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Decision procedures are automated theorem proving algorithms which automatically recognize
the theorems of some decidable theory. The correctness of these algorithms is important, since
a design error could lead to the misidentification of a false statement as a theorem. In the past,
decision procedures have been shown to be correct by mechanically verifying that they are sound, i.e.
they only identify valid statements. Soundness does not entail correctness, however, as a decision
procedure could still fail to recognize a true formula from the theory it decides. To rigorously verify
that a decision procedure for a theory T is correct, it must also be shown to be complete in that it
recognize all true propositions from T .

We have developed a decision procedure called bagahk for the validity of formulas modulo the
theory of ground equations T=, which we have proven sound and complete in the proof assistant
Coq. In this thesis, we highlight the important lemmas and theorems of these proofs. As part of
the soundness proof, we embed Coq-level proof terms into the meta-language of our solver using
reflection. As a result of this, bagahk can also be used to assist users in the construction of
other proofs. In addition, we develop a proof system for T= and show that our decision procedure
recognizes all T=-provable propositions, showing that bagahk is complete.
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Preface

Throughout this thesis, Coq terms are set in typewriter font outside of figures:

check valida, extern dp . . .. The lemmas and theorems presented here are la-

beled with the titles of their corresponding Coq proofs; when they are referenced

within the text, they will appear in small capitals: check valida sound. The Coq

definitions of the major theorems appear as figures in the chapters in which they

appear; definitions of all lemmas and theorems can be found in Appendix A.

bagahk was developed and verified using version 8.1beta of the Coq Proof Assis-

tant; the complete definitions and proof scripts of bagahk should be available at

http://cl.cse.wustl.edu/.
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Chapter 1

Introduction

Proof is the idol before whom the pure mathematician tortures himself.

Sir Arthur Eddington, The Nature of the Physical World

While there are certainly many students of calculus who would agree with Sir

Arthur Eddington, proofs are the foundation of mathematics, stretching back to the

syllogisms of Aristotle. A proof is simply an argument that a statement logically

follows from a set of propositions assumed to be true, called axioms. Once a proof

has shown a statement to be true, it is called a theorem. The proofs most people

are familiar with are so-called ’social’ proofs, natural language arguments that are

rigorous enough to convince others that a statement is correct. A convincing argument

for one person might not be persuasive to another, however, making it difficult to

establish a standard for ’correct’ social proofs. An alternate approach is to build a

proof as a sequence of statements that follow one another based upon a well-defined

set of proof rules. These are known as ’formal’ proofs, and are the focus the field

of proof theory. Showing that such a proof is correct is a matter of checking that

the sequence obeys the set of proof rules. While their strict syntax gives formal

proofs a mathematical rigor, it also makes them tedious to construct and difficult

to comprehend. Social proofs, on the other hand, are able to gloss over some of the

details of the formal proofs, instead focusing on the points that are important for

understanding the intuition behind the argument. In theory, the two approaches are

equivalent- a social proof should imply the existence of a formal one and vice-versa,

explaining why the more approachable social proofs are prevalent in practice.
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Broadly speaking, there are two methods for building computer-based proofs: au-

tomatically and interactively. The first is the province of automated theorem proving ;

this field attempts to find proofs algorithmically. Ideally, it would be possible to

design a general-purpose algorithm which could determine whether any statement is

true or false. Unfortunately, there are classes of problems for which no terminating

algorithm exists. This set of undecidable problems includes integer arithmetic with

addition and multiplication [22], the solvability of a Diophantine equation, and the

halting problem from computability theory. Algorithms which recognize true state-

ments can be designed for this class of problems, but their use is limited: Since they

do not halt on all inputs, it is impossible to tell if a long-running computation is

a sign that a statement is not a theorem or if the algorithm needs to run for more

time. Denied an effective general-purpose solver, we instead turn to the creation of

algorithms for decidable domains. These algorithms, called decision procedures, are

designed to recognize the true statements of a particular theory and are guaranteed to

halt on both true and false statements. Through the combination of decision proce-

dures for a variety of theories, a robust theorem prover that can handle a wide range

of problems can be built.

In the second approach, known as interactive theorem proving, a human user guides

the construction of a proof using a software proof assistant. There are a number of

mature proof assistants available today, including Coq [3] and Isabelle/HOL [19]. By

allowing for the use of human intuition, this method can handle a greater range of

problems than automated techniques, potentially proving any mathematical theorem.

In its simplest form, the user directly manipulates the proof terms to show the desired

goal. At this level, the software serves as a proof checker which verifies that the steps

of the proof follow the set of proof rules. As a computerized version of formal proofs,

this strategy shares their weaknesses: manually manipulating proof terms quickly

grows tedious and produces proofs that are largely unreadable to others. Instead,

most proof assistants help the user construct pieces of the proof automatically through

the use of tactics, automated reasoning scripts which manipulate the underlying proof

terms. Tactics lead to more intuitive proofs: since the user is able to use tactics

corresponding to familiar approaches, they can construct the proof more easily; these

proofs are in turn easier to read and maintain. Furthermore, tactics can incorporate

techniques from automated theorem proving to easily construct large portions of
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proofs automatically. Through these tactics, proof assistants are able to offer the

best of both worlds: the user is able to direct the proof using their experience and

intuition while bringing to bear the power of automated reasoning to dispatch many

proof obligations.

The subject of this thesis is the design, implementation, and verification of such a

tactic for the Coq proof assistant. Our tactic recognizes the theorems of the theory of

propositional validity modulo the theory of ground equations. Ground equations are

equations between two constants, such as a = b. The formulas handled by our reasoner

contain a mix of boolean values, propositional variables, and ground equations, joined

together by the standard boolean connectives: →,∧,∨,¬. (p ∨ q) → (a = c) and

(p → (a = b)) ∨ (¬(b = a) ∧ T) are examples of such formulas. The first formula

is not valid in this theory: with no a priori knowledge of the truth values of the

variables, p or q could be true and a = b could be false, falsifying the formula. The

second formula, on the other hand, is valid. If p and a = b are false and b = a is true,

the formula is false; however, this assignment is contradictory, since the symmetry of

equality states that a = b and b = a have the same truth value. Thus we can say this

formula is valid modulo the theory of ground equations.

Program correctness is nothing new to computer scientists; while the advent of

the transistor eliminated the threat of insects to programs, software bugs continue

to plague programmers today. Program verification is concerned with demonstrating

the correctness of programs- that they perform according to some specification. The

concept of mathematically verifying the correctness of a program dates back to the

axiomatic approach of Hoare [14], and work continues today on providing an effective

and practical means of program verification. The question of correctness is of par-

ticular interest in the design of algorithms in automated theorem proving. Clearly,

decision procedures should only affirm that true statements are theorems, and never

report that a false statement is true. Such a decision procedure is said to be sound.

Traditionally, a decision procedure which has been proven sound is said to be veri-

fied; such algorithms exist for domains such as tautology checking [23], membership in

polynomial ideals [25], and the combination of canonizable and solvable theories [11].

This definition of correctness is unsatisfying, however: a decision procedure which

declares every statement to be false is certainly sound, since it finds no proposition,

true or false, to be a theorem, but such an algorithm can hardly be said to be correct.
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In addition to being sound, we also want a complete decision procedure which finds all

theorems of the theory it decides. A bulk of the discussion in this thesis is devoted to

showing that the decision procedure we have developed is both sound and complete.

1.1 Contributions

1. A major contribution of this project is the creation of the bagahk artifact

itself. While the decision procedure proper is only 200 lines of code, the proofs

of its soundness and completeness are over 2500 lines. Since these formal proofs

have passed through Coq’s proof checker, the correctness of the algorithm has

been proven with precise mathematical rigor1.

2. By formulating our decision procedure as a Coq tactic, we have provided a new

tool to assist in user-directed proofs. While there are other tactics that handle

propositional tautology checking, none handle validity modulo the theory of

ground equations. Furthermore, the modular nature of our implementation of

the decision procedure allows for the inclusion of additional theories in bagahk.

3. Finally, while other verified decision procedures are confined to being shown

sound, our solver is both sound and complete- it will affirm that a statement is a

theorem if and only if a corresponding Coq proof exists. The basic methodology

of our proofs lends itself well to extension; with many of the major design hurdles

cleared, we are confident that these proofs can be extended to any additional

theories handled by the solver.

1It should be noted that the proofs in this thesis are decidedly social. Rather than bombard the
reader with the painstaking level of detail in the Coq proof scripts, we provide instead the major
lemmas and theorem of these proofs in enough detail to persuade the reader of their correctness.
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Chapter 2

Background

This section overviews some of the background material necessary for the rest of this

thesis. The first section covers the translation from Coq-level problems to problems

handled by our decision procedure. The second section covers the theory handled by

the reasoner and an approach to the larger class of problems to which it belongs. The

third discusses a definition of soundness and completeness from proof theory that

agrees with the reasoning used by our decision procedure.

2.1 Proof by Computation through Reflection

The mathematical foundation for Coq is the Calculus of Inductive Constructions [6],

an extension of Church’s simply-typed λ-calculus [5]. Proofs in this system are con-

structive: they are thought of as functions from a set of assumptions to the conclusion.

A proof of P → Q in this system, for instance, is a function which builds a proof

of Q from a proof of P . Under this interpretation of proofs, there is a direct cor-

respondence between the λ-calculus of Church and natural deduction proofs, known

as the Curry-Howard Isomorphism [7] [15]. In this correspondence, statements and

functions in a functional language represent proofs and their type is the statement

they prove. A sorting function which takes in a list and returns a sorted list, for

instance, can be thought of as a proof that any list can be sorted. The Calculus of

Inductive Constructions provides a theory with enough power to express and prove

several interesting problems, including the four color theorem [12], Gödel’s Incom-

pleteness Theorem [20], and Fermat’s Last Theorem for n = 4 [9]. As a consequence
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of the equivalence of proofs and programs, Coq allows users to design programs and

then reason about their properties in addition to proving mathematical theorems.

Since users can certify that programs meet their specifications, Coq also serves as a

tool for program verification. Furthermore, after writing a function and proving it

correct, Coq has facilities for extracting the verified code to the OCaml language for

use in other programs.

A further result of the inclusion of a programming language in Coq is that proofs

can be constructed computationally [21]. Consider a proof of 0+(x+y) = (0+x)+y:

this clearly holds by the transitivity of addition, but since plus is a computable

function, it is also possible to run a few steps of computation to reduce both sides

to x + y, at which point the proof is immediate from the reflexivity of equality.

Alternatively, suppose that there is a function that checks whether a natural number

is prime, is prime : nat → bool. If we are trying to show that ∀xyz, y 6= x →
z 6= x → x <> y ∗ z, it suffices to show that is prime x = true. Of course, we

will have to prove ∀xyz, is prime x = true → x <> y ∗ zy 6= x → z 6= x. Once

we have proven this, though, any proof of a specific instance of this predicate, such

as 23 <> 4 ∗ z, is reduced to a computational task. Due to proof irrelevance in

Coq, once the proof checker has shown that a proof is valid, the details of that proof

are unimportant. Thus there is no need to actually build a proof for each instance;

showing that is prime x = true proves the result.

Reducing proofs to computationally decidable tasks is precisely the goal of auto-

mated theorem proving. Because Prop, the type of Coq’s proofs, is not an inductive

product, it is impractical for use in a case-based reasoning procedure. Instead, the

proof terms can be embedded into a inductive data type which can then be used in

a decision procedure, a method known as reflection [13]. Also called the two-level

approach, in this technique the object language is ’reflected’ into a meta language;

theorems in the meta language then correspond to theorems in the object language.

There are five pieces necessary to use reflection to create a decision procedure for a

general class of problems:

1. There must be an encoding of the problems as an inductive data type, in this

case the type form.
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2. There is an encoding function, d−e : Prop → form from the object language

to the meta language.

3. There is a decoding function, b−c : form → Prop from the meta language to

the object language.

4. A decision procedure, dp : form → bool for the class of problems.

5. A proof that a true statement in the meta language corresponds to a theorem

in the object language, i.e. ∀ (ψ : Prop), dp dψe = true → bdψec (Note

that if the decoding function is the inverse of encoding function, bdψec = ψ).

Figure 2.1: A Graphical Representation of the Reflection Method.

Using this paradigm, a proposition ψ can be shown by first embedding it into

the data type, showing that dp dψe returns true, and then applying the proof from

5. Once these 5 pieces are in hand, the key piece of any proof is computing the dp

function, a purely mechanical task which is easily dispatched. Since the decision pro-

cedure described in (4) is generally designed to handle a class of problems, reflection

is commonly used in the design of tactics.
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2.2 Satisfiability Modulo Theories

An alternative approach to proving a propositional formula,ψ, is to assign each vari-

able an interpretation, either T or F. We say that an interpretation is a model of a

formula if the formula is true under that interpretation. If all possible assignments

are models of ψ, it follows that whatever the interpretation, ψ will be true, and we

say that it is (classically) valid. The formula (P ∧Q)→ (P → Q), for example, can

be proven by constructing the truth table in Fig. 2.2.

P Q P ∧Q P → Q (P ∧Q)→ (P → Q)
T T T T T
T F F F T
F T F T T
F F F T T

Figure 2.2: Truth table for (P ∧Q)→ (P → Q).

This proof technique is well-suited for computation, since the validity of a formula

can be established through rote enumeration of all possible interpretations. This is

the dual of the satisfiability problem (SAT) which asks if there is some assignment

which makes the formula true. As the quintessential NP-complete problem, designing

efficient SAT solvers remains an active and important research area [16]; any advances

in this field translate immediately to validity checking.

The Satisfiability Modulo Theorem (SMT) problem is an extension of SAT which

determines the satisfiability of a formula with respect to a theory. In the SMT

problem, the standard propositional formulas of SAT are extended to include atoms

from some other theory, T , such as the theory of linear arithmetic or Equality with

Uninterpreted Functions. In the former case, in addition to propositional atoms, the

formula could have atoms such as x + y ≤ 2 · z. The variables x, y, z ∈ N have

an infinite set of interpretations, but the only interpretations for x + y ≤ 2 · z are

T and F. The truth value of this predicate depends entirely on the interpretations

of x, y, and z. From a traditional SAT viewpoint, the formula (5 < x) → (A ∧
B) → (A → 2 · x ≤ y) → (B → x + 5 ≤ y) is not valid: there is a falsifying

assignment (5 < x) ↔ T, A ↔ T, B ↔ T, 2 · x ≤ y ↔ T, x + 5 ≤ y ↔ F. This

formula is satisfiable modulo the theory of linear algebra however, as this assignment
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is inconsistent with that theory: x < 5 → 2 · x ≤ y → x + 5 ≤ y. The increased

expressive power of these formulas has lead to applications in a number of domains,

particularly in hardware and software verification. Events such as the recent SMT

Competition [24] continue to encourage improvements among modern SMT solvers,

including CVC3 [2], Barcelogic [18], MathSAT [4], Yices [10].

There are two approaches generally used by these solvers [1], an eager approach,

which translates in the SMT into an instance for a standard SAT solver in a manner

which preserves satisfiability, and a lazy approach, which uses a treats the formula

as a standard SAT instance. Once the solver to finds a model of the formula, it uses

a separate decision procedure to check that the model is consistent with the theory

T . If there is an assignments is a propositional model and consistent with T , the

formula is valid. The eager approach is the more direct of the two, since the converted

formula can be plugged into any SAT-solver. The lazy approach is the more modular

of the two, allowing for the easy integration of new decision procedures for additional

theories. Furthermore, the lazy approach retains high-level information which is lost

in the encoding for the eager approach; information which can be used to intelligently

guide the search. We’ll consider the lazy approach for the dual problem of testing the

validity of the formula (5 < x)→ (A∧B)→ (A→ 2·x ≤ y)→ (B → x+5 ≤ y). The

validity checker will proceed by splitting on the truth values for both the propositional

variables and the inequalities. When a propositional counter-model such as (5 < x)↔
T, A↔ T, B ↔ T, 2 · x ≤ y ↔ T, x+ 5 ≤ y ↔ F is found, the decision procedure for

T will determine that the assignment (5 < x) ↔ T, 2 · x ≤ y ↔ T, x + 5 ≤ y ↔ F

is not consistent with the theory of linear arithmetic. This result is passed to the

satisfiability checker; since all other propositional truth assignments are models, it

concludes that the formula is valid.

The theory decided by our algorithm is the theory of ground equations, T=. The

propositions of T= are equations between uninterpreted symbols which are treated as

individual objects. In this theory, subexpressions are not allowed to be rewritten: even

under the assumption that a = b, for example, f(a) and f(b) are distinct terms. The

standard equation axioms provide the basis for T=: equations are reflexive, x = x,

symmetric, x = y → y = x, and transitive, x = y → y = z → x = z. A truth

assignment to a set of propositions is inconsistent with this theory if the set contains

equations between the same terms with different truth values or if it is possible to
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build such a pair using the axioms of T=. The propositions x = y, y = z, z 6= x, for

instance, are inconsistent: from the first two equations, the transitivity axiom derives

that x = z; from this z = x by symmetry, producing a set which contains both z = x

and z 6= x, a contradiction. The consistency of a set of propositions in T= can be

checked algorithmically by rewriting the set of disequations (false equations) using

the set of equations. After this rewriting, if any of the disequations are between two

of the same term, the set is contradictory. Intuitively, the set of equations induces a

set of equivalence classes which can be obtained by rewriting all members of a class

to a common term. If any disequations are between members of the same equivalence

class, the assignment is inconsitent with T=.

2.3 Soundness and Completeness

In proof theory, a proof system is a set of axioms and proof rules that act on well-

defined formulas. In a proof system P , a formula is said to be P-provable if it is the

conclusion of a sequence of formulas, each of which is either an axiom or a consequence

of an application of a proof rule to the preceding formula. Such a sequence is called

a deduction, and we write `P ψ to denote that formula ψ has a deduction in P .

Similarly, if a formula ψ is valid in P , we write |=P ψ. If every P-provable formula is

valid, we say that P is sound: `P ψ →|=P ψ. Alternatively, if there is a proof in P
for every valid formula, P is complete: |=P ψ →`P ψ.

In the literature on verified tactics, the definition of soundness is that the decision

procedure will only recognize true statements: ∀ (ψ : Prop), dp dψe = true →
bdP ec. In Coq, this corresponds to building a Coq-level proof from an affirmative

result of the decision procedure. Since this is precisely the final piece of the reflec-

tion method, the soundness of a reflection-based tactic is immediate. Normally, the

completeness proof would show the inverse, this if the decision procedure says that a

formula is not a theorem, no proof of that statement exists: ∀ (ψ : Prop), dp dψe
= false → ¬bdψec. The problem with this approach is clear: a statement could be

proved using a theory other than T=. Our reasoner would not be able to prove

2 + 2 = 4, for example, but a Coq proof is easily constructed using basic arithmetic.

Instead, we will tackle the converse, showing our decision procedure will recognize all
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true statements: ∀ (ψ : Prop), ψ → dp dψe = true. This approach allows us to

constrain ψ to the set of propositions provable in T=- the theorems that our reasoner

recognizes.
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Chapter 3

Reflection and Computation

3.1 Embedding the Coq Terms

The first step of the reflection method is the construction of the inductive data type

of the meta-language into which the Coq proof terms will be embedded. Each type of

atomic proposition handled by the reasoner has a base constructor; our representation

uses one for True and False, one for equations, and a generic atomic constructor for

propsitional variables. The latter two atoms are indexed by a natural number; the

equational atom also has natural number indices for the two sides of the equation.

Combining these with inductive constructors for the standard propositional connec-

tives provides the framework for our meta-language representation of Coq terms,

shown in Fig. 3.1. While this structure is sufficient for use by the reasoner, it is im-

portant to consider what information is needed to lift the embedded formula back to

the Coq level. We looked at two methods for accomplishing this: a lifting function,

lift : form → Prop, which directly constructs the Coq term from a given em-

bedded formula and an encoding relation, lift : form → Prop → Prop, which

associates an embedded formula to a Coq term.

The initial iteration of bagahk was a simple tautology checker without equational

reasoning, and we used the first approach. In this case there were only the generic

atoms, so the lifting function simply replaced each atom with a universally quantified

Coq proposition and each inductive constructor with the corresponding propositional

connective. Introducing equational reasoning complicates this lifting function: since

equality is defined on terms of the same type, extra type information must be added
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Inductive form : Type :=
Atom : nat → form
| BoolF : bool → form
| Eqn : nat → nat → nat → form
| AndF : form → form → form
| OrF : form → form → form
| NotF : form → form
| ImpF : form → form → form.

Figure 3.1: The definition for embedded formulas.

to the embedded equations. Consider lifting an equation built using the constructor

in 3.1: Eqn 0 1 2. The lifting function needs to map these indices to their corre-

sponding Coq-level terms and then build a propostion that these are equal, but Coq

needs some proof that they are of the same type. There are two options for dealing

with this: using an alternate definition of equality that allows for terms of different

types, or including extra information in the data type of the embedded formula. The

first method significantly complicates the soundness proof as it uneccessarily discards

information about the formula.

The second method requires adding an function, τ , which maps the term indices to

their types; we can then use this function to create a dependently-typed constructor

for equations. In order to insure that lifted terms matches the type mapped to

by τ , it is also necessary to include the Coq-level term in the type; adding a new

constructor for each term whose type is dependent on the type of the embedded

term. Finally, once this is added to the equation constructor we need to include

it in all of the constructors for consistency, resulting in the type definition in 3.2.

This additional information is not needed for the reasoning code, but maintaining

the type information adds complexity to the code, particularly in the equational

reasoner. More importantly, proofs about code working on this updated embedding

requires sophisticated reasoning about dependent types, complicating our soundness

and completeness proofs. Regardless of which method is used, this a frustrating

complication: we know that our lifting is valid since the embedded formula was

derived from a well-typed term, but we are unable to use this because the lifting

function constructs a new formula.
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Inductive term (τ : nat → Type) : Type → Type :=
grnd : forall (i : nat), τ i → term τ (τ i).

Inductive form (τ : nat → Type) : Type :=
Atom : nat → form τ
| BoolF : bool τ → form τ
| Eqn : ∀ i : nat, term τ i → term τ i → form τ
| AndF : form τ → form τ → form τ
| OrF : form τ → form τ → form τ
| NotF : form τ → form τ
| ImpF : form τ → form τ → form τ .

Figure 3.2: The definition for embedded formulas, modified for the lifting function.

By using a relation, we are able to directly associate the embedded formula to the

Coq term that generated it, allowing us to use the fact that this term is well-typed.

Furthermore, this allows us to avoid including extraneous type information in em-

bedded formulas, which in turn simplifies the reasoning algorithms. All the necessary

information is contained in the encodes relation in Fig. 3.3, completely seperating the

embedded formula from the Coq term it represents. Generic and equational atoms

are mapped to their corresponding Coq proof terms using the F and G functions;

indexing the encodes relation with these functions insures consistentcy throughout.

The propositional connectives are related to their embedded counterpart as expected.

When reasoning about this structure, we are able to induct on the structure of the

embedded formula. With the proposition directly related to a proposition, we can

use inversion to expose the underlying structure of encoded proposition.

3.2 The Reasoner

With the encoded formulas defined in the previous section, we now turn to the the

construction of the decision procedure which acts on these meta-language objects. We

implement this procedure as a lazy SMT solver, with the propositional and equational

reasoning handled in two distinct phases contained within the check valida function.

For the validity checking, check valida splits on each variable, and recursively calls
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Inductive encodes (F : nat → Wrap) (G : nat → atom lookup)
: form → Prop → Prop :=
encodes atom : ∀ (i : nat) (φ : Prop),

G i = prop atom φ → encodes F G (Atom i) φ
| encodes true : encodes F G (BoolF true) (True)
| encodes false : encodes F G (BoolF false) (False)
| encodes not : ∀ (φ : form) (ψ : Prop),

encodes F G φ ψ → encodes F G (NotF φ) (¬ψ)
| encodes and : ∀ (φ1 φ2 : form) (ψ1 ψ2 : Prop), (encodes F G φ1 ψ1) →

(encodes F G φ2 ψ2) → encodes F G (AndF φ1 φ2) (ψ1 ∧ ψ2)
| encodes or : ∀ (φ1 φ2 : form) (ψ1 ψ2 : Prop), (encodes F G φ1 ψ1) →

(encodes F G φ2 ψ2) → encodes F G (OrF φ1 φ2) (ψ1 ∨ ψ2)
| encodes imp : ∀ (φ1 φ2 : form) (ψ1 ψ2 : Prop), (encodes F G φ1 ψ2) →

(encodes F G φ2 ψ2) → encodes F G (ImpF φ1 φ2) (ψ1 → ψ2)
| encodes eqn : ∀ (A : Type) (i j n: nat) (a b : A),
G n = forml atom i j → F i = wrap a → F j = wrap b →

encodes F G (FormlF n i j) (a = b).

Figure 3.3: The definition of the encodes relation.

itself with the updated assignment until it has created an assignment with the size

specified by a natural number parameter. It then substitutes each variable in with

the given assignment and simplifies the resulting formula. If the formula reduces to

true, check valida has found a satisfying assignment and returns true. Otherwise,

it uses the decision procedure for T= to see if the current assignment is consistent

in T= and returns true if it is not. After the recursive call, check valida logically

ands the results of the split together; therefore if it returns true, each split resulted

in either a satisfying assignment or an inconsistant one and the supplied formula is a

tautology modulo T=.

3.2.1 Tautology Functions

The validity cheacker relies on three main functions which deal with the simplifica-

tion of formulas and the substitution of atomic variables in formulas. The simplify

function takes in an encoded formula and recursively simplifies it according to the

rules of boolean algebra, i.e. simplify (AndF (BoolF True) (Atom 0) = Atom 0.
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The subst var function takes in a natural number, a boolean value, and a for-

mula, and recurses through the formula to replace all atoms identified by the natural

number with the provided boolean: subst var 0 true (ImpF (Eqn 0 2 4) (Atom

2) = ImpF (BoolF true) (Atom 2)). Finally, the subst var asgn function calls

subst var on a formula for each variable from 0 to a given natural number, using a

supplied list of booleans for the truth assignment. check valida calls this function

with the assignment it has generated, then checks the simplified result to see if it is

a satifying assignment.

Fixpoint check valida (subst : nat) (φ : form)
(asgn : (ilist bool)) struct subst : bool :=

match subst with
S n ⇒ (check valida n φ (ilistc true asgn)) &&

(check valida n φ (ilistc false asgn))
| 0 ⇒ match (simplify (subst var asgn asgn φ (max var phi))) with

BoolF true ⇒ true
| ⇒ match extern dp asgn φ with

Some true ⇒ true
| ⇒ false

end
end

end.

Figure 3.4: The definition of check valida.

3.2.2 Decision Procedure for T=

The main function for equation reasoning is rewrite form. This function takes in a

list of equations and a list of disequations as a list of formulas and uses the equations to

assign an equivalence class to the terms in each of the disequations. Once this is done,

it checks to see if there is a disequation between two elements of the same equivalence

class, e.g. the assignment is inconsistant with T=. It does this by recursively using

the head of the equation list to rewrite the remaining equations and the disequations.

Once it has exhausted the equations, rewrite form calls false diseqns, which re-

turns true if any of the rewritten disequations are between the same term. In this

case, the assignment is contradictory and rewrite form returns true. check valid
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does not call rewrite form directly; it instead calls a wrapper function, extern dp,

which generates a list of equations found in the formula that check valid is consid-

ering and seperates them into lists of equations and disequations based on the current

truth assignment.

Figure 3.5: Updated Model of the Reflection Method.
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Chapter 4

Soundness

The first step in verifying our decision procedure is to show that it is sound- that

whenever check valid returns true, it is possible to construct the corresponding

Coq-level proof term. In other words,

check valid form = true→ encodesφform→ φ (4.1)

check valid explores every possible truth assignment, returning true if each assign-

ment either satisfies the formula or produces a contradiction; the two major theorems

of our proof of soundness closely mirror this execution. For the satisfiability checker,

we need to show that when an assignment is a model of a formula, the Coq-level

formula is equivalent to T, from which we can immediately prove the Coq-level for-

mula. For the decision procedure for T=, we show that when an assignment results

in a contradictory set of equations, we can derive ⊥. Since ∀φ,⊥ → phi, we can

again easily prove the Coq-level formula. These two pieces build a proof of φ: by

splitting on every proposition in the formula; these two theorems construct a proof

of φ regardless of the its truth value since check valid checks each assignment.

Throughout the soundness proof there is an assumption that the encoded propo-

sitions are equivalent to the truth values supplied to them in a given assignment. To

express this we use a function, conj form list, that conjoins atoms and their truth

assignments in an embedded formula using a list of atoms and their assignments.

We can then use our existing encodes relation to connect this to a corresponding

Coq-level term, including all the necessary information about the truth values of the

atoms in our formula. Since we include no prior information about the truth value of
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propositions, an important step of the final proof is building the proposition encoded

by this formula as check valid explores each assignment.

4.1 Contradictory Truth Assignments

The first step of the proof that we can derive ⊥ from contradictory assignments is to

show that we can prove ⊥ when false diseqns returns true.

Lemma 4.1.1 (false diseqns False). For some list of equations,φ, all of which are

assigned false in a given equation, we can derive ⊥ whenever false diseqns returns

true, the truth equivalences of phi are encoded in some proposition ψ, and we assume

ψ.

Proof. We’ll proceed by induction on φ. If φ is the empty list, false diseqns will

return false, contradicting our assumption that it returned true. In the inductive

case, we first check the equation on the head of the list; if it is between the same

natural number, i,we can use the encodes relation to peel off the first conjunct in ψ,

which has the form Fi = Fi ↔ F, a contradiction. If the two sides of the equation

are not the same, we know that false diseqns calls itself recursively and returns

true on the rest of the list. We can derive a new proposition, ψ′, that is encoded by

the rest of the list by removing the first conjunct from ψ. We can use these two facts

to apply our inductive hypothesis and derive ⊥.

Our next goal is to show that we can derive a contradiction when rewrite form

returns true. Since rewrite form essentially calls false diseqns with a list that

has been rewritten several times, it would seem that the previous lemma suffices to

prove this goal. A critical assumption in that lemma, however, was that we had a

proposition encoding the truth values of the atoms; each rewrite of the list also changes

the Coq-level proposition that it encodes. In order to use the previous lemma, we

must therefore show that we can derive the rewritten proposition from the previous

one.

Lemma 4.1.2 (encodes rewrite list). Let ψ be a proposition which is encoded by a

list of equations, φ, whose head is an equation,τ , which is equivalent to T in a given
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assignment. We can construct a new proposition, ψ′, that is encoded by rewriting the

tail of φ using τ .

Proof. We’ll induct on the length of φ. In the base case, τ is the only element in

φ, so rewriting φ with τ results in the empty list; since this encodes T, it follows

immediately. For the inductive case, we can use the inductive hypothesis to build the

proposition encoding the tail of the rewritten list and then use τ to rewrite the head

of φ. Having updated the propositions, we also need to update the function used

in the encodes relation to insure that equations with the same identifier refer to the

same terms so that the formula correctly encodes the new proposition. We can then

combine the two to build the proposition for the entire list.

With this new lemma, we can now derive ⊥ when rewrite form returns true.

Lemma 4.1.3 (rewrite form False). Let φ1 be a list of equations, φ2 be a list of

disequations, and ψ be the proposition they both encode. If rewrite form φ1 φ2

returns true, we can derive ⊥ from ψ.

Proof. We’ll again induct on the length of φ1. In the base case, rewrite form simply

calls false diseqns on φ2, which returns true because rewrite form does, so we

can use rewrite form False to show ⊥. In the inductive case, we first rewrite the

equations and disequations using the equation on the head of the list. Next, we use

encodes rewrite list to build the proposition encoding the rewritten list from ψ.

With this updated proposition, we can use the inductive hypothesis to arrive at the

desired contradiction.

Theorem 4.1.4 (extern dp False). Let φ be a formula and ψ be a proposition holding

the truth values to the atoms in φ as given in some assignment. If extern dp returns

true, ψ → ⊥

Proof. Since extern dp is a wrapper which calls rewrite form with the appropriate

arguments, this follows immediately from the previous lemma.
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Theorem extern dp False : forall (F : nat → Wrap) (G : nat → atom lookup)
(asgn : ilist bool) (φ : form) (ψ: Prop), extern dp asgn φ = Some true →
encodes F G (conj form list asgn (rm dupl eqn (build eqn list φ))) ψ →
ψ → False.

Figure 4.1: Coq formulations of extern dp False.

4.2 Satisfying Assignments

Since a formula is satisfied if it simplifies to true, we first show that a proposition that

is encoded by such a formula is equivalent to T. Because simplify uses simplify not

to simplify a negated formula, the formulation of the proof must also state that a

proposition encoded by a negated formula which simplifies to true is equivalent to F.

Lemma 4.2.1 (simplify true). Given a formula φ which encodes a proposition ψ, if

simplify φ returns true, ψ ↔ T and if simplify not φ returns true, ψ ↔ F.

Proof. We’ll proceed by structural induction on φ. For the base cases, if φ is either a

propositional variable or an equation it will not simplify to true or false, contradict-

ing that assumption. Alternatively, if ψ is T then ψ ↔ T trivially follows, and the

case is symmetric when ψ is F. When φ is of the form AndFφ1φ2, we know that φ1

and φ2 both simplify to true. We can use the appropriate conjunct of the inductive

hypothesis to show the propositions they encode are equivalent to T and derive that

their conjunction is as well. A similar argument holds for the OrF and ImpF con-

structors. Finally, in the case that φ is a negated formula, i.e. φ = NotFφ′, we split

on the value of simplify not φ′. Because we included the stronger statement about

simplify not in the statement of the proof, we can now apply the induction hypoth-

esis to simplify notφ′ to get that ψ′ ↔ F. From this, we can get ψ = ¬ψ′ ↔ T,

completing our inductive proof that φ↔ T.

The previous lemma allows us to show that the after a formula has been com-

pletely rewritten by a satisfying assignment, the proposition it encodes is equivalent

to true. We now need to connect this proposition to the one encoded by the original

formula, constructing a string of equivalences showing that the original proposition
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is equivalent to true: ψ ↔ ψ′ ↔ . . . ↔ ψ′′ ↔ T. To establish this sequence, we’ll

first show how to construct a proposition encoded by a formula in which one of the

atoms has been substituted with a truth value. We’ll then show that this proposition

is equivalent to that encoded by the original formula, under the assumption that the

Coq-level atom is equivalent to the substituted truth value.

simplify (subst var asgn α φ n’) = simplify (subst var asgn α (subst var (fetch elb’ α n’) φ) n) = . . . = BoolF true

ψ ψ′ T

encodes F G φ ψ
encodes F G (subst var (fetch elb’ α n’) φ ψ′

encodes F G BoolF true T

- -� �

Figure 4.2: Equivalence of substituted formulas.

Lemma 4.2.2 (exists subst prop). Given a formula φ which encodes a proposition

ψ, there exists a proposition, ψ′, which is encoded by subst var bnφ, where b is a

boolean and n is a natural number.

Proof. We’ll proceed by structural induction on φ. For the base cases, if φ is an atom

with n as its identifier, we will instantiate ψ′ with the appropriate proposition and

leave it alone otherwise. For the inductive constructors, we can use the inductive

hypotheses to construct propositions encoded by the subformulas. We can then build

the correct proposition using the corresponding boolean operators and use this as a

witness for the existence of the correct proposition.

Lemma 4.2.3 (subst var eqv). Let φ be a formula which encodes a proposition, ψ,

and let ψ′ be a proposition which is encoded by subst var b n φ, where n is a natural

number and b is the truth value given to the atom with identifier n by an assignment

α. Assuming that each of the propositions encoded by the atoms in φ are equivalent

to the truth values given in α, ψ ↔ ψ′.

Proof. This proof is similar to the previous one, inducting on φ. In the base case, the

equivalence of ψ and ψ′ follows immediately from the assumption that the propositions

are equivalent to the truth values in α. The inductive hypothesis can be used as above

to prove the inductive case. The case when φ is an equation and its identifier is not

equal to n provides an illustration of the motivation for using the encodes relation
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to associate propositions with formulas. Letting φ be Eqn m j k, ψ be a = b and ψ′

be a′ = b′, we can use the information in the encodes relation for that Fj = wrap a

and Fj = wrap a′ to show that wrap a = wrap a′. We can then use one of the

dependent types axioms to show that a = a′. Using the same strategy, we can use

these equalities to rewrite a′ = b′ to a = b; the proof that a = b ↔ a = b then

immediately follows.

Finally, the proposition encoding the truth values relies on φ and is changed after

each substitution. We need to prove that we are able to create a new proposition

at each step in order to successively apply the previous lemma. Since the statement

of the final soundness proof has propositions to hold the truth values of the generic

atoms and the equations, there will be separate proofs for each. With this in hand,

we are able to prove that a formula which is satisfiable according to an assignment

encodes a proposition that is equivalent to T.

Lemma 4.2.4 (encodes subst conja). If the proposition ψa encodes the truth val-

ues given by an assignment α for the atoms in a formula φ, there exists a proposi-

tion, ψa, which encodes the truth values for the atoms in the formula subst var n

(fetch elb’α n) φ.

Proof. Once again we’ll induct on the structure of φ. In the base cases, if the atom is

selected for substitution we’ll instantiate with either T or F and the atom will remain

unchanged otherwise. In the inductive case, we can use the inductive hypothesis to

generate the correct propositions and then show that these encode the appended lists

of atoms.

Lemma 4.2.5 (encodes subst conje). If the proposition ψa encodes the truth values

given by an assignment α for the equations in a formula φ, there exists a proposition,

ψa, which encodes the truth values for the equations in the formula subst var n

(fetch elb’α n) φ.

Proof. Symmetric to the proof of encodes subst conja.

Theorem 4.2.6 (subst var true). Let φ be a formula which encodes a proposition ψ

and let α be an assignment to the variables of φ. If we assume that the propositional
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variables in ψ have the truth values given in α and (subst var asgn phi α n)

simplifies to true for some natural number n, then ψ holds.

Proof. We’ll proceed by induction on n. In the base case, when n is 0, we can un-

fold subst var asgn to conclude that subst var (fetch elb’ α 0) 0 φ simplifies

to true. We can then use exists subst prop to show that the proposition encoded

by this formula, ψ′, exists and simplify true to show that ψ′ is equivalent to T. By

subst var eqv, ψ ↔ ψ′, so ψ is also equivalent to T, i.e. ψ holds. In the inductive

case, we again unfold subst var asgn to subst var (fetch elb’ α (S n’)) (S

n’) (subst var asgn α φ n’). Since substitution is commutative, we can conclude

that simplify (subst var asgn α (subst var (fetch elb’ α (S n)) (S n) φ)

n’) equals true. By encodes subst conja and encodes subst conje, we can

constuct the propositions representing the truth values for the atoms in this new

formula; we can also build the proposition representing this new formula using ex-

ists subst prop. With these updated propositions, we can apply the inductive

hypothesis to show that this new proposition is equivalent to true. Finally, by

subst var eqv, the original proposition ψ is equivalent to true as well, showing

that ψ holds for any satisfying assignment.

Theorem subst var true : ∀ (F : nat → Wrap) (G : nat → atom lookup)
(n : nat) (asgn :ilist bool) (φ : form) (ψa ψe ψ: Prop),
simplify (subst var asgn asgn φ n) = BoolF true →
encodes F G (conj form list asgn (build atom list φ)) ψa →
encodes F G (conj form list asgn (build eqn list φ)) ψe →
encodes F G φ ψ → ψa → ψe → ψ.

Figure 4.3: Coq formulation of subst var true

4.3 Soundness of check valida

A key assumption for extern dp False and subst var true was that there was

a proposition which embedded the truth values for the set of propositional atoms
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encoded by the formula being considered. The final step in proving that check valida

is sound is to show how to construct these propositions as check valid explores the

possible assignments. To this end, we show that for each truth value and type of

proposition, it is possible to create an updated embedding of the truth values. With

this done, we can show that regardless of the actual truth values of these propositions,

if check valida returns true, the encoded formula holds.

Lemma 4.3.1 (S encodes conj atom t). Let ψ be a proposition encoded by a formula

φ, let α be an assignment to that formula, and let ψa be a proposition embedding the

truth values of the atoms of ψ. If an atom n in φ doesn’t have a value in α and the

proposition which it encodes is equivalent to T, then we can create a new proposition

which embeds the truth values for ψ with an updated assignment that maps n to true.

Proof. We will proceed with induction on the structure of φ. In the case that φ is an

atom which has an assignment in α or if φ is an equation or a boolean, φa already

embeds the truth values of φ. Alternatively, if φ is an unassigned atom, we can use

the assumption that the proposition it embeds is equivalent to T to build φa. In the

inductive cases, we can use our inductive hypothesis to build the embeddings for the

subformulas and then combine them to create φa for the entire formula.

We can use the same argument to construct a proof in the case that an atom n

embeds a proposition which is false or when n indexes an equation that is either true or

false. We’ll call these lemmas S encodes conj atom f, S encodes conj eqn t,

and S encodes conj eqn f respectively.

Theorem 4.3.2 (check valida sound). Let ψ be a proposition encoded by a formula φ,

let α be an assignment to that formula, and let ψa and psie be propositions embedding

the truth values of the atoms and equations of ψ respectively. If check valida n α

φ is true, and if n is greater than the difference of maximum identifier in φ and the

maximum variable currently assigned in α, then ψ holds.

Proof. We’ll induct on n. If n is 0, either subst var asgn α φ (max var φ) or

extern dp α φ is equal to true. In the former case, subst var true proves ψ. In

the latter case, extern dp False derives ⊥ from ψe and ψ trivially holds. In the in-

ductive step, n = Sm for some m. Unfolding check valida shows that check valida
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n αt φ and check valida n αf φ are both true, where αt and αf are modified ver-

sions of α which map Sm to true and false respectively. We then case split on the

truth value of the proposition encoded by Sm: if this is T and Sm is an atom, we

can use S encodes conj atom t to build a new proposition embedding the truth values

assigned by αt. We can use this and the fact that check valida n αt φ is true to

apply the inductive hypothesis to prove ψ. The same argument applies when Sm is

equivalent to F or Sm an equation; in all cases, the inductive hypothesis shows that

ψ holds.

With this theorem proven, we can conclude that when check valida is called on

a formula, φ, with an empty assignment and a natural number n that is larger than

the maximum variable in φ and returns true, the proposition φ encodes is equivalent

to true, i.e. check valida is sound.

Theorem check valida sound : ∀ (F : nat → Wrap) (G : nat → atom lookup)
(n : nat) (asgn : ilist bool) (φ : form) (ψa ψe ψ: Prop),
max var φ ¡ n + (ilength asgn) → check valida n φ asgn = true →

encodes F G (conj form list’ asgn (build atom list φ)) ψa →
encodes F G (conj form list’ asgn (build eqn list φ)) ψe →
encodes F G φ ψ → ψa → ψe → ψ.

Figure 4.4: Coq formulation of check valida sound.
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Chapter 5

Completeness

Having shown that our decision procedure is sound- it is possible to build a proof for

the proposition corresponding to any statement it recognizes- we will now prove that

the converse holds and that it is complete. Unfortunately, while the soundness proof

allowed us to build a deduction of ψ, `P ψ, assuming the existence of ψ provides no

information on how it was derived. ψ could have been built using a theory other than

T=: while a proof that 3 <> 4 is easily shown in Coq, our decision procedure will not

recognize it as a theorem. Instead, the completeness proof will constrain ψ to the set

of propositions to T= by showing how to construct a proof system for T= and then

proving that any derivable formula is valid in T=1. The final step of the proof is to

show that our decision procedure recognizes any T=-valid formula.

There are three main styles of formalization for classical logic: natural deduction,

Gentzen systems, and Hilbert systems [26]. In all three, deductions are thought of

as prooftrees which have a formula at each node. Each node is a conclusion derived

through the application of one of the system’s proof rules to its children, called the

premises of the rule application. The root of the tree is the conclusion of the entire

deduction and the formulas at the leaves of the tree are the set of assumptions for

the deduction. An assumption is initially open, it can be closed at a later point;

assumptions are labeled with identifiers to designate which assumption is closed by

a rule. An important feature of Hilbert systems is that assumption in deductions

are never closed, obviating the need for labels. In addition, Hilbert systems have

only one inference rule; the rest are replaced with a set of axiom schemes. Since

all three formalisms are theoretically equivalent [26], these two features were the

1Interestingly, this statement that `P P →|=P P is the traditional proof of soundness.
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major motivation behind the decision to use a Hilbert system to formalize the proofs

used in the completeness argument. Since all assumptions are open, there is no need

to develop a method for creating and maintaining assumption labels. Furthermore,

updating the completeness argument can be done by adding axioms for any new

theories handled by the reasoner.

A→ (B → A) k (A→ (B → C)→ ((A→ B)→ (A→ C)) s
A→ A ∨B ∨ IL (A→ C)→ ((B → C)→ (A ∨B → C)) ∨E
B → A ∨B ∨ IR A ∧B → A ∧ EL

A→ (B → (A ∧B) ∧ I A ∧B → B ∧ER

⊥ → A ⊥ I ¬¬A→ A Dn

a = a =R a = b→ b = a =S

a = b→ (b = c→ a = c) =T

A A→ B
B

MP

Figure 5.1: The axioms and inference rule for classical logic with equational
reasoning.

Example 1. A deduction of A→ A:

[A→ ((A→ A)→ A)]→ [(A→ (A→ A))→ (A→ A)] A→ ((A→ A)→ A)
(A→ (A→ A))→ (A→ A) A→ (A→ A)

A→ A

As the above example demonstrates, deductions in Hilbert systems can grow quite

large and are often difficult to construct; asking a user to build such a proof would

be an unreasonable burden. The important point here, however, is that a user of

bagahk never has to build such a proof. Unlike the proof of soundness, which was

critical for building a proof term from a valid formula, the completeness argument

serves only as a proof of correctness. It suffices that such a proof could be built

using these rules, since a deduction for every valid formula is derivable from these

rules [26]. Under this framework, the proof obligation for completeness is to show

that if a proposition, ψ, is the conclusion of some deduction using the rules in Fig. 5.1,

then check valida will return true on any formula encoding ψ.

A final question before proceeding to the completeness proof is how to represent a

deduction of a proposition using the Hilbert system in Fig. 5.1. As with the encodes
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relation, these prooftrees can be expressed as instances of an inductive data type.

This prop prf data type is indexed by a formula and a proposition encoded by that

formula, with the eleven axioms providing the base constructors. There is a single

inductive constructor for the modus ponens inference rule; the prop prf arguments

passed to this constructor are the the premises of the rule, and the resulting prop prf

is its conclusion. Through successively applications of this inductive constructor, a

prooftrees for any valid proposition can be built.

Inductive prop prf : form → Prop → Prop:=
K : ∀ (A B : Prop) (φA φB : form),

prop prf (ImpF φa (ImpF φB φA)) (A → (B → A))
| eq refl : ∀ (T : Type) (a: T) (i n : nat), prop prf (Eqn n i i) (a = a)
| MP : ∀ (A B : Prop) (φA φB : form),

prop prf(ImpF φA φB) (A → B) → prop prf φA A → prop prf φB B.

Figure 5.2: Coq definitions for the constructors for the axioms k and =R and
Modus Ponens.

5.1 Valid Interpretations

The final goal of the completeness proof is to show that every proposition provable

by the axioms in 5.1 holds for every possible interpretation- that `T= ψ implies |=T=

ψ. An interpretation of a sentence comprised solely of propositional variables is

simply a mapping from variables to their truth values. With the inclusion of atomic

equations, however, this definition of interpretation must be expanded. While we

could continue to assign truth values to these equations, this quickly produces a

contradictory interpretations; indeed, the call to extern dp in check valida is meant

to deal with precisely this problem, insuring that check valida explores only valid

interpretations. Instead, we can think of the truth value of an equation as being a

product of the equivalence classes of the terms in the equation: if the two are from

distinct equivalence classes, the formula is false; if they are the same, the formula

is true. Thus, an interpretation for the formulas handled by our reasoner consists

of a mapping from propositional variables to their truth values and a mapping from

the terms of the equations to their equivalence classes. check valida only implicitly
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explores every interpretation under this new definition, so we will first show that

prop prf φ ψ implies |= ψ and then prove that |= ψ entails that check valida φ

returns true.

The first step of this proof requires the creation of a method of expressing that

an interpretation is a model of a formula. This is accomplished through the use

of the recursive eval interp function, which takes in a formula, φ, a function, IP ,

mapping natural numbers to booleans for the interpretation of propositional atoms,

and a function, IE, mapping natural numbers to a natural number representing a

distinct equivalence class. Equations evaluate to true when the terms on either side

are mapped to the same equivalence class and false otherwise. Propositional atoms

are evaluated using IP and the other constructors are mapped to the corresponding

boolean connective. If φ evaluates to true, IP and IE are a model of φ, allowing the

completeness proof to define the models of a formula in terms of eval interp.

Theorem 5.1.1 (prop prf interp). For a formula φ and a proposition ψ, if there is a

propositional proof of ψ and φ, φ evaluates to true for all interpretations IP and IE.

Proof. Each of the base cases representing a propositional reasoning axiom is a logical

tautology, a case split on the values to which each of propositional atoms is mapped

yields in a boolean formula equal to true. The =R constructor trivially evaluates to

true. For the =S and =T, a case split on the equality of the equivalence classes of

the terms will expose the underlying truth values of the equations; in both cases, the

resulting formulas will evaluate to true. In the inductive case, we assume there is a

propositional proof of φB and we need to show that eval interp IP IE φB equals

true. In order to construct the propositional proof of φB using the inductive inference

constructor, there must be propositional proofs for φA and φA → φB. We can use the

inductive hypothesis to conclude that for all I ′P and I ′E, eval interp I ′P I ′E φA and

eval interp I ′P I ′E φA → φB must be true. If there are falsifying interpretations of

φB, IP and IE, then eval interp IP IE φA is true and eval interp I ′P I ′E φB is

false, but eval interp I ′P I ′E φA → φB must also be false, contradicting a conclusion

of the inductive hypothesis. We can thus conclude that eval interp IP IE φB for

all IP IE.
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Theorem prop prf interp :
∀ (φ : form) (ψ : Prop), prop prf φ ψ →
∀ (IP : nat → bool) (IE : nat → nat), eval interp IP IE φ = true.

Figure 5.3: Coq definition of prop prf interp.

5.2 Interpretation and Assignment Agreement

In order to connect the propositional proofs to check valida, there needs to be a way

to associate the interpretations from the previous section with the truth assignments

that check valida uses. In particular, we will say that an interpretation and an as-

signment agree on a list of atoms if the same truth value is given by the interpretation

and the assignment to each element in the list. The connection between check valid

and eval asgn is then established by showing that when an interpretation agrees

with an assignment, the evaluation of the interpretation and the evaluation of an

assignment for any formula are the same. For this proof a new function, eval asgn,

is used; it is similar to eval interp, but directly assigns truth values to all the atoms

in a formula.

Lemma 5.2.1 (ia agree eval). If an interpretation, IP and IE, and an assignment α

agree on a list of all atoms in a formula φ, then eval asgn is equal to eval interp.

Proof. This proof is by induction on φ. In the base cases, the assumption that

the interpretation and the atom agree guarantees that the two have the same truth

value. In the inductive cases, the inductive hypothesis shows that the evaluations

of the subformulas agree; combining the evaluations with the appropriate boolean

connective shows that the evaluations of the whole formula are also equal.

extern dp implicitly assigns an equivalence class to each term; by successively

using each equation to rewrite the others, each term is eventually assigned the numeric

identifier of the smallest member of the class. If there are no disequations between

members of the same class, the assignment is not contradictory and should therefore

agree with some interpretation. Showing how to build such an interpretation provides

the final link between check valida and eval interp. To make the proofs easier,
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we will further divide agreement in terms of propositional atoms and equations, first

showing that an interpretation always exists which agrees with an assignment to just

propositional atoms. We’ll then show that an assignment that is not contradictory

agrees with some interpretation for just equations, then combine the two to show how

to build the complete interpretation. The final proof is that eval asgn is equivalent

to the subst var asgn used by check valida.

Lemma 5.2.2 (ex ia agree atom). For any assignment α and list of propositional

atoms τ , there exists an interpretation IP which agrees with α on τ .

Proof. We’ll induct on τ . When τ is the empty list, any interpretation trivially agrees

with α. In the inductive case, we can use the inductive hypothesis to derive a function

IP , which agrees with the tail of the list. We can then create a new interpretation, I ′P ,

which maps the head of the list to the truth value in the assignment and everything

else to the values given by IP . We can then again induct on τ to show that I ′P agrees

with α: if the head of τ appears in the rest of the list, it must already be mapped to

the truth value given in α, otherwise, the updated function will act the same as IP

on the tail of the list.

Lemma 5.2.3 (ia agree eqn rewrite). For any assignment α, a list of propositional

atoms τ , and two natural numbers i and j, if there is an interpretation IE which

agrees with α on rewrite list i j τ , there is an interpretation, I ′E, mapping i to

IE j and all other numbers x to IE x, which agrees with α on τ .

Proof. We’ll induct on τ . The base case is again trivial. In the inductive case, if the

head of the list does not have an i, the two interpretations trivially map to the same

truth value. Otherwise, since i has already been replaced by j in rewrite list i j

τ , I ′E returns the same value on τ as IE does on the rewritten list. In either case,

since the latter agrees with α on the head of the list, so must I ′E, and the inductive

hypothesis proves that I ′E also agrees on the rest of the list.

Theorem 5.2.4 (ia agree eqn extern dp). Let φ1 be a list of equations, φ2 be lists

of disequations, both according to an assignment α. If rewrite form φ1 φ2 returns

true, there exists an interpretation, IE, which agrees with α on both φ1 and φ2.
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Proof. This proof will induct on the list of equations, φ1. When phi1 is the empty list,

we can construct a function which maps every term to its natural number identifier.

Since rewrite form did not find a contradiction, all of the equations in φ2 are be-

tween distinct terms, so each of its element will evaluate to false. Since φ2 is a set of

disequations according to α, this interpretation will agree with α on φ2. In the induc-

tive case, the equation on the head of φ1 will be used to rewrite both φ1 and φ2. Since

this will produce a smaller list in the parameter of recursion, the inductive hypothesis

can be applied to derive an interpretation which agrees with the rewritten φ1 and φ2.

ia agree eqn rewrite shows that there is an updated interpretation,I ′E,agreeing

with α on the original φ2 and the tail of the original φ1. Finally, since I ′E will assign

both sides of the equation at the head of φ1 to the same equivalence class, it agrees

with α, which maps all the equations in φ1 to true. Thus, I ′E serves as a witness for

the existence of an interpretation that agrees with α, completing the proof.

Lemma ia agree eqn extern dp : ∀ (α: ilist bool) (n: nat) (φ1 φ2: ilist form),
rewrite form (fst (sep form α φ1)) (snd (sep form α φ2)) n = Some false →
ilength (fst (sep form α φ1)) ≤ n →
∃ IE, ia agree eqn IE (fst (sep form α φ1)) α = true ∧
ia agree eqn IE (snd (sep form α φ2)) α = true.

Figure 5.4: Coq definition of ia agree eqn extern dp.

Lemma 5.2.5 (merge ia agree). Given an interpretation for propositional atoms, IP ,

an interpretation for equations, IE, and an assignment α, if the two interpretations

agree separately with α on a list of atoms τ , then the combined interpretation does as

well.

Proof. Inducting on τ , the base case when τ is the empty list is again immediate. In

the inductive case, the head of τ is either a propositional atom or an equation. In

the former case, the assumption that IP agrees with α ensures that they both assign

the head the same truth value; the latter case is symmetric. Furthermore, since both

IP and IE agree with all of τ , they both agree with its tail, allowing us to apply the

inductive hypothesis to show that the combined interpretation agrees with α on the

rest of τ as well.
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Lemma 5.2.6 (subst var eval asgn). Let α be a complete assignment for a formula

φ. Then subst var asgn α φ simplifies to BoolF (eval asgn α φ).

Proof. The proof will proceed with structural induction on φ. In the base cases, both

sides will simply replace the formula with the boolean value given by α. In the case

that φ is AndF φ1 φ2, the inductive hypothesis can be used on the subformulas to

show that they simplify to BoolF (eval asgn α φ1) and BoolF (eval asgn α φ2)

respectively. From here, we can split on the values of the evaluations, when both

are true, both sides reduce to BoolF true; in all other cases, both sides reduce to

BoolF false. A similar approach works for the other inductive cases, completing the

proof.

5.3 Completeness of check valida

We can now combine these lemmas to connect check valida to the propositional

proofs, showing that it explores all possible interpretations, returning true if a formula

is valid modulo T .

Theorem 5.3.1 (prop prf complete). If there exists a proof of a proposition ψ and

formula φ using the proof rules in Fig. 5.1, check valida φ α (max var φ) will

return true for any assignment α.

Proof. In the case that check valida is true, the proof is completed. In the case

that check valida is false, we know that there must be some assignment,α′, for

which simplify (subst var asgn α′ φ) is BoolF false, and for which extern dp

α′ φ is also false. The second fact applied to ia agree eqn extern dp yields an

interpretation that can be combined with the interpretation from ex ia agree atom

by merge ia agree to produce an interpretation, IP and IE, which agrees with

α′. Furthermore, by subst var eval asgn eval asgn α φ is equal to false. By

ia agree eval, the interpretation IP IE falsifies φ. However, since we assumed

that there is a propositional proof of φ, by prop prf interp all interpretations of φ

evaluate to true, contradicting the previous deduction that IP IE falsifies φ. Since the



35

assumption that check valida is false results in a contradiction, we can conclude that

whenever there is a propositional proof of φ, check valida α φ returns true.

Theorem prop prf complete : ∀ (φ : form) (α : ilist bool) (ψ : Prop),
prop prf phi ψ → check valida (max var φ) φ α = true.

Figure 5.5: Coq definition of prop prf complete.
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Chapter 6

Conclusion

In chapter 3, we presented the implementation of a decision procedure for testing the

validity of a formula modulo the theory of ground equations, T=. We have extended

the definition of ’verified’ normally used for sound decision procedures by showing

that ours is both sound and complete. This soundness proof also provides the critical

piece for a the reflection method which allows our decision procedure to be used as

a Coq tactic in assisting users in construction other proofs. All of these proofs have

been formalized as Coq proof scripts which have been mechanically checked and which

are assembled in the bagahk package.

6.1 Efficiency of check valida

While the question of a polynomial time algorithm for SAT remains an important

open question in computer science, there exist more efficient algorithms than the

enumeration of all variables used in check valid. In particular, the backtracking

DPLL [8] algorithm has proven effective for many SAT-instances and remains the

backbone for most modern SAT-solvers [17] and SMT-solvers [1]. In general, more

complex algorithms are more difficult to mechanically verify, which is why we have

chosen to implement a very simple and direct SAT-solver in check valid. The run-

time complexity of our algorithm cannot be ignored, however, particularly since it is

intended for use as a tactic. For this reason, we have implemented a modified version

of the decision procedure, called check valid’, which simplifies the formula after

every substitution. In this version of the satisfiability checker, portions of the formula
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can be simplified away after each substitution, reducing the size of the formula in

subsequent iterations. Rather than repeat the proofs of soundness and correctness for

this new version, we instead show that it is operationally equivalent to check valida-

that on the same input, the two have the same output. Once this lemma has been

proven, check valid’ can then be proven sound and complete by simply rewriting

the instances of check valida in the corresponding proofs for that method.

Lemma chv chva eqv’ : ∀ (n : nat) (φ : form), max var φ ¡ n →
check valid’ n φ ilistn (rm dupl eqn (build eqn list φ)) =
check valida n φ ilistn.

Figure 6.1: Coq formulations of the proof that check valida and check valid’ are
equivalent.

6.2 Assumptions

As with any proof, our work makes some basic assumptions which, if incorrect, could

compromise our conclusions. Most important is that Coq is sound, since Coq relies

on a small trusted core of unverified code. If this core were to be unsound, the Coq

formulation of our soundness and completeness arguments could be incorrect. Given

the maturity of Coq and its widespread use in research, we are confident that it is

a firm foundation for our work. We also assume that the axiomization in Fig. 5.1

is correct: if this were only a fragment of T=, there could be theorems of T= which

check valida could not recognize. The propositional axioms and modus ponens rules

have accompanying paper proofs in [26] showing they are sound and complete, and

the equational axioms added to extend this to T= are standard. Another source of

concern is that the encoding relation could incorrectly map the embedded formulas

to Coq terms. At one extreme, if encodes mapped every reflected formula to T, a

proof would be immediate, but the term constructed by the soundness proof would

not be correct. In both cases, we are confident that our formulations are correct,

but these examples show some areas in which care must be taken when implementing

additional theories.
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6.3 Future Work

While our decision procedure for validity modulo the ground theory of equations

adds functionality to Coq, there is much work to be done to bring it to the level of

modern SMT-solvers. Most of these solvers use a DPLL-style satisfiability checker;

[1] investigates integrating this with the theory decision procedures to achieve better

performance. Any modifications to the validity checker could be done using the equiv-

alence method from 6.1, leaving the soundness and completeness proofs unchanged.

T= is a subset of the empty theory, the theory of uninterpreted functions with equal-

ity; extending our current decision procedure to the full theory would be a logical

next step. Additionally, the theories of the integers and real numbers are often found

in Coq proofs, making them good candidates for inclusion in bagahk. Adding a new

theory to Coq would require a number of updates to bagahk. A new constructor

would have to be added for the new propositional variables and the encodes relation

would need to be updated accordingly. The pieces of the soundness proof would re-

main the same, but existing proofs would need minor modifications to reflect the new

constructors. The key piece in the revised proof would be a theorem deriving ⊥ from

a contradictory assignment in the new theory. The completeness argument would re-

quire more care; axioms for the new theory would need to be developed and included

in the proof system, and a new definition of interpretations including the new theory

would need to be developed. Complementing the theoretical contributions that any

of these improvements would make would be their practical use in the application of

bagahk as a tactic.
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Appendix A

Coq Formulations of Important

Lemmas and Theorems

Section 4.1

Lemma false diseqns False : ∀ (F : nat → Wrap) (G : nat → atom lookup) (ψ: Prop)

(α : ilist bool) (φ : ilist form), false diseqns (snd (sep form α φ)) = true →
encodes F G (conj form list α φ) ψ → ψ → False.

Lemma encodes rewrite list : ∀ (F: nat→Wrap) (G : nat→ atom lookup) (α : ilist bool)

(n j k : nat) (φ : ilistform) (ψ: Prop), fetch elb’ α n = true →
encodes F G (conj form list α (ilistc (Eqn n j k) φ)) ψ → ψ → ∃ ψ′,
encodes F (update atom lookup G j k) (conj form list α (rewrite list φ j k (ilength φ))) ψ′

∧ψ′.
Lemma rewrite form false : ∀ (F : nat → Wrap) (ilen : nat) (G : nat → atom lookup)

(α : ilist bool) (φ : ilist form) (ψ: Prop), ilength (fst (sep form α φ)) ≤ ilen →
rewrite form (fst (sep form α φ)) (snd(sep form α φ)) ilen = Some true →
encodes F G (conj form list α φ) ψ → ψ → False.

Theorem extern dp False : forall (F : nat → Wrap) (G : nat → atom lookup)

(α : ilist bool) (φ : form) (ψ: Prop), extern dp α φ = Some true →
encodes F G (conj form list α (rm dupl eqn (build eqn list φ))) ψ → ψ → False.

Section 4.2

Lemma simplify true : ∀ (F : nat → Wrap) (G : nat → atom lookup) (φ : form)

(ψ: Prop), (encodes F G φ ψ) → ((simplify φ = BoolF true) → ψ) ∧
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((simplify not φ = BoolF true) → ¬ψ).

Lemma exists subst prop : ∀ (F : nat → Wrap) (G : nat → atom lookup) (b : bool)

(n : nat) (φ : form) (ψ: Prop), encodes F G φ ψ → ∃ψ’, encodes F G (subst var b n φ) ψ′.

Lemma subst var eqv : ∀ (F : nat → Wrap)(G : nat → atom lookup) (n : nat)

(α : ilist bool) (φ : form) (ψa ψe ψ ψ’: Prop),

encodes F G (conj form list α (build atom list φ)) ψa →
encodes F G (conj form list α (build eqn list φ)) ψe → (encodes F G φ ψ) →
(encodes F G (subst var (fetch elb’ α n) n φ) ψ′) → ψa → ψe → (ψ′ ↔ ψ).

Lemma encodes subst conja : ∀ (F : nat → Wrap) (G : nat → atom lookup) (n : nat)

(α : ilist bool) (φ : form) (ψa: Prop), ψa →
encodes F G (conj form list α (build atom list φ)) ψa → ∃ ψ′a,
encodes F G (conj form list α (build atom list (subst var (fetch elb’ α n) n φ))) ψ′a ∧ ψ′a.
Lemma encodes subst conje : ∀ (F : nat → Wrap) (G : nat → atom lookup) (n : nat)

(α : ilist bool) (φ : form) (ψe: Prop), ψe →
encodes F G (conj form list α (build eqn list φ)) ψe → ∃ ψ′e,
encodes F G (conj form list α (build eqn list (subst var (fetch elb’ α n) n φ))) ψe ∧ ψ′e.
Theorem subst var true : ∀ (F : nat → Wrap) (G : nat → atom lookup) (α :ilist bool)

(n : nat)(φ : form) (ψa ψe ψ: Prop), simplify (subst var asgn asgn φ n) = BoolF true →
encodes F G (conj form list α (build atom list φ)) ψa →
encodes F G (conj form list α (build eqn list φ)) ψe →
encodes F G φ ψ → ψa → ψe → ψ.

Section 4.3

Lemma S encodes conj formt : ∀ (F : nat → Wrap) (G : nat → atom lookup) (φ : form)

(α : ilist bool) (ψ ψa P: Prop), G (ilength α) = prop atom P →(P ↔ T ) →
encodes F G φ ψ → encodes F G (conj form list’ α (build atom list φ)) ψa → ψa → ∃ ψ′a,
encodes F G (conj form list’ (ilistc true α) (build atom list φ)) ψ′a ∧ ψ′a.
Theorem check valida sound : ∀ (F : nat → Wrap) (G : nat → atom lookup) (n : nat)

(α : ilist bool) (φ : form) (ψa ψe ψ: Prop), max var φ ¡ n + (ilength α) →
check valida n φ α = true → encodes F G (conj form list’ α (build atom list φ)) ψa →
encodes F G (conj form list’ α (build eqn list φ)) ψe → encodes F G φ ψ → ψa → ψe → ψ.
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Section 5.1

Theorem prop prf interp : ∀ (φ : form) (ψ : Prop), prop prf φ ψ →
∀ (IP : nat → bool) (IE : nat → nat), eval interp IP IE φ = true.

Section 5.2

Lemma ia agree eval : ∀ (α : ilist bool) (φ: form) (P : nat → bool) (E : nat → nat),

ia agree P E (build atom eqn list φ) α = true → eval asgn α φ = eval interp P E φ.

Lemma ex ia agree atom : ∀ (α : ilist bool) (φ : ilist form),∃ P, ia agree atom P φ α =

true.

Lemma ia agree eqn rewrite : ∀ (α : ilist bool) (φ : ilist form) (i j : nat)

(E : nat → nat), ia agree eqn E (rewrite list φ i j (ilength φ)) α = true →
ia agree eqn (fun (x : nat) ⇒ if eq nat dec x i then E j else E x) φ α = true.

Lemma ia agree eqn extern dp : ∀ (α: ilist bool) (n: nat) (φ1 φ2: ilist form),

rewrite form (fst (sep form α φ1)) (snd (sep form α φ2)) n = Some false →
ilength (fst (sep form α φ1)) ≤ n → ∃ IE , ia agree eqn IE (fst (sep form α φ1)) α = true ∧
ia agree eqn IE (snd (sep form α φ2)) α = true.

Lemma merge ia agree : ∀ (α : ilist bool) (φ : ilist form) (P : nat → bool)

(E : nat → nat), ia agree atom P φ α = true → ia agree eqn E φ α = true →
ia agree P E φ α = true.

Theorem subst var eval asgn : ∀ (α : ilist bool) (len : nat) (φ : form),

max var φ ¡= len → simplify (subst var asgn α φ len) = BoolF (eval asgnn α φ).

Section 5.3

Theorem prop prf complete : ∀ (φ : form) (α : ilist bool) (ψ : Prop),

prop prf phi ψ → check valida (max var φ) φ α = true.
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