arTenTen: Arabic Corpus and Word Sketches

Tressy Artsa, Yonatan Belinkovb, Nizar Habashc,*, Adam Kilgarriffd, Vit Suchomele,d

aChief Editor Oxford Arabic Dictionary, UK
bMIT, USA
cNew York University Abu Dhabi, United Arab Emirates
dLexical Computing Ltd, UK
eMasaryk Univ., Czech Republic

Available online 7 October 2014

Abstract We present arTenTen, a web-crawled corpus of Arabic, gathered in 2012. arTenTen consists of 5.8-billion words. A chunk of it has been lemmatized and part-of-speech (POS) tagged with the MADA tool and subsequently loaded into Sketch Engine, a leading corpus query tool, where it is open for all to use. We have also created ‘word sketches’: one-page, automatic, corpus-derived summaries of a word’s grammatical and collocational behavior. We use examples to demonstrate what the corpus can show us regarding Arabic words and phrases and how this can support lexicography and inform linguistic research.

The article also presents the ‘sketch grammar’ (the basis for the word sketches) in detail, describes the process of building and processing the corpus, and considers the role of the corpus in additional research on Arabic.

© 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.

1. Introduction

Without data, nothing. Corpora are critical resources for many types of language research, particularly at the grammatical and lexical levels. In this article, we present arTenTen, a web-crawled corpus of Arabic, gathered in 2012, and a member of the TenTen Corpus Family (Jakubiček et al., 2013). arTenTen comprises 5.8-billion words. Since 2003, the key resource for Arabic has been Arabic Gigaword.1 It contains exclusively newswire text. arTenTen improves on Gigaword, for dictionary-editing and related purposes, by covering many more types of text. A 115-million word chunk has been tokenized, lemmatized and part-of-speech tagged with the leading Arabic processing toolset, MADA (Habash and Rambow 2005; Habash et al., 2009), and installed in the Sketch Engine (Kilgarriff et al., 2004), a leading corpus query tool, where it is available for all to investigate.2 There have been other important efforts in creating large collections of Modern Standard Arabic Gigaword is created and distributed by the Linguistic Data Consortium (Graff, 2003). It is regularly updated and is now in its fifth edition.3 http://www.sketchengine.co.uk.

1 Corresponding author.
E-mail addresses: tressy.arts@gmail.com (T. Arts), belinkov@mit.edu (Y. Belinkov), nizar.habash@nyu.edu (N. Habash), adam@lexmasterclass.com (A. Kilgarriff), xsuchom2@fi.muni.cz (V. Suchomel).
Peer review under responsibility of King Saud University.

http://dx.doi.org/10.1016/j.jksuci.2014.06.009
1319-1578 © 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.
Arabic text, such as the Corpus of Contemporary Arabic (al-Sulaiti and Atwell, 2006), International Corpus of Arabic (Alansary et al., 2007) and the Leipzig University Arabic collection (Eckart et al., 2014). Zaghouani (2014) has also presented a survey of several freely available corpora. These various corpora come in a range of sizes, but all of them are smaller than arTenTen.

One feature of interest in the Sketch Engine is the ‘word sketch’, a one-page, automatically derived summary of a word’s grammatical and collocational behavior. Word sketches have been in use for English lexicography since 1999 (Kilgarriff and Rundell, 2002) and are now available for twenty languages. In Section 2, we describe how word sketches (and two related reports; thesaurus and ‘sketch diff’) can be used to give a better understanding of the behavior of Arabic words and phrases.3

To provide word sketches, we must parse the corpus either with an external parser or with the Sketch Engine’s built-in shallow parser, as here. For this process, we need a ‘sketch grammar’ for Arabic, which is presented in a tutorial-style introduction in Section 3. Section 4 describes how arTenTen was created and prepared for the Sketch Engine. In Section 5, we conclude with a summary and a brief discussion of future work.

2. Using arTenTen in the Sketch Engine for language research

The Sketch Engine is in use for lexicography at four of the five UK dictionary publishers (Oxford University Press, Cambridge University Press, Collins, and Macmillan), at national institutes for Bulgarian, Czech, Dutch,4 Estonian, Irish,5 and Slovak, and for a range of teaching and research purposes at over 200 universities worldwide.

Before discussing the details of how we built the arTenTen corpus and annotated it, we provide several examples of its utility in the context of language research, e.g., for lexicography. This section is organized around the different functions available to the linguist using the Sketch Engine to study Arabic words in their context.

2.1. The simple concordance query function

A simple concordance query shows the word as it is used in different texts in the corpus. Fig. 1 shows the query box, while Fig. 2 shows its output. A simple search query for a word such as ﻣﻄﻠﻕ (child) searches for the lemma as well as the string; so, the strings ﻣﻄﻠﻕ ﺔﻟﻌﻠﹸﻕ (the + child), ﻣﻄﻠﻕ ﺔﻟﻌﻠﹸﻕ ﺔﻟﻌﻠﹸﻕ (child + their), ﺔﻟﻌﻠﹸﻕ (like + the + children), etc., are all retrieved.

2.2. The frequency functions

The Sketch Engine interface provides easy access to tools for visualizing different aspects of the word frequency (see Figs. 3 and 4). The frequency node6 forms function on the left hand menu (Fig. 3) shows which of the returned forms are most frequent.

The p/n links are for positive and negative examples. Clicking on p gives a concordance for the word form, while clicking on n gives the whole concordance except for the word form.

The frequency text types function shows which top-level domain is most frequent (Fig. 4).

Both hit counts and normalized figures are presented to account for the different quantities of material from different domains. If the word was equally frequent (per million words) in all of the domains, the figures in the fourth column would all be 100%. The bars are based on the normalized figures (with the height of the bar corresponding to the quantity of data). We see that ﻣﻄﻠﻕ is frequent on .edu sites.

This utility is useful when researching regional differences. For example, making a frequency list for ﻣﺤﻤﻭﻁﺓ (privatization), we see (Fig. 5) that it is used almost exclusively in Moroccan and Algerian newspapers.

2.3. The word list function

The word list function allows the user to make frequency lists of many varieties. Fig. 6(A)–(C) show the tops of frequency lists for word forms, lemmas and diacritized7 lemmas for the corpus.

2.4. The word sketch and collocation concordance functions

The word sketch function is invaluable for finding collocations. The word sketch for ﺍﻷﺧﻴﺭ (green, Fig. 7) shows expected collocates such as ﺍﻷﺧﻴﺭ ﻭﺇﻻ ﻭﻠﮕﺭ ﻭﺇﻻ ﻭﻠﮕﺭ (yellow) and ﺍﻷﺧﻴﺭ ﻭﻝﺎﻝ ﻭﻝﺎﻝ ﻭﻝﺎﻝ (color) but also the idiomatic ﺍﻷﺧﻴﺭ ﻭﻝﺎﻝ ﻭﻝﺎﻝ ﻭﻝﺎﻝ (literally “the green and the dry”). Clicking on the number after the collocate gives a concordance of the combination (Fig. 7).

In this concordance, we see that this combination usually occurs with (10 of the 20 lines in Fig. 7) or verbs denoting destruction, such as ﺍﻷﺧﻴﺭ ﺓﺡ ﺓﻝ ﺔ(marker, the shadda).

Additionally, in the Word Sketch, we see that a top collocate noun for the adjective ﺍﻷﺧﻴﺭ is ﺍﻷﻛﺭ ﺔ(light). Green light is not such a common phenomenon that it would account for this, so again, we look at the concordance (Fig. 8).

In these lines, we can see that ﺍﻷﻛﺭ ﺔ (the green light) is used in much the same way as the English, in “to give/get the green light”, meaning to be allowed to go forward.

3 The methods and approach described here are similar to those used in the creation of the Oxford Arabic Dictionary (Arts et al., 2014).
4 Dutch is an official language in both the Netherlands and Belgium (where it is also called Flemish), and the institute in question (INL) is a joint one from both countries.
5 Much of the development work for the Sketch Engine was undertaken under a contract from Foras na Gaeilge (the official body for the Irish language) in preparation for the creation of a new English-Irish dictionary (http://www.focloir.ie). Irish is spoken in both the Irish Republic and Northern Ireland (which is part of the UK), and Foras na Gaeilge is a joint institute of both countries.
6 The nodes are the concordance result, i.e. all tokens from the corpus matching the concordance query.
7 Diacritics and diacritization are often referred to as vowels and vocalization because the most common use of Arabic diacritics is to indicate short vowels. We use the more general term here to account for non-vowel diacritical marks, such as the consonant gemination marker, the shadda.
2.5. The bilingual word sketch function

A new function of the word sketch is the bilingual word sketch, which allows the user to see word sketches for two words side-by-side. Fig. 9 shows a comparison between أحم and red.

Some of the same things are أحم/red in Arabic and English; thus, we find the matched pairs أحم/meat, سجاد/carpet, and أفلق/pepper. All three are to an extent idiomatic, with the same idiomatic meaning in both languages. The Red Cross and Red Crescent are discussed more in Arabic media than in English, reflecting the unfortunate reality of several Arabic-speaking countries today. In contrast, wine is high in the English list but absent in the Arabic one.

2.6. The distributional thesaurus function

The Sketch Engine also offers a distributional thesaurus, where, for the input word, the words ‘sharing’ the most collocates are presented. Fig. 10 shows the top entries in similarity to استيراد (export). The top result is استيراد (import). Clicking on this word takes us to a ‘sketch diff’, which is a report that shows the similarities and differences between the two words in Fig. 10.

The first number following the collocate shows the number of occurrences of this collocate with استيراد (export), the second number shows the number of occurrences with استيراد (import). A color scale from green to red visualizes the distribution.
2.7. Collocations and lexicographic research: two case studies

The information in the Sketch Engine reports is particularly useful for lexicographers. It presents collocations, idioms, prepositions commonly occurring with verbs, and so forth.

It also gives insight into the use of words, often assisting the lexicographer in finding definitions for new words, for example, for

 misconception (autistic), as shown in Fig. 11. The immediate context of child and patient indicate that the word might be an adjective for an ailment.

It also occasionally reveals new senses of words. For example, the word تقدير is traditionally known to mean “order/manner”, as illustrated in Fig. 12.

However, looking at the concordance for the top adjective collocate تزن (increasing, Fig. 13), we see that these sentences do not seem to refer to “increasing order” but to an “increasing pace”.

Figure 3 Frequency of node forms of طلق.

Figure 4 Frequency list of domain extensions of sites that contain forms of طلق.
Investigating the word further, we find that “pace” is a common contemporary meaning of the word "نِسْقِ\".

Having shown the functions of the Sketch Engine and its functionality for Arabic, we will now go into more detail on developing the corpus and deploying it in the Sketch Engine.

3. A sketch grammar for Arabic

A sketch grammar is a grammar for the language based on regular expressions over part-of-speech tags (see Kilgarriff et al., 2004). It underlies the word sketches and is written in the corpus query language (CQL). A sketch grammar is designed particularly to identify head-and-dependent pairs of words (e.g., "نِسْقِ\" in specified grammatical relations (here, adjective-modifier) so that the dependent can be entered into the head’s word sketch and vice versa. Prior to the work described here, there has only been one sketch grammar for Arabic, developed at Oxford University Press (OUP) as part of the development phase for the Oxford Arabic Dictionary (Arts et al., 2014). It (and the word

Figure 5 Frequency list of sites containing forms of "نِسْقِ\".

Figure 6 (A–C) Frequency list of the whole corpus for word forms, lemmas and diacritized lemmas.
The sketch grammar is one of the two components needed to build word sketches. The grammar is run over the corpus to identify all of the <word1, grammatical-relation, word2> triples in the corpus. The other component is a statistic. For each lemma occurring in the word1 slot (the node word) and for each grammatical relation, we count the number of times each different lemma occurs in the word2, or ‘collocate’, slot. We use these numbers to calculate an association score\(^8\) between the node word and the collocate. The collocates with the highest association scores go into the word sketch.

A sketch grammar contains a set of definitions for grammatical relations. A simple grammatical relation definition is just:

\[\text{simple defining rule: \{sentence type\} \Rightarrow \text{subject} \rightarrow \text{predicate} } \]

\(^8\) The association score currently in use is a variant of the Dice coefficient; see Rychly (2008) for full details.
without diacritics), the case and the state. Many fields, including the word form itself, the lemma (with and without diacritics), these features are not good indicators of noun-adjective agreement. For more on issues of Arabic agreement, see Alkuhlani and Habash (2011).

The part-of-speech tag is called simply tag and in the formulation above, this has been set as the default. A non-shorthand version is

* DUAL
 1:[tag="noun"] 2:[tag="adj"]

All of the constraints on a word (or, technically, a token: tokens are usually either words or punctuation) are placed within square brackets, and each square-bracketed item relates to one token in a sequence.

Now, the linguist will immediately note that there are many cases where adjectives happen to follow nouns but are not their modifiers. The definition above is insufficiently constrained and will give rise to many false positives. One constraint we want to add is that the adjective and noun agree, in case and in state. This is enforced in the next version.

* DUAL
 1:[tag="noun"] 2:[tag="adj"] & 1.state = 2.state & 1.case = 2.case

Now, an adjective followed by a noun only matches if the state value of the token indexed by 1: is the same as the state value of the token indexed by 2:, and likewise for case. ¹⁰

This is better and will not include many false positives. However, we should also be alert to valid cases of adjectives modifying nouns, which the definition above misses. One case is where two adjectives in succession modify a noun, e.g., the kingdom of the Saudi Arabian (lit: the Saudi-Arabian Kingdom). Only the adjective closest to the noun is captured by the clause above. To capture the other adjective, we add another clause to the definition:

1: [tag="noun"] [tag="adj"] 2:[tag="adj" & pref1tag!="prep"] & 1.state = 2.state & 1.case = 2.case

This version allows an intervening adjective between the noun and its collocate adjective, which must not have a prefixed preposition.

The process of developing a sketch grammar is supported by the Sketch Engine because the CQL queries can be posed directly to the corpus, using the ‘CQL’ option in the concordance form. Thus, the strings above can be cut and pasted into the CQL box (Fig. 14), and the developer can immediately see all of the hits (Fig. 15).

Typically, this will include false positives, and the developer can then add constraints to rule them out. They should also think about the cases they are missing (in this example, the two-adjective case) and need to aim for as large a population of hits as possible, without too many false positives. In the terminology of information theory, they need to attend to recall – missing items that should be found – as well as precision – avoiding false positives. Recall tends to be a harder problem because a tool cannot show the items that are not found.

The Arabic sketch grammar aims at identifying the main grammatical relations while ensuring high-quality results. The grammatical patterns it covers are:

= adjective
 1: “noun” 2: “adj”

This definition says that if we have a word with part-of-speech tag noun followed by one with part-of-speech tag adj, the grammatical relation adjective holds between the node word (the noun) and the collocate (the adjective). The 1: identifies the noun as the first argument of the grammatical relation, and the 2: identifies the adjective as the second argument.

We would also like to identify the noun as a collocate, when the adjective is the node word. To do that, we tell the system that the relation is dual and give a name for the inverse relation: here, adjective-of, as follows.

DUAL
= adjective/adjective-of
 1: “noun” 2: “adj”

There is some shorthand here. There may be many different fields of information associated with a word, of which the part-of-speech tag is just one field. In the case of arTenTen, there are many fields, including the word form itself, the lemma (with and without diacritics), the case and the state.¹⁹ The part-of-speech

¹⁰ Gender and number may seem to be good candidate features for this sketch grammar. However, since MADA uses what Habash (2010) terms form-based gender and number, and given the prevalence of deflected agreement (irrational plural nouns take feminine singular adjectives), these features are not good indicators of noun-adjective agreement. For more on issues of Arabic agreement, see Alkuhlani and Habash (2011).

subject, subject-of: these relations capture the relationship between verbs and their subjects. The noun is required to appear in the nominative case and may not have a prefixed preposition or conjunction.

The phrase لَئِلَّةَ الْمَطرِ (the rain fell) produces two grammatical relations. When لَئِلَّةَ (fell) is the node word, the grammatical relation subject holds between it and its collocate المَطرِ (rain). Conversely, if المَطرِ is the node word, then it stands in the grammatical relation subject-of with لَئِلَّةَ.

adjective, adjective-of: these two relations capture noun–adjective pairs. We enforce agreement in state (definite/indefinite) and case. Enforcing agreement in gender and number is not trivial and left for future versions.

Figure 10 (A) Thesaurus search showing entries similar to تحرير (export) (left). (B) Sketch Diff comparing collocates of تحرير and تصدر (export and import) (right).

Figure 11 Concordance for تعديل.
Figure 12 Dictionary entries for نسق from Wehr’s Dictionary of Modern Written Arabic 4th ed. 1979, and al-mu’jam al-wasit (Academy of the Arabic Language in Cairo). Entry as found at almaany.com, February 2014.

Figure 13 Concordance for نسق with التصادعي.

Figure 14 Using CQL in the concordance search form (with tag as default attribute).

Figure 15 Resulting concordance with noun-adj-adj sequences.
In the phrase `تبحث علمي` (scientific research), the noun takes the adjective `علمي` which itself is adjective-of for `بحث` (research).

- **construct-state:** captures construct state (idafa) constructions between two nouns. The first noun is required to be in the construct state and the second noun is required to be in the genitive case with no prefixed preposition or conjunction.

In the phrase `مدير المدرسة` (the school principal), the grammatical relation `construct-state` holds between the node `مدير` (principal) and the collocate `المدرسة` (the school).

- **and/or:** this relation captures conjunctive constructions of pairs of nouns, adjectives, and verbs. We enforce agreement in certain grammatical features between the two words: for nouns and adjectives, we enforce agreement in case and state; for verbs. In aspect. This relation is declared as `symmetric`, which tells the system that both words can be the head node in turn.

Examples for pairs of adjectives include: `كبير وصغير` (large and small) and `كبير أو صغير` (large or small). In these examples, the word `كبير` (large) stands in grammatical relation of `and/or` with `صغر` (small) and vice versa. Similarly, we obtain pairs of nouns (e.g., `النساء والرجال`,”women and men”) and verbs (e.g., `يضحى أو يبكي` “laughs or cries”).

The grammar focuses on the highest-confidence patterns for each grammatical relation. There are many constructions it does not yet cover. The quality of the identification of the different relations depends on the correctness of the automatic disambiguation component. Since the accuracy of automatic prediction of case is somewhere in the mid 80%, we can expect a fair amount of failed matches, e.g., verb–object pairs analyzed as verb–subject pairs. Future versions will increase coverage for current relations and add additional relations such as `verb-preposition` and `direct-object`. See Appendix A for the full grammar and the Sketch Engine documentation for a full account of the formalism.

4. Creating and preparing the corpus

4.1. Crawling and text preparation

The following describes the processing chain for creating the corpus.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Data sizes at the various stages of corpus preparation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data statistics</td>
<td>Documents (web pages; millions)</td>
</tr>
<tr>
<td>HTTP requests issued</td>
<td>87.8</td>
</tr>
<tr>
<td>Web pages received</td>
<td>58.8</td>
</tr>
<tr>
<td>Cleaned text without exact duplicates</td>
<td>21.5</td>
</tr>
<tr>
<td>Final text without near duplicates</td>
<td>11.5</td>
</tr>
<tr>
<td>Processed with MADA</td>
<td>0.23</td>
</tr>
</tbody>
</table>

* The size of the annotated corpus is 1.32 GB without morphological tags and 23.6 GB with full MADA morphological annotation.

- We use texts from Arabic Wikipedia and other Arabic web pages to build the language-specific models that we need: (a) a character trigram model for language identification, (b) a byte trigram model for character encoding detection, (c) the most common Arabic words for seeding the crawl and for distinguishing sentences from lists and headers, and (d) parameters for the boilerplate cleaning utility.

- We crawl the Arabic web with SpiderLing (Pomikalek and Suchomel, 2012), a crawler designed specifically for preparing linguistic corpora. The seeds for the crawl were generated by taking the top 1000 words from Arabic Wikipedia, randomly combining them into triples, and using the triples as Yahoo queries. The Yahoo search hits gave 4583 URLs, which were used as starting points for the crawl.

- We remove the non-textual material and boilerplate with jusText (Pomikalek, 2011). JusText uses the working definition that we want only ‘text in sentences’ (excluding e.g., headers and footers). The algorithm is linguistically informed, rejecting material that does not have a high proportion of tokens that are the grammar words of the language; therefore, in the course of data cleaning, most material, which is not in the desired language, is removed.

- We de-duplicate with Onion (Pomikalek, 2011) to remove near-duplicate paragraphs. We de-duplicate at the paragraph level because for many linguistic purposes, a sentence is too small a unit, but a whole web page (which may contain large chunks of quoted material) is too large.

These tools are designed for speed and are installed on a cluster of servers. For a language where there is plenty of material available, we can gather, clean and de-duplicate a billion words a day. ArTenTen was collected in 14 days. Table 1 presents the various statistics from arTenTen.

4.2. Composition

The best-represented top level web domains in the corpus are .com, .net, .org, .info, .ps (Palestine), .sa (Saudi Arabia), .sy (Syria), .eg (Egypt), and .ae (United Arab Emirates), as shown in Table 2. There are 116,000 web domains represented by at least one document, and 43,000 represented by at least 10 (see Table 3), suggesting a heterogeneous corpus in contrast to corpora such as Arabic Gigaword or KSUCCA (Alrabiah et al., 2013), which are built from a small number of sources. The twenty domains that contributed the most documents are given in Table 4.
4.3. Processing with MADA

We chose to use the MADA tool for Arabic processing because of its state-of-the-art results on Arabic disambiguation, part-of-speech tagging and lemmatization and its holistic approach to modeling Arabic, predicting all of a word’s morphological features in context. MADA has been successfully used by numerous Arabic NLP projects: in the NIST Open machine translation evaluation in 2012, nine out of twelve teams competing on Arabic–English translation used MADA. In a precursor to the work described in this article, Oxford University Press used MADA to prepare corpus materials used to create the Oxford Arabic Dictionary (Arts et al., 2014).

Within the framework of Arabic processing via MADA (Habash and Rambow, 2005; Habash et al., 2009), we need to distinguish two concepts: morphological analysis and morphological disambiguation. Morphological analysis refers to the process that determines for a particular word all of its possible morphological analyses. The word, for MADA, is the orthographic word, defined as the sequence of letters delimited by spaces and punctuation. In Arabic, the word may include a variety of clitics, such as the definite article, prepositions, conjunctions and pronouns.

Each single analysis (out of many) includes a single choice or reading of the word with multiple dimensions of morphological information: the word’s full diacritization, lemma, stem, part-of-speech (POS); the full Buckwalter Analyzer tag (Buckwalter, 2002), values and POS tags for four possible proclitic slots; the values of eight inflection features – person, aspect, voice, mood, gender, number, state and case; enclitic value and POS tag; English gloss; and whether the word had a spelling variation. Table 5 shows the MADA features for the example word وَفَكَرَ referring a specific analysis corresponding to the English ‘and with an idea’.

Arabic words are highly ambiguous, primarily because diacritical marks are usually left out. A good analyzer produces the full set of choices for a particular word out of context. For example, the word البت can have many analyses, including:

<table>
<thead>
<tr>
<th>Diacritization</th>
<th>Buckwalter POS tag</th>
<th>English Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>bay~an+a</td>
<td>PV+PVSUBF_SUBJ:3MS</td>
<td>He demonstrated</td>
</tr>
<tr>
<td>bay~an+a</td>
<td>PV+PVSUBF_SUBJ:3FP</td>
<td>They demonstrated (f.p)</td>
</tr>
<tr>
<td>Byn</td>
<td>NOUN_PROP</td>
<td>Ben</td>
</tr>
<tr>
<td>bay~in (dropping ADJ)</td>
<td>all case endings for simplicity</td>
<td>Clear</td>
</tr>
<tr>
<td>Bayn</td>
<td>PREP</td>
<td>Between, among</td>
</tr>
</tbody>
</table>

Morphological disambiguation refers to selecting the appropriate morphological analysis in context. Compare the following two sentences, which both contain البت. A good disambiguation model would select the proper noun reading for (1) and the preposition reading for (2):

(1) هل سينجح بن أفليك في دور بالمان؟
Will Ben Affleck be a good Batman?

(2) كيري يحاول جدداً لفت الأفكار بين فلسطين وإسرائيل.
Kerry tries again to save the negotiations between Palestine and Israel.

The task of morphological disambiguation for English is referred to as POS tagging because for English, a large part of the challenge is to determine what a noun, verb, or adjective is (for example, for base forms such as promise, s-forms such as

<table>
<thead>
<tr>
<th>TLD</th>
<th>%</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>.com</td>
<td>54.45</td>
<td>Generic commercial</td>
</tr>
<tr>
<td>.net</td>
<td>20.86</td>
<td>Generic network</td>
</tr>
<tr>
<td>.org</td>
<td>10.32</td>
<td>Generic organization</td>
</tr>
<tr>
<td>.info</td>
<td>1.69</td>
<td>Generic information</td>
</tr>
<tr>
<td>.ps</td>
<td>1.55</td>
<td>Palestine</td>
</tr>
<tr>
<td>.sa</td>
<td>1.41</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>.sy</td>
<td>0.76</td>
<td>Syria</td>
</tr>
<tr>
<td>.eg</td>
<td>0.61</td>
<td>Egypt</td>
</tr>
<tr>
<td>.ae</td>
<td>0.60</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>.co</td>
<td>0.43</td>
<td>Cocos Islands/generic</td>
</tr>
<tr>
<td>.uk</td>
<td>0.41</td>
<td>UK</td>
</tr>
<tr>
<td>.cn</td>
<td>0.41</td>
<td>China</td>
</tr>
<tr>
<td>.jo</td>
<td>0.40</td>
<td>Jordan</td>
</tr>
<tr>
<td>.sd</td>
<td>0.38</td>
<td>Sudan</td>
</tr>
<tr>
<td>.ma</td>
<td>0.35</td>
<td>Morocco</td>
</tr>
<tr>
<td>.lb</td>
<td>0.30</td>
<td>Lebanon</td>
</tr>
<tr>
<td>.il</td>
<td>0.28</td>
<td>Israel</td>
</tr>
<tr>
<td>.biz</td>
<td>0.26</td>
<td>Generic business</td>
</tr>
<tr>
<td>.ws</td>
<td>0.26</td>
<td>Samoa/generic</td>
</tr>
<tr>
<td>.ir</td>
<td>0.25</td>
<td>Iran</td>
</tr>
<tr>
<td>Other</td>
<td>4.03</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Document (web pages) by top-level domain (TLD).

Table 3 Distribution of documents by website.

Table 4 Webs contributing the most documents.
promises, ing-forms such as promising and ed-forms such as promised). The standard English POS tag set, although only comprising 46 tags, completely disambiguates English morphologically. In Arabic, the corresponding tag set comprises thousands of tags, so the task is considerably harder. Reduced tag sets have been proposed for Arabic in which certain morphological differences are conflated, making the morphological disambiguation task easier. The term POS tagging is usually used for Arabic with respect to some of the smaller tag sets (Habash, 2010).

MADA uses a morphological analyzer for MSA based on the standard Arabic morphological analyzer (SAMA) (Graff et al., 2009). It also uses a set of different classifiers that classify the values of specific features from the analysis form in context, such as lemmas or gender. These features are trained on the Penn Arabic Treebank (Maamouri et al., 2004). The two sets of information (out-of-context analyses and in-context classified features) are combined to select the appropriate analysis in context (Habash and Rambow, 2005; Roth et al., 2008).

A 115-million word subset of arTenTen was processed with MADA. The single preferred analysis for each word was output and used as the input to the next process. The work on MADA has been extended to handle Arabic dialects, specifically Egyptian Arabic (Habash et al., 2013). However, in this work, we only use MADA for MSA.

4.4. Into the Sketch Engine

Loading the arTenTen into the Sketch Engine required a conversion of MADA output into the format specified by the Sketch Engine. The Sketch Engine input format, often called “vertical” or “word-per-line”, is as defined at the University of Stuttgart in the 1990s and is widely used in the corpus linguistics community. Each token (e.g., word or punctuation mark) is on a separate line and where there are associated fields of information, such as lemma, POS-tag and morphological features, they are included in tab-separated fields. The conversion script extracts all of the MADA-generated features into fields and incorporates additional fields for ease of search in Sketch Engine, e.g., Arabic-script, diacritized and non-diacritized versions of the lemma (back-transliterated from the Buckwalter transliteration (Habash et al., 2007)). Structural information, such as document beginnings and ends, sentence and paragraph mark-up, and any available metadata, are presented in XML-like form on separate lines. For web corpora, there is limited metadata available; date of collection and the URL from which the domain and top-level domain can be derived are useful. A sample of the vertical file is shown in Appendix B.

In the Sketch Engine, each corpus has a corpus configuration file, which specifies the information fields that the corpus includes and various aspects on how they should be displayed. The next stage of the corpus preparation was to develop the arTenTen corpus configuration file. For instance, we needed to specify here that the word sketch attribute is the Arabic form of the lemma to facilitate searching by users in Arabic. This was problematic: it was not clear whether this should be the version of the lemma with diacritics or without. The no-diacritic option was desirable simply because it was the way that Arabic speakers usually write. If we did not permit
no-diachronic input, beginner users would obtain no results and would be put off. However, if the diacritics are not written, the level of ambiguity is considerably higher, and it would not be possible to see a word sketch for

\textit{مصادف} (to confiscate) without noise resulting from

\textit{مصادف} (going out) because both are written as

\textit{مصادف} when not diacritized. Thus, expert users would prefer that word sketches be computed on diacritized forms. The provisional solution is two versions of the corpus: one for users who know they need to use diacritized forms to obtain word sketches, the other for those who do not. We are currently building an interface option that allows users to use the undiacritized form while keeping the diacritized form as an option for advanced users.

We must note here that the quality of the output of the system depends heavily on the input, i.e., the quality of tagging and lemmatization. Errors in lemmatization and tagging will not go unnoticed and can lead to unexpected results for the lexicographer. There is generally a logical explanation, but it may require a closer view into the tagging and lemmatization to fully understand the output. One general difficulty is with proper nouns whose form is ambiguous with another word. For example, the name

\textit{حليم} (Huyay) is a common first name in religious texts. However, MADA usually tags it as an adjective meaning "modest", a mistake that stems from the fact that MADA is mostly built to process modern standard Arabic (MSA) texts, where this name is not a common one. It is also assigned the wrong lemma:

\textit{حليم} instead of

\textit{حليم} (Huyay~). Thus, when the lexicographer wants to search for words that may be read as proper nouns or adjectives, they must be aware of the ambiguity and either use the wrong lemma or search only with the simple string.

On the results page, the concordances are shown, by default, in a keyword-in-context (KWIC) view, as in Fig. 2. With view options, it is possible to change the concordance view to a number of alternative views. One is to view additional attributes such as POS tags or lemma alongside each word. This can be useful for finding out why an unexpected corpus line has matched a query, e.g., because of an incorrect POS-tag or lemma. By selecting fields in the references column, the user can decide what source of information should appear in blue at the left-hand end of the concordance line.

5. Summary and future plans

We have presented arTenTen, a very large web-crawled corpus of contemporary Arabic. We have also presented in some detail the subset of that corpus that has been processed by the MADA tool: how it has been set up and encoded and how we have produced word sketches for Arabic, with a full account of the sketch grammar that was used. We have discussed how this MADA-processed corpus can be used for dictionary-editing and related linguistic research, including how it can be used to find collocations, idioms, new words, new senses, and via the thesaurus, synonyms and related words. We have introduced the sketch diff, which shows how near-synonyms can be compared and contrasted.

We would of course like to apply MADA to the whole of arTenTen. To date, this has not been possible because of the speed of the program. This has recently been addressed with MADAMIRA (Pasha et al., 2014), a new and improved version of MADA combined with AMIRA (Diab, 2009) that is orders of magnitude faster than MADA and has an output of comparable quality.

The method of compilation of arTenTen aims at a diverse corpus, including texts from many domains and genres. The nature of the Arabic language family also means that web texts are likely to appear in many language varieties: modern standard Arabic (MSA), classical Arabic, Quranic Arabic, and various dialects. Identifying the language variety of each text (or sub-text unit) is thus both a challenge and an opportunity: it is a non-trivial task, although standard language identification methods work quite well on identifying Arabic dialects (Zaidan and Callison-Burch, 2013). The opportunity that lies in identifying the language varieties will facilitate lexicographic work on specific varieties and the comparative study of the dialects.

In preliminary experiments, we built a classifier to distinguish between MSA, classical Arabic, and Egyptian, Jordanian, and Saudi dialects. We trained a five-gram character level language model for each of these varieties based on published corpora and tested its performance on a small, manually selected subset of arTenTen texts in MSA, classical Arabic, and Egyptian Arabic, achieving 93% accuracy in this three-wise classification task. Then, we trained a combined dialectal model based on the Egyptian, Jordanian, and Saudi texts and processed a large number of arTenTen texts (40 k). We observed that the majority of the texts (~80%) are identified as MSA, and the rest are identified as classical or dialectal Arabic. This shows that a non-negligible portion of the texts is non-MSA. In future work, we intend to improve our language variety identification and increase its coverage to other dialects, using corpus-based approaches and resources, such as Buckwalter and Parkinson’s Frequency Dictionary (2011) and the keywords method presented in Kilgarriff (2012). We will also consider the identification of sub-text units (Elfardy and Diab, 2013), which is important for mixed texts.

arTenTen was gathered in 2012; so, it is already two years old. For each of the TenTen corpora, a program of re-crawling is planned, whereby material will regularly be added, both to keep the corpus current and so that empirical methods can be applied to the discovery of new words and meanings. We intend to gather newspaper feeds and blog feeds so that we have additional material with accurate time stamps.

We believe arTenTen, in combination with MADA/MADAMIRA and the Sketch Engine, possesses considerable promise for improved Arabic linguistic description and lexicography.

Acknowledgments

This work was partly supported by the Ministry of Education of the Czech Republic within the LINDAT-Clarin project LM2010013 and by the Ministry of the Interior of the Czech Republic within the project VF20102014003. Nizar Habash performed most of his work on this article while he was at the Center for Computational Learning Systems at Columbia University.
Appendix A. Arabic sketch grammar

arTenTen Sketch Grammar, version 0.1 (7/20/2013)
STRUCTLIMIT s
DEFAULTATTR tag
FIXORDER subject/subject-of adjective/adjective-of construct-state and/or
DUAL = subject/subject-of
1: "verb" 2:[tag = "nouns" & case = "n" & pref1tag! = "prep" & pref2tag! = "conj"]

DUAL = adjective/adjective-of
1: "noun" 2:[tag = "adj" & pref1tag! = "prepar" & pref2tag! = "conj"] & 1.state = 2.state & 1.case = 2.case
1: "noun" [tag = "adj" & pref1tag! = "prepar" & pref2tag! = "conj"] 2:[tag = "adj" & pref1tag! = "prepar"] & 1.state = 2.state & 1.case = 2.case
noun–adjective pair; enforce agreement in state and case
1: [tag = "noun" & state = "c"] 2:[tag = "noun" & case = "g" & pref1tag! = "prepar" & pref2tag! = "conj"]
simple annexation
1: [tag = "noun" & state = "c"] [tag = "noun" & case = "g" & state = "c" & pref1tag! = "prepar" & pref2tag! = "conj"] + [tag = "noun" & case = "g" & pref1tag! = "prepar" & pref2tag! = "conj"]
more complex annexation
= and/or
SYMMETRIC

1: "noun" [trans = ">w" trans = ">m"] [trans = ">w"] 2: "noun" & 1.state = 2.state & 1.case = 2.case
1: "noun" 2:[tag = "noun" & pref2 = "wa"] & 1.state = 2.state & 1.case = 2.case
noun
1: "adj" [trans = ">w" trans = ">m"] [trans = ">w"] 2: "adj" & 1.state = 2.state & 1.case = 2.case
1: "adj" 2:[tag = "adj" & pref2 = "wa"] & 1.state = 2.state & 1.case = 2.case
adjective
1: "verb" [trans = ">w" trans = ">m"] [trans = ">w"] 2: "verb" & 1.aspect = 2.aspect
1: "verb" 2:[tag = "verb" & pref2 = "wa"] & 1.aspect = 2.aspect
verb

Appendix B. Sample arTenTen XML ‘vertical’ format

With selected attributes of a morphological annotation by MADA. There are two paragraphs (<p>) each with one sentence (<s>) within one document (<doc>). The source of the document and other metadata is stored in attributes of structures (e.g. url = “http://www.alsabar-mag.com/ar/article__419”).

```xml
<doc>
    <s>
        # arTenTen Sketch Grammar, version 0.1 (7/20/2013)
        # STRUCTLIMIT s
        # DEFAULTATTR tag
        # FIXORDER subject/subject-of adjective/adjective-of construct-state and/or
        # DUAL = subject/subject-of
        # 1: "verb" 2:[tag = "nouns" & case = "n" & pref1tag! = "prepar" & pref2tag! = "conj"]
        # DUAL = adjective/adjective-of
        # 1: "noun" 2:[tag = "adj" & pref1tag! = "prepar" & pref2tag! = "conj"] & 1.state = 2.state & 1.case = 2.case
        # 1: "noun" [tag = "adj" & pref1tag! = "prepar" & pref2tag! = "conj"] 2:[tag = "adj" & pref1tag! = "prepar"] & 1.state = 2.state & 1.case = 2.case
        # noun–adjective pair; enforce agreement in state and case
        # 1: [tag = "noun" & state = "c"] 2:[tag = "noun" & case = "g" & pref1tag! = "prepar" & pref2tag! = "conj"]
        # simple annexation
        # 1: [tag = "noun" & state = "c"] [tag = "noun" & case = "g" & state = "c" & pref1tag! = "prepar" & pref2tag! = "conj"] + [tag = "noun" & case = "g" & pref1tag! = "prepar" & pref2tag! = "conj"]
        # more complex annexation
        # = and/or
        # SYMMETRIC
        # 1: "noun" [trans = ">w" trans = ">m"] [trans = ">w"] 2: "noun" & 1.state = 2.state & 1.case = 2.case
        # 1: "noun" 2:[tag = "noun" & pref2 = "wa"] & 1.state = 2.state & 1.case = 2.case
        # noun
        # 1: "adj" [trans = ">w" trans = ">m"] [trans = ">w"] 2: "adj" & 1.state = 2.state & 1.case = 2.case
        # 1: "adj" 2:[tag = "adj" & pref2 = "wa"] & 1.state = 2.state & 1.case = 2.case
        # adjective
        # 1: "verb" [trans = ">w" trans = ">m"] [trans = ">w"] 2: "verb" & 1.aspect = 2.aspect
        # 1: "verb" 2:[tag = "verb" & pref2 = "wa"] & 1.aspect = 2.aspect
        # verb
    </s>
</doc>
```