODOLOGY

A. Cloud Applications
We believe that a driving application set for manycore pro-

cessors is going to be cloud computing applications and data
center aggregation. In this work we focus on this application
set over more traditional parallel applications such as scientific
applications. In the burgening field of cloud computing two of
the most promising pieces of infrastructure for manycore chip
designers are Infrastructure as a Service (IaaS) and Platform
as a Service (PaaS) applications.

Infrastructure as a Service providers supply the abstraction
of a hosted whole machine virtual machine to end users. End
users then craft their virtual machine image and the IaaS
provider supplies a self-service interface to launch and control
runing virtual machines. The IaaS provider consolidates many
independant virtual machines onto a single multicore server.
Example Public IaaS services include Amazon’s EC2 [2],
Rackspace’s Cloud Server [3], and GoGrid [4]. Current uses of
cloud computing infrastructure include webservers, databases,
and general purpose compute serving. Due to the consolidation
of many customer’s workloads onto a machine, there are many
independant workloads running thus providing the architecture
with ample decoupled parallelism ideal for manycore architec-
tures.

In Platform as a Service cloud applications, service
providers provide a hosted development platform for devel-
opers to code against. Once an application is written to
conform to the provider’s API, the PaaS provider scales the
developer’s application relative to the application’s demand.
Example PaaS solutions include Google’s App Engine [5], En-
gineYard, and Microsoft’s Azure [6]. Currently these typically
are used for developing dynamic web applications. The PaaS
provider aggregates and distributes the many independant web
connections across its hosted farm of multicore servers.

Both IaaS and PaaS cloud computing platforms exhibit large
a number of independant parallel applications being hosted on
current day multicore, and future manycore processors. Also,
the current usage for IaaS and PaaS systems is integer codes.
This is in sharp contrast to other parallel workloads such as
scientific applications where floating point applications abound
and data sharing between threads is common.

In order to model these cloud computing applications, we
have used a workload of running independant SPEC Int 2000
applications on each core. Other workloads which have similar
independant parallel computations are packet processing and
the processing independent video/voice streams.

B. Evaluation Parameters and Base Architecture
When evaluating the best manycore configuration, there

are many parameters and machine organizations which can
be evaluated. We elected to model what we consider to be
the canonical manycore processor. This canonical manycore



RAM

Controller

RAM

Controller

RAM

Controller

System RAM

Bank

System RAM

Bank

Core

No Cache

L1I L1D

L2

RAM

Controller

System RAM

Bank

System RAM

Bank

Fig. 2. An overview of the modeled system with. Enlargement of single
core shown with included L1I, L1D, and unified L2 Cache.

processor is a homogeneous multiprocessor processor where
the cores are arranged in a 2D grid connected by a mesh
network. Each core contains a L1 instruction cache, an L1 data
cache, and a unified L2 cache. The model assumes a single
cycle per network hop and that the chip has four memory
controllers which are each located at the center of the four
edges. Figure 2 shows an overview of the modeled processor.
This closely resembles the commercial Tilera Tile processor
design [23].

Table II presents the parameters which are fixed across all of
the calculations presented in this paper. These numbers were
chosen to approximate current best-of-breed homogeneous
manycore processors. The overall chip die area dedicated to
processing was fixed at 200mm2. This was chosen to approxi-
mate the economic die area which modern microprocessors
use. Note that the overall die area does not change with
process and that the listed die area is the die area without
I/O. Processor frequency was chosen to model a 750MHz
processor at 90nm with appropriate scaling trends. Area per
core without any of the caches was chosen to be 1.5mm2

in 90nm. This area was chosen to approximate a two to
three wide issue microprocessor with in-core networks. This
area, clock frequency, and performance are closely calibrated
with the commercial, shipping Tile64 processor described in
ISSCC [8] which is built in 90nm process technology and
nominally runs at 750MHz. We chose to model a simple
in-order processor such as the Tile64 instead of large cores
such as the latest Intel Core offering becasue cloud com-
puting providers are driven by efficient throughput oriented
computation. Simple cores such as the Tile64 core afford
better area and power efficiency when it comes to providing
computational throughput per power and die area. The trend
towards simpler cores in manycore architectures can be seen
in the throughput oriented Sun Niagra 2 processor and the
upcoming Intel Larrabee [18] processor. We chose a base,
non-memory CPI to be 0.833 which is the average CPI for
SpecINT 2000 on a simple in-order two way processor.

DRAM latency in absolute time is staying approximately
constant across off-chip DRAM technologies such as DDR,
DDR2, DDR3. This is because DRAM arrays are growing

in size, counteracting the speed gains from process scaling.
We chose the off-chip RAM bandwidth to approximate four
RAM buses with 64-bit data-paths. At 90nm, the nominal off-
chip RAM bandwidth is 17.88GB/s which is equivalent to
four DDR2-533 RAM banks. At 32nm, the RAM Bandwidth
is 53.69GB/s which is equivalent to four DDR3-1600 RAM
banks. A linear bandwidth scaling assumption was used for
the 65nm and 45nm nodes.

C. Evaluation Architecture

The fitness criteria for each modeled manycore configura-
tion is the achieved IPC per core multiplied by the number
of cores. This is the aggregate chip-wide IPC and signifies
the overall computational bandwidth of applications assuming
there is no shared data between the cores. This metric does not
optimize for computational latency, but rather solely optimizes
for throughput computing.

The methodology used to evaluate the best performing
manycore cache configuration was to exhaustively evaluate our
developed model across different cache configurations. The
caches were evaluated over the following cache parameters:

Embedded DRAM was explored for usage in the L2 cache
and the L1 Data cache. This is motivated by the fact that
as process parameters shrink, SRAM gets slower, but DRAM
is getting proportunately less slow as verified by the CACTI
model. Also, the clock frequencies about which this design
evaluates are modest enough to allow embedded DRAM to
fit in a small number of core cycles making it feasible for a
multi-cycle L2 cache.

The chip-wide IPC is computed for all the different bench-
marks in SPEC Int 2000 individually. The arithmetic, geomet-
ric and harmonic means are also computed from the respective
benchmark’s chip-wide IPC. In addition to the chip IPC, the
number of cores for each configuration along with the wasted
area, as defined in Eq. 10 is computed.

The presented model is written in the Python programming
language and takes approximately one hour to generate the
results. 177,408 unique cache configurations are evaluated
for each benchmark and process generation. The results are
evaluated at the 90nm, 65nm, 45nm, and 32nm process nodes.

D. Data Source Integration

A key parameter to this study is the cache miss rates for the
differing cache sizes and cache associativities. The cache miss
rates for the SPEC Int 2000 Benchmark suite were used. This
cache miss data was leveraged from the study done by Cantin
and Hill [9], [10]. This study varied cache size from 1KB to
1MB by powers of two for both instruction, data, and unified
caches. The complete benchmarks with full working sets were
simulated on an Alpha based SimpleScalar processor model.
In our study we model caches up to 8MB which is larger than
the largest cache size (1MB) simulated in Cantin and Hill.
In order to generate miss rates for the 2MB, 4MB, and 8MB
cache sizes, a power curve fit was used to fit the last 7 points
from the data set.



Process (nm) 90 65 45 32
Cycle Time (ns) 1.35 0.9 0.6 0.4
Frequency (GHz) 0.741 1.111 1.667 2.500
Non-Cache Core Size (mm2) 1.5 0.75 0.375 0.1875
Total Die Area (mm2) 200 200 200 200
DRAM and Controller Latency (ns) 100 100 100 100
RAM Bandwidth (GB/s) 17.88 29.82 41.75 53.69
Non-memory CPI 0.833 0.833 0.833 0.833

TABLE II
PHYSICAL PARAMETERS USED ACROSS PROCESS TECHNOLOGY.

L1 Instruction Cache Size (KB) 8, 16, 32, 64, 128, 256, 512
L1 Instruction Cache Associativity (sets) Direct Mapped, 2, 4, 8
L1 Data Cache Size (KB) 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192
L1 Data Cache Associativity (sets) Direct Mapped, 2, 4, 8
L1 Data Cache Type SRAM, DRAM
L2 Cache Size (KB) 0, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192
L2 Cache Associativity (sets) 4
L2 RAM Type SRAM, DRAM

TABLE III
MEMORY HIERACHY OPTIONS USED IN STUDY.

In order to accurately evaluate cache sizes and cache
timing, CACTI 5.3[22] from HP Labs was used. CACTI 5.3
has been updated over previous CACTI models to include
scaling information from the latest ITRS roadmap for process
technologies down to 32nm. CACTI was used to generate
timing and area information for both high-speed SRAM and
logic process DRAM. This cache information was gathered by
script and turned into machine readable Python tables which
fed the model.

E. Model Distribution

Good analytic models are key to understanding complex
systems such as manycore grain size. Analytic models can
provide the mathematical rigor and explanations for observed
empirical trends that purely empirical studies cannot. In or-
der to promote manycore grain size understanding, we are
releasing our model, data sets, and source code in an open
source manner to the architecture community. We hope that
these models can be used as a guide for future manycore chip
design.

IV. RESULTS AND ANALYSIS

We being the results section by presenting the chipwide
IPC as a function of L1 and L2 cache sizes. Figure 3 plots the
geometric mean of chip IPC against different cache sizes for
SRAM and DRAM L2 caches. These numbers were gathered
over the SPEC Int 2000 benchmark suite, as described in the
previous section. The xy-plane shows L1 data cache size and
L2 cache size. The graphs are plotted on log scale so that each
point corresponds to a factor of two increase in cache size. The
exception is the first L2 data point, which corresponds to no

L2 cache. The largest caches appear in the left-most region of
the graph, and the smallest on the right.

The graphs have been rotated so that the optimal config-
uration and points around it are clearly displayed. This puts
the largest L2 configurations on the left edge “close to” the
viewer, and the largest L1D on the left edge “away from” the
viewer.

Graphs for each benchmark have the same general shape
as the geometric mean. The SRAM plot (Fig. 3A) is a good
example. Large caches yield poor performance (both edges
along the left), as do small caches (the right-most region).
The maximum usually occurs with a small L1D and medium-
sized L2. The maximum is part of a ridge that occurs with
L2 at the optimal size, indicating that this L2 size yields good
performance for a variety of L1D sizes. There is a second ridge
of generally lesser performance that occurs with an L1D of
the similar size as the optimal L2. This ridge occurs because
all L2’s of smaller size than the L1D yield the same miss
rate, and therefore similar chip IPC. (These configurations are
a bit unrealistic, except for the point corresponding to no L2
cache.)

These graphs indicate a few results. DRAM L2 caches show
significantly better peak performance, and the optimal DRAM
configuration occurs with a much larger L2 than the optimal
SRAM configuration. SRAM and DRAM show near identical
performance for small L2s, but whereas the performance for
DRAM continues to grow with large L2’s, the performance
of SRAM quickly deteriorates. Presumably this is due to the
much greater area required for a large SRAM cache, reducing
the number of cores.



8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0

20

40

Chip IPC

A

8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0

20

40

60

Chip IPC

B
Fig. 3. Geometric Mean of Chip IPC for SRAM L1D at 32nm. (A) With SRAM L2. (B) With DRAM L2.

A. Fittest Configurations

In order to see scaling trends, we computed the chip IPC for
all cache configurations and then gathered the optimal memory
hierarchy configurations into Table IV. Table IV displays the
cache configuration as a 5-tuple consisting of L1 instruction
cache size, L1 data cache size, L2 cache size, number of cores,
and overall chip IPC. The 5-tuple omits cache associativity, as
associativity was found to be a second order effect. The rest
of this section focuses on the geometric mean as labeled in
the table as “gmean”.

The first insight which can be gathered from this data is that
as process technology progresses, the optimal cache size per
core grows larger. This can be seen in both when the L2 cache
is composed of SRAM and when it is composed of DRAM.
For example, the optimal L2 cache size when composed of
embedded DRAM grows from 128KB in the 90nm node up to
1MB at 32nm. This cache growth is due to the reduction of off-
chip memory bandwidth per-core caused by exponential area
scaling with only linear memory bandwidth scaling. Therefore
instead of using increased area provided by process scaling for
additional cores, the optimal configuration is to build larger
caches to reduce per-core miss rate.

Second, it is surprising to see that the optimal configuration
in 90nm with an SRAM L2 contains no L2 cache, but has
16KB L1I and 32KB L1D caches. This is largely due to the
fact that decent sized caches can be built at the L1 level in
90nm and still fit in a single cycle. The model shows that it
is not a good tradeoff to increase cache size at the expense
of core count at 90nm in SRAM. Unfortunately, many times
L2 caches are used to decouple a main processor pipeline
from the rest of the cache system, but at larger feature sizes
may not be the optimal design. At all process nodes, the area
advantage gained from using DRAM as an L2 cache makes it
worth building an L2 cache.

Another insight from this model is the factor by which L2
caches are larger than L1 caches (when the model predicts
that building L2 caches is appropriate). The model finds that
L2 caches should be at least 8x the size of an L1 cache to

make good use of area in a multicore context.
We also found that as process technology advances, core

count always increases. This is not necessarily intuitive, as an
optimal design may use increased die area for larger caches,
but our study finds that the large multiplicative factor of adding
cores is difficult to offset by lower miss rates. An example of
where core count did not grow appreciably between process
nodes is the progression from 45nm to 32nm with a DRAM
L2. In this example, the L2 cache grows considerably, from
256K to 1MB, but the number of cores only grows modestly
from 151 to 158 cores.

Last, we found that associativity was not a first order
effect with respect to the fittest cache configurations. Cache
capacity was more important and for many of the optimal
configurations, the set of top configurations all had the same
cache size with slightly different associativities.

B. Optimal Configuration Disparity
We found that the optimal cache configuration within one

process technology varied widely from benchmark to bench-
mark. This poses a large challenge for the multicore processor
architect attempting to choose appropriate core count and
cache configurations.

Figure 4 shows overall chip IPC (z-axis) plotted against
L1D and L2 cache sizes (xy-axis) for four benchmarks, gzip,
gcc, mcf, and gap at the 32nm node with DRAM L2 caches.
The first thing to note is that the highest fitness configuration
is in wildly different locations on these plots. This result is
exaggerated even more by the fact that the xy-axis for these
plots is on a logarithmic scale.

Examining the plot for gzip (A), we find that the optimal
configuration lies center of the front right face. This corre-
sponds to a small (8KB in this case) L1D cache and a 256KB
L2 cache. But when looking at gcc (B), the peak moves over
to favor larger L2 caches sizes (1MB).

The shape of the fitness function is also not uniform across
benchmarks as shown by the mcf (C) and gap (D) outliers. mcf
shows that many locations have almost equal fitness along the
top of two pronounced intersecting ridges. A large plateau is



90
nm

65
nm

45
nm

32
nm

SRAM
gm

ea
n

16
K

,3
2K

,0
K

,7
0,

18
.4

8K
,8

K
,1

28
K

,7
5,

27
.4

32
K

,8
K

,1
28

K
,1

39
,4

6.
1

64
K

,1
6K

,1
28

K
,2

22
,5

0.
6

am
ea

n
16

K
,3

2K
,0

K
,7

0,
20

.9
8K

,8
K

,1
28

K
,7

5,
35

.9
16

K
,8

K
,1

28
K

,1
46

,6
4.

9
64

K
,1

6K
,1

28
K

,2
22

,8
3.

6
hm

ea
n

16
K

,3
2K

,0
K

,7
0,

14
.1

64
K

,6
4K

,0
K

,7
8,

18
.4

32
K

,8
K

,1
28

K
,1

39
,2

3.
1

64
K

,8
K

,2
56

K
,1

52
,2

2.
0

16
4.

gz
ip

8K
,1

28
K

,0
K

,4
8,

36
.3

8K
,1

28
K

,0
K

,9
8,

70
.5

8K
,1

28
K

,0
K

,2
05

,1
34

.2
8K

,2
56

K
,0

K
,2

36
,1

92
.5

17
5.

vp
r

8K
,6

4K
,0

K
,6

4,
18

.0
8K

,1
28

K
,0

K
,9

8,
25

.0
16

K
,2

56
K

,0
K

,1
30

,2
9.

9
16

K
,1

6K
,5

12
K

,1
16

,2
9.

4
17

6.
gc

c
16

K
,3

2K
,0

K
,7

0,
14

.9
64

K
,3

2K
,0

K
,8

7,
20

.4
32

K
,2

56
K

,0
K

,1
21

,2
8.

1
64

K
,5

12
K

,0
K

,1
18

,3
2.

3
18

1.
m

cf
8K

,6
4K

,0
K

,6
4,

3.
1

8K
,1

28
K

,0
K

,9
8,

3.
7

16
K

,2
56

K
,0

K
,1

30
,3

.6
16

K
,5

12
K

,0
K

,1
32

,3
.2

18
6.

cr
af

ty
64

K
,6

4K
,0

K
,3

8,
28

.4
64

K
,6

4K
,0

K
,7

8,
55

.6
64

K
,6

4K
,0

K
,1

60
,1

38
.7

64
K

,6
4K

,0
K

,3
12

,1
93

.3
19

7.
pa

rs
er

16
K

,3
2K

,0
K

,7
0,

25
.4

8K
,1

28
K

,0
K

,9
8,

35
.3

16
K

,1
28

K
,0

K
,1

87
,6

4.
4

8K
,2

56
K

,0
K

,2
27

,7
1.

5
25

2.
eo

n
8K

,8
K

,6
4K

,4
4,

42
.2

8K
,8

K
,6

4K
,8

6,
81

.9
8K

,8
K

,6
4K

,2
05

,1
93

.9
8K

,8
K

,6
4K

,4
07

,3
78

.9
25

3.
pe

rlb
m

k
8K

,8
K

,6
4K

,4
4,

31
.4

8K
,8

K
,1

28
K

,7
7,

58
.0

8K
,8

K
,1

28
K

,1
60

,1
07

.5
8K

,8
K

,1
28

K
,3

18
,1

30
.6

25
4.

ga
p

32
K

,8
K

,0
K

,6
1,

31
.6

64
K

,8
K

,0
K

,9
8,

52
.7

32
K

,6
4K

,0
K

,2
15

,9
4.

7
64

K
,3

2K
,0

K
,3

96
,8

7.
8

25
5.

vo
rte

x
64

K
,6

4K
,0

K
,3

8,
22

.6
8K

,8
K

,1
28

K
,7

7,
39

.0
64

K
,6

4K
,0

K
,1

60
,6

5.
2

64
K

,6
4K

,0
K

,3
61

,7
9.

2
25

6.
bz

ip
2

8K
,1

6K
,0

K
,8

5,
38

.5
8K

,3
2K

,0
K

,1
46

,5
6.

6
8K

,1
28

K
,0

K
,2

05
,7

3.
2

8K
,2

56
K

,0
K

,2
35

,7
7.

0
30

0.
tw

ol
f

16
K

,3
2K

,0
K

,7
0,

14
.3

64
K

,1
28

K
,0

K
,6

8,
17

.0
32

K
,2

56
K

,0
K

,1
20

,2
3.

9
64

K
,1

6K
,1

02
4K

,6
7,

26
.9

90
nm

65
nm

45
nm

32
nm

DRAM

gm
ea

n
16

K
,8

K
,1

28
K

,5
3,

23
.3

8K
,8

K
,1

28
K

,1
01

,3
1.

9
32

K
,1

6K
,2

56
K

,1
51

,5
5.

9
64

K
,1

6K
,1

02
4K

,1
58

,7
0.

4
am

ea
n

16
K

,8
K

,1
28

K
,5

3,
28

.2
8K

,8
K

,1
28

K
,1

01
,4

3.
2

16
K

,1
6K

,2
56

K
,1

60
,7

9.
1

16
K

,1
6K

,2
56

K
,3

70
,1

19
.0

hm
ea

n
16

K
,8

K
,1

28
K

,5
3,

15
.9

32
K

,8
K

,1
28

K
,7

8,
19

.4
32

K
,1

6K
,2

56
K

,1
51

,2
5.

6
64

K
,1

6K
,1

02
4K

,1
58

,2
9.

4
16

4.
gz

ip
8K

,8
K

,1
28

K
,5

6,
45

.6
8K

,8
K

,2
56

K
,8

5,
78

.9
8K

,1
6K

,2
56

K
,1

72
,1

59
.8

8K
,8

K
,2

56
K

,3
91

,3
43

.0
17

5.
vp

r
8K

,8
K

,1
28

K
,5

6,
19

.3
8K

,8
K

,2
56

K
,8

7,
27

.2
16

K
,1

6K
,5

12
K

,1
02

,3
2.

5
16

K
,1

6K
,1

02
4K

,1
93

,4
6.

2
17

6.
gc

c
16

K
,3

2K
,0

K
,7

0,
14

.9
8K

,8
K

,1
02

4K
,4

0,
21

.7
32

K
,1

6K
,1

02
4K

,7
2,

37
.2

64
K

,1
6K

,1
02

4K
,1

58
,6

4.
6

18
1.

m
cf

8K
,8

K
,1

28
K

,5
8,

3.
1

8K
,1

28
K

,0
K

,9
8,

3.
7

16
K

,8
K

,2
56

K
,1

70
,3

.6
16

K
,8

K
,1

02
4K

,1
95

,3
.6

18
6.

cr
af

ty
16

K
,8

K
,1

28
K

,5
3,

35
.5

8K
,8

K
,1

28
K

,1
04

,5
8.

3
64

K
,6

4K
,0

K
,1

60
,1

38
.7

16
K

,1
6K

,2
56

K
,3

70
,2

47
.8

19
7.

pa
rs

er
16

K
,8

K
,1

28
K

,5
3,

26
.6

64
K

,8
K

,1
28

K
,6

9,
38

.1
16

K
,8

K
,2

56
K

,1
62

,7
8.

9
8K

,1
6K

,1
02

4K
,1

91
,1

14
.7

25
2.

eo
n

16
K

,8
K

,6
4K

,5
6,

53
.2

8K
,8

K
,6

4K
,1

16
,9

9.
7

16
K

,1
6K

,6
4K

,2
07

,2
02

.0
16

K
,1

6K
,6

4K
,4

19
,4

01
.7

25
3.

pe
rlb

m
k

8K
,8

K
,1

28
K

,5
6,

43
.3

8K
,8

K
,1

28
K

,1
04

,7
3.

7
8K

,8
K

,1
28

K
,2

06
,1

28
.5

8K
,8

K
,2

56
K

,4
01

,1
85

.7
25

4.
ga

p
32

K
,8

K
,0

K
,6

1,
31

.6
64

K
,8

K
,0

K
,9

8,
52

.7
32

K
,6

4K
,0

K
,2

15
,9

4.
7

64
K

,3
2K

,0
K

,3
96

,8
7.

8
25

5.
vo

rte
x

8K
,8

K
,1

28
K

,5
6,

30
.8

8K
,8

K
,2

56
K

,8
5,

49
.4

16
K

,8
K

,2
56

K
,1

69
,8

2.
4

16
K

,1
6K

,1
02

4K
,1

93
,1

08
.9

25
6.

bz
ip

2
8K

,8
K

,1
6K

,7
8,

39
.4

8K
,8

K
,6

4K
,1

13
,5

8.
6

8K
,8

K
,2

56
K

,1
76

,8
5.

6
8K

,8
K

,1
02

4K
,1

99
,1

24
.7

30
0.

tw
ol

f
16

K
,8

K
,1

28
K

,5
4,

14
.8

64
K

,8
K

,1
02

4K
,3

4,
18

.3
32

K
,1

6K
,1

02
4K

,7
2,

35
.1

64
K

,1
6K

,1
02

4K
,1

58
,5

5.
4

TA
B

LE
IV

O
PT

IM
A

L
C

A
C

H
E

C
O

N
FI

G
U

R
A

T
IO

N
S

FO
R

SP
E

C
IN

T
20

00
B

E
N

C
H

M
A

R
K

S.
E

N
T

R
Y

C
O

N
SI

ST
S

(L
1I

C
A

C
H

E
SI

Z
E

,L
1D

C
A

C
H

E
SI

Z
E

,L
2

C
A

C
H

E
SI

Z
E

,N
U

M
B

E
R

O
F

C
O

R
E

S
(N

),
C

H
IP

IP
C

(R
E

L
A

T
IV

E
FI

T
N

E
SS

))



8kB

32kB

128kB

512kB

2MB

8MB

L1D

0B
8kB

32kB

128kB

512kB

2MB

8MB

L2

0

100

200

300

Chip IPC

A

8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0

20

40

60

Chip IPC

B

8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

1

2

3

Chip IPC

C

8kB

32kB

128kB

512kB

2MB

8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0

20

40

60

80

Chip IPC

D
Fig. 4. Chip IPC for various benchmarks with DRAM L2 and SRAM L1D at 32nm: (A) gzip, (B) gcc, (C) mcf, (D) gap.

formed on the right corner of the mcf plot, which is interesting
as it shows that mcf is not very sensitive to cache size in that
region. This is likely due to the overall poor cache performance
which mcf exhibits. Last, gap has its fitness graph skewed
toward small L1 and L2 caches and is the only benchmark
which has its optimal configuration with no L2 cache for any
process node.

C. Wasted Area

Earlier in this paper we defined “waste” as the percentage
of chip area which does not meaningfully contribute to per-
formance. Specifically, this area is consumed by cores that
produce excess memory requests after off-chip bandwidth has
been exceeded. We claimed that optimal configurations would
have minimal waste — the excess area could instead be used
to build larger caches for the remaining cores, increasing chip
throughput.

Figures 5, 6, 8, and 7 demonstrate this effect. As before,
these plots have L1 data cache size and L2 size on the xy-
plane. In graph A we plot chip IPC, and in graph B we plot
waste. It’s clear that chip IPC and waste follow a somewhat
inverse relationship; if waste is high, then chip IPC is low.
Optimal configurations occur on the transition from high waste
to low waste. This is true even in extreme outliers, such as
MCF (Fig. 6), which has very low performance; and GAP
(Fig. 7), which recommends no L2 cache at all.

It is obvious that high waste should result in low chip
IPC. High waste occurs with small cache configurations such
that many cores fit on a single chip, but there are a great
many misses to main memory. The large number of misses

to memory means that it takes few cores to reach the off-
chip bandwidth limit. Once off-chip bandwidth is exceeded,
the large number of cores no longer contribute to performance
(the definition of waste), and chip IPC is equivalent to a chip
with few cores and high miss rates, giving low IPC.

Similar reasoning explains why configurations with very
large caches do not perform well. Performance is maximized
when the maximal number of cores fit on chip without exceed-
ing off-chip bandwidth. The optimal cache configuration will
be the smallest that achieves this. Increasing the cache size
beyond this point reduces the number of cores dramatically,
so although larger caches might result in fewer misses and
higher IPC per core, the reduction in number of cores is more
significant.

This explains why the configurations in Table IV all show
surprisingly low IPC per core. For example, the optimal
configurations by geometric mean at 32nm had per-core IPC of
0.23 and 0.45 for SRAM and DRAM, respectively. Although
configurations with larger caches achieve higher per-core IPC,
they result in lower chip IPC (Figure 3).

Note that the individual benchmarks (Figs. 5, 6, 8, 7)
have sharp peaks in chip IPC at precisely the point when
waste drops. This situation changes when we consider mean
performance (Figs. 9, 10). The same general relationship
holds as before, but now the waste drops off gradually. This
corresponds with a less pronounced peak in chip IPC, and
means that the optimal configuration still has some waste.

This is sensible, as we are now optimizing over a variety
of applications. Each has different memory requirements, so
the optimal mean configuration will certainly be suboptimal



8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0

20

40

60

Chip IPC

A

8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0.5

1.

Waste

B
Fig. 5. Results for GCC with SRAM L1D and DRAM L2. (A) Chip IPC. (B) Wasted area.

8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

1

2

3

Chip IPC

A

8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0.5

1.

Waste

B
Fig. 6. Results for MCF with SRAM L1D and DRAM L2. (A) Chip IPC. (B) Wasted area.

8kB

32kB

128kB

512kB

2MB

8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0

20

40

60

80

Chip IPC

A

8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0.5

1.

Waste

B
Fig. 7. Results for GAP with SRAM L1D and DRAM L2. (A) Chip IPC. (B) Wasted area.

8kB

32kB

128kB

512kB

2MB

8MB

L1D

0B
8kB

32kB

128kB

512kB

2MB

8MB

L2

0

100

200

300

Chip IPC

A

8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0.5

1.

Waste

B
Fig. 8. Results for GZIP with SRAM L1D and DRAM L2. (A) Chip IPC. (B) Wasted area.



90nm 65nm 45nm 32nm
0

10

20

30

40

50

60

70

Fig. 11. Chip IPC for optimal DRAM configurations (red) vs. optimal SRAM
configurations (blue) at each process node.

for individual benchmarks. For some of the benchmarks, we
will not use the full off-chip bandwidth capacity. For others,
we will slightly exceed off-chip bandwidth. This gives rise to
modest waste in the optimal configuration (10-25% for SRAM
and 5-15% for DRAM).

D. Effect of Embedded DRAM on Performance
Figure 11 plots peak chip IPC for DRAM and SRAM L2

caches over all process nodes, measured by geometric mean.
It was found that DRAM L2 caches gave superior chip IPC
than SRAM in all cases, and the difference was larger at
more advanced process nodes. Consulting Table IV, DRAM
performs better over all individual benchmarks as well.

The tradeoff between SRAM and DRAM is between cache
area (mm2) and access time. SRAM has lower access time
but takes roughly four times as much area for the same cache
size. Our model indicates that the area savings of DRAM are
more significant. Furthermore, DRAM configurations did not
always exhibit more cores than SRAM configurations, as one
might expect from the area savings, but rather favored larger
caches.

Also note that even at 32nm, the optimal DRAM configura-
tion does not indicate all of system RAM should be integrated
on chip. The total cache capacity is 170MB when all of
the cache area is used for embedded DRAM, whereas main
memory capacity will certainly exceed 10GB. This tradeoff
likely will change as more RAM fits on-chip and per-core off-
chip memory bandwidth becomes more limiting as predicted
in future process nodes

V. RELATED WORK

There have been several previous studies that have exam-
ined the problem of partitioning finite resources in processor
architectures.

Multi-level cache hierarchies have been studied in unipro-
cessors several researchers including Jouppi et al. [15]. This
study explores the space of two-level hierarchies by analyzing
the area cost, access time, and combined miss rates of various
combinations of L1 and L2 caches. Our work builds on this by:

considering embedded DRAM caches; using more advanced,
contemporary cache models; extending it to manycore proces-
sors where there is competition for DRAM bandwidth; and
considering a throughput oriented application mix.

SimpleFit [16] is a purely analytical framework used to
explore the design space of multicore processors. The authors
derive simple models for the die area consumed by various
processor components (computation, on-chip memory, on-chip
networks, and off-chip I/O) and the computational, memory,
and communication needs of various applications. They use a
performance function to estimate the run time of a particular
application model on a specific processor model. They then
attempt to optimize this function by varying the processor
component models given a fixed total area budget.

Whereas SimpleFit examines many different tradeoffs at a
very high level, this work focuses on the memory system
and explores it in much greater detail. The SimpleFit authors
briefly examine the question of using embedded DRAM for lo-
cal memories and find (as we do) that it results in significantly
better overall performance. By using CACTI models and actual
measured cache miss rates, our analysis is much more detailed
and includes a greater number of memory configurations. It
is interesting to note that Moritz et al. find that the optimal
processor configuration contains a very large number of cores
with small memories and large on-chip networks while our
analysis favors fewer cores with larger memories. This makes
sense given their focus on parallel applications with high
degrees of communication and relatively small working sets
rather than total throughput of larger independent applications.

Thoziyoor et al. [21] introduced CACTI-D and used it to
perform an evaluation of different implementation technolo-
gies for L3 caches. The study assumed a fixed base architecture
consisting of eight processing cores with SRAM-based L1 and
L2 caches and added a stacked die to provide a large shared L3
cache. L3 caches based on SRAM, embedded (logic-process)
DRAM, and commodity DRAM were compared. As with
our study, the authors found that the DRAM-based caches
outperformed the SRAM-based cache. However, they did not
consider alternate configurations of the L1 and L2 caches as
we do, nor do they consider trading memory for additional
processing cores to find an optimal balance between memory
and computation.

Huh et al. [14] explores the design space for future chip
multiprocessors. Huh differs from this work in that it is
only a simulation based study which differs from this work
which contains a model and hence can be used to draw
further conclusions beyond what is presented in this paper. We
also search a wider search space. Huh also does not explore
embedded DRAM. The core that they evaluate is twice the
size of our evaluated core size, and finally Huh subsets SPEC
Int 2000 while our study utilizes the complete benchmark.

Rogers et al. [17] also studies bandwidth constrained mul-
ticore designs. Rogers explores a completely analytic model,
while our work explores an analytic model and a simulation
fed model. Rogers does explore a wide variety of solutions to
the DRAM scaling problem while our work more fully inves-



8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0

20

40

Chip IPC

A

8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0.5

1.

Waste

B
Fig. 9. Results for geometric mean over SPECINT2000 benchmarks with SRAM L1D and SRAM L2. (A) Geometric mean of chip IPC. (B) Mean wasted
area.

8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0

20

40

60

Chip IPC

A

8kB

32kB

128kB

512kB

2MB
8MB

L1D

0B
8kB

32kB
128kB

512kB

2MB

8MB

L2

0.5

1.

Waste

B
Fig. 10. Results for geometric mean over SPECINT2000 benchmarks with SRAM L1D and DRAM L2. (A) Geometric mean of chip IPC. (B) Mean wasted
area.

tigates DRAM vs SRAM tradeoffs in manycore processors.

VI. FUTURE WORK

In the future, we would like to extend this model to include
an L3 cache. Extending our model to include a non-shared L3
cache is a simple extension. Extending the model to include
shared L3 caches or distributed L3 caches is complicated by
the fact that inter-core sharing must be modeled. We believe
that the sharing factor would vary widely across different
workloads. There is even the possibility of code sharing in
throughput oriented applications.

One limitation in our model which we would like to improve
is that the model currently uses a fixed IPC for non-memory
instructions for all benchmarks. We would like to model the
non-memory IPC on a per benchmark basis. Unfortunately this
parameter is very dependent on micro-architecture specifics.
We do not think that modifying this parameter on a per
benchmark basis would qualitatively change our findings, but
we would like greater model fidelity.

To gain greater model fidelity, we would like to add the
ability to model out-of-order memory systems. While through-
put oriented computations do favor area and power efficient
architectures, we are interested in whether adding an out-of-
order memory system to in-order processors would better hide
latency of the the main memory system. Ultimately, adding an
out-of-order memory system does not change the needed off-

chip memory bandwidth, but we are still interested in modeling
the effect of this architectural feature.

Last, we would like to extend this grain size study to not
only cache sizes. Primarily, we would like to vary the non-
cache core area along with non-memory IPC to see whether
the optimal multicore grain size favors wider-larger cores or
narrower-smaller execution resources.

VII. CONCLUSION

In conclusion, we believe that poor scaling of off-chip mem-
ory bandwidth when compared to on-chip silicon resources
will continue to motivate the exploration of multicore cache
hierarchies. In this work we have constructed a framework
to study cache size versus core count which is the primary
tradeoff in multicore design. This framework was utilized to
determine optimal core count and cache configurations for
multiple future process technologies. This tool will serve as
a guide for multicore chip architects by enabling the quick
exploration of a large space of possible configurations.

REFERENCES

[1] Intel Microarchitecure (Nehalem), 2008.
http://www.intel.com/technology/architecture-silicon/next-
gen/index.htm.

[2] Amazon elastic compute cloud (amazon ec2), 2009.
http://aws.amazon.com/ec2/.



[3] Cloud hosting products - rackspace, 2009.
http://www.rackspacecloud.com/cloud hosting products.

[4] Gogrid cloud hosting, 2009. http://www.gogrid.com/.
[5] Google app engine - google code, 2009.

http://code.google.com/appengine/.
[6] Windows azure platform, 2009. http://www.microsoft.com/azure/.
[7] A. Agarwal. Limits on interconnection network performance. IEEE

Transactions on Parallel and Distributed Systems, 2:398–412, 1991.
[8] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,

J. MacKay, and M. Reif. TILE64 Processor: A 64-Core SoC with Mesh
Interconnect. In International Solid-State Circuits Conference, 2008.

[9] J. F. Cantin and M. D. Hill. Cache performance for selected SPEC
CPU2000 benchmarks. SIGARCH Comput. Archit. News, 29(4):13–18,
2001.

[10] J. F. Cantin and M. D. Hill. Cache performance
for spec cpu2000 benchmarks: Version 3.0, 2003.
http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data.

[11] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu,
M. Braganza, S. Meyers, E. Fang, and R. Kumar. An integrated quad-
core Opteron processor. In Proc of the IEEE International Solid-State
Circuits Conference (ISSCC), pages 102–103, Feb 2007.

[12] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki. Synergistic processing in Cell’s multicore architecture.
IEEE Micro, 26(2):10–24, March-April 2006.

[13] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers, San Francisco, CA,
third edition, 2003.

[14] J. Huh, D. Burger, and S. W. Keckler. Exploring the design space
of future cmps. Parallel Architectures and Compilation Techniques,
International Conference on, 2001.

[15] N. P. Jouppi and S. J. E. Wilton. Tradeoffs in two-level on-chip
caching. In ISCA ’94: Proceedings of the 21st International Symposium
on Computer Architecture, pages 34–45, Apr 1994.

[16] C. A. Moritz, D. Yeung, and A. Agarwal. Simplefit: A framework for
analyzing design trade-offs in Raw architectures. IEEE Trans. Parallel
Distrib. Syst., 12(7):730–742, Jul 2001.

[17] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin.
Scaling the bandwidth wall: challenges in and avenues for cmp scaling.
In ISCA ’09: Proceedings of the 36th annual international symposium
on Computer architecture, pages 371–382, 2009.

[18] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: A many-core x86 architecture for
visual computing. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers,
pages 1–15, New York, NY, USA, 2008. ACM.

[19] B. Stackhouse, B. Cherkauer, M. Gowan, P. Gronowski, and C. Lyles.
A 65nm 2-billion-transistor quad-core Itanium processor. In Proc of
the IEEE International Solid-State Circuits Conference (ISSCC), pages
92–598, Feb 2008.

[20] TMS320C6474 multicore digital signal processor, Oct. 2008.
http://www.ti.com/lit/gpn/tms320c6474.

[21] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P.
Jouppi. A comprehensive memory modeling tool and its application to
the design and analysis of future memory hierarchies. In ISCA ’08: Pro-
ceedings of the 35th International Symposium on Computer Architecture,
pages 51–62, Washington, DC, USA, 2008. IEEE Computer Society.

[22] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. Cacti
5.1. Technical Report HPL-2008-20, Hewlett-Packard Labs, 2008.

[23] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal. On-chip
interconnection architecture of the tile processor. IEEE Micro, 27(5):15–
31, Sept. 2007.


