
Compilation Using Correct-by-Construction Program Synthesis

Abstract
Extracting and compiling certified programs may introduce
bugs in otherwise proven-correct code, reducing the ex-
tent of the guarantees that proof assistants and correct-by-
construction program-derivation frameworks provide. We
present a novel approach to the extraction and compilation of
embedded domain-specific languages developed in a proof as-
sistant (Coq), showing how it allows us to extend correctness
guarantees all the way to a verification-aware assembly lan-
guage. Our core idea is to phrase compilation of shallowly em-
bedded programs to a lower-level deeply embedded language
as a synthesis problem, solved using simple proof-search tech-
niques. This technique is extensible (support for individual
language constructs is provided by a user-extensible database
of compilation tactics and lemmas) and allows the source
programs to depend on axiomatically specified methods on
externally implemented data structures, delaying linking to
the assembly stage. We do proof-generating static analysis
of object lifetimes to avoid the need for a garbage collector,
so that our output code is suitable for embedded systems or
system infrastructure. We have composed our new transfor-
mation with others in Coq to provide the first fully proof-
generating automatic translation from SQL-style relational
programs into executable assembly code.

1. Introduction
The Fiat program derivation framework of Delaware et al.
automatically refines high-level specifications into programs
written in Gallina (Coq’s functional programming language),
along with proofs that the resulting programs conform to
the original specifications. For example, Fiat’s query struc-

[Copyright notice will appear here once ’preprint’ option is removed.]

tures library refines the following query into a correct-by-
construction program similar to the following one:

SELECT COUNT(*) FROM Books
JOIN Orders ON isbn
WHERE Books.author = $author

ret foldl (λ count book.
count + bcount orders book.isbn)

(bfind books $author)

In addition, Fiat programs can be parametrized by abstract
data types (ADTs), whose behavior is axiomatically specified
and whose implementation is left unspecified. In the example
above, bfind and bcount are methods of a bag ADT; the call
to the former returns all books by a certain author $author,
and the call to the latter counts the matches in the orders table
for a given ISBN code book.isbn.

To compile the results of Fiat’s synthesis into executable
binaries, users extract the refined programs to other languages
such as OCaml. Unfortunately, this means that correctness of
the compiled executable depends not only on the correctness
of Coq’s kernel, but also on that of the extraction mecha-
nism and of the OCaml compiler. These two dependencies
significantly decrease the confidence that users can place
in programs synthesized by Fiat, and more generally in all
programs extracted from Gallina code: bugs in the extrac-
tion mechanism or in the compiler may cause the binaries to
misbehave.

This paper pushes the guarantees offered by a correct-by-
construction program synthesis framework embedded in a
proof assistant (Fiat) all the way down to a verification-aware
assembly language (Bedrock [1]). Our main contribution
is a translation from shallowly embedded refined Fiat pro-
grams to deeply embedded programs written in Facade, a
C++-inspired imperative language. Rather than write a tra-
ditional compiler, we phrase the problem as a synthesis task
happening inside the proof assistant: instead of relying on ex-
traction, we propose to consider Fiat programs themselves as
specifications expressed in a functional language, and to use
them to drive a correct-by-construction synthesis procedure
in sequent-calculus style.

Our main contributions are to introduce a novel, extensible
approach to the sound compilation of shallowly embedded
domain-specific languages in a proof assistant using the

1

source language as a specification driving a synthesis process,
and to show how this approach accommodates dependencies
on external axiomatically specified operations, allowing us
to link against external libraries written in other languages.
Another notable property of our translation is that it supports
nondeterministic source programs; for instance, querying a
data table for all matching rows ought to be able to return
the rows in any order, if the user has no particular sorting
requirement in mind. Different data structures may imply
different natural orderings that are efficient to produce.

The work we present here provides the last step in demon-
strating the feasibility of a a mechanically certified automatic
translation pipeline from declarative specifications to assem-
bly language with support for abstraction of externally veri-
fied data structure implementations.

Our approach has many advantages beyond suppressing
the trust dependency on potentially unsound extraction and
compilation procedures:

• It is lightweight: it does not require reflecting the entirety
of Gallina into a deeply embedded language before com-
piling

• It is modular: each part of the compilation logic is ex-
pressed as a derivation rule, proved as a Coq theorem; sup-
port for particular constructs can be provided by adding
compilation lemmas, extending the supported source lan-
guage. Similarly, support for domain-specific optimiza-
tions is easy to add, enabling case-specific performance
improvements over generic extraction.

• It allows us to link against axiomatically specified li-
braries, with external calls expressed using Fiat programs
that have not been fully refined into deterministic code, as
in the following example:

x← rand();
ret (x + x)

• It compiles directly to a relatively bare language, with
fully manual memory management, providing perfor-
mance and predictability advantages1.

To demonstrate the practical applicability of this approach,
we evaluated our extraction routines on two set of bench-
marks:

• A collection of micro-benchmarks, starting from small
hand-written Fiat programs manipulating variables, con-
ditions, and lists of machine words and generating Facade
programs automatically.

• A collection of larger benchmarks, demonstrating the
capabilities and performance of extraction on real-life
programs similar to those of the original Fiat paper.
These benchmarks start from high-level specifications

1 Beyond raw performance, the absence of a garbage collector makes it easier
to get real-time guarantees, and to reason about potential side-channel attacks
on sensitive code.

of database queries: these queries are refined down to
functional programs parametrized by external ADTs im-
plementing axiomatically specified nondeterministic bag
operations, then extracted to Facade, and compiled down
to Bedrock.

2. Background
Thanks to advances of compiler-verification research, strength-
ening the trust chain of verified programs to exclude the
dependency on the compiler is now relatively easy: verified
compilers are available for a variety of languages, including
subsets of C or C++ such as CompCert [10] and Cito [24] as
well as variants of ML such as CakeML [7]. Unfortunately,
no mechanism, let alone a certified one, exists to extract
Gallina code to one of these languages.

Achieving sound extraction, on the other hand, is much
harder, as the traditional technique for writing verified com-
pilers does not directly apply: instead of writing and verify-
ing a function translating deeply embedded abstract syntax
trees from one language to another, the authors of a sound
extraction procedure must start with a shallowly embedded
program and produce a deeply embedded term encoded using
an inductive data type.

Phrasing the extraction problem in compiler verification
terms would therefore require primitives for quoting terms,
allowing one to reason about the semantics and structure
of Gallina terms in Gallina itself; unfortunately, Gallina
does not offer such facilities. Instead, one must produce a
verifying compiler; that is, a compilation procedure written
in a different language, which inspects Gallina terms in a
possibly unsound way and produces not only the deeply
embedded AST of a compiled program, but also a proof
that this derivation is correct. Thus the extraction mechanism
itself is not verified, but each extraction is accompanied by a
Coq-checked proof that guarantees its correctness.

One systematic alternative is to reflect the entirety of Gal-
lina as a Gallina inductive type. In this approach, the extrac-
tion process consists of two steps: the first step, implemented
in Coq’s Turing-complete language for inspecting and ma-
nipulating Gallina terms (Ltac), inspects the AST of Gallina
terms to mirror them into deeply embedded programs, pro-
ducing a proof that connects these programs to the original
terms. The second step, written and verified in Gallina, uses
typical verified compilation techniques to compile this deep
embedding of Gallina into the target language. This approach,
although rather heavy (it requires writing a specification of
the entirety of Gallina inside of Gallina itself), would be
practical if our aim were to compile self-contained general
Gallina programs; our focus, however, is not on such pro-
grams: it is on Fiat programs, a specific class of Gallina terms
sharing common properties that make them amenable to more
specialized compilation, supporting linking against external
code and manual memory management. In addition, our start-
ing points are terms that may use a nondeterministic choice

2

operator, and that feature may not be translated to executable
code in a generic way. Rather, we depend on the code we link
against to resolve the nondeterminism.

3. Technical outline
3.1 Example of compilation by synthesis
We begin by illustrating the compilation process on a simple
example, starting with the following Fiat program p:

p := r← rand()
ret (if r ≺ 0 then −r else r)

This program samples a random number using a call to an
external function and returns its absolute value (≺ denotes a
Boolean version of the less-than predicate). To compile this
program to Facade (described later), we synthesize a Facade
program p, according to the following specification2:

• p, when started in a blank state (no variables defined, writ-
ten ∅) must be safe; that is, p must not call functions
without ensuring that their arguments are properly allo-
cated and verifying the required preconditions; it may not
access undefined variables; etc.

• p, when started in a blank state, must reach (if it termi-
nates) a final state where all temporary data structures that
p allocated have been deallocated, and where the variable
"out" has a value equivalent to the Gallina term p shown
above.

We write ∅
p

["out"← p] to summarize this speci-
fication; we read it as “the Facade program p, starting in a
blank state, behaves properly and stores a value equivalent to
the Fiat term p in the variable "out"”. One can think of it
as a typical Hoare triple, with additional constraints on the
pre- and postconditions to facilitate synthesis3. The precise
definition shown in subsection 3.2 is constructed in such a
way that Facade’s semantics guarantee that any program re-
specting this specification will (if it terminates) correctly set
the return value to one of the values permitted by the original
Fiat program.

The final program that we wish to obtain looks like the
following:

2 In the following, typewriter variables such as prog live in Facade land,
Roman script variables such as comp are Fiat computations, and slanted
variables such as p are Gallina terms.
3 Indeed, instead of the usual context where Hoare triples are used to help
ensure that a program conforms to its specification, we use them here to
drive the synthesis process; putting additional constraints helps us avoid
vacuous preconditions (>) and unrealizable postconditions (⊥), and helps
the compiler synthesize the Facade program.

tmp := Call rand()
comp := tmp < 0
If comp Then
out := -tmp

Else
out := tmp

EndIf

Expanding the definition of p, we find that we need to find
a program p such that

∅
p
[
"out"← r← rand()

ret (if r ≺ 0 then −r else r)

]
We use our first compilation lemma to connect the semantics
of Fiat’s bind operation (the← operator of monads [23]) to
the meaning of , which yields the following synthesis
goal:

∅
p

["tmp"← rand() as r] ::
["out"← ret (if r ≺ 0 then −r else r)]

In this step, we have broken down the assignment of a
Fiat-level binding operation (r← rand(); . . .) to a single vari-
able into the construction of two variables: "tmp", holding
the result of the call to rand(), and "out", holding the final
result4. Note that the description of Fiat states that we use is
causal: we need to be able to track dependencies between dif-
ferent variables. Thus the ordering of the individual bindings
matters: the Fiat term that we assign to "out" depends on
the particular value that the call to rand() returns.

We then break down p into two smaller programs: the
first starts in a blank state and is only concerned with the
assignment to "tmp"; the second one starts in a state where
"tmp" is already assigned and uses that value to construct
the final result:5

∅
p1

["tmp"← rand() as r]

["tmp"← rand() as r]
p2

["tmp"← rand() as r] ::
["out"← ret . . .]

At this point, a lemma about Facade’s semantics tells us
that tmp := Call rand() is a good choice6 for p1 (this
is the call rule for rand). We are therefore only left with

4 The double-colon operator (::) is syntactic sugar for a consing operation. In
more detail, this notation describes states where the first variable "tmp" can
map to any of the variables allowed by the call to random, and where the
second variable maps to any of the values allowed by the addition operation:
although the addition is deterministic, it depends on the value returned by
random, bound as r at the Gallina level.
5 Notice the similarity between the specification of p1 and the original
specification of p: just like p moved from a blank state to a state binding
"out" to a Fiat expression, p1 moves from a blank state to a state binding
"tmp" to a Fiat expression.
6 We use the same name to denote the specification of the rand() function
as used by Fiat and the Facade-level specification of that same function. A
user-provided lemma, written by the author of the rand function, connects
these two meanings.

3

p2 to synthesize: noticing the common prefix of the starting
and ending states, we apply the chomp rule, transforming the
problem into

∀r. rand() r =⇒

∅
p2

["tmp"← r]
["out"← ret (if r ≺ 0 then −r else r)]

The additional mapping pictured under the arrow ex-
presses an extra assumption that we can make about the
starting and ending states: they must both map "tmp" to the
same value r. Since this is wrapped in a universal quantifier,
what we are really requiring is that the synthesized program
be valid regardless of the particular value returned by the
call to rand7. In this form, after applying Coq’s Lam rule, the
synthesis goal matches the conclusion of the IF compilation
lemma: given three programs which respectively set a com-
parison variable "cmp" to r ≺ 0 (pTest), compile the true
branch (pTrue) of the conditional, and compile the false
branch of the conditional (pFalse), the Facade program
pTest; If cmp Then pTrue Else pFalse obeys the
specification above. This gives us three new synthesis goals,
which we can handle recursively.

3.2 Technical details
The compilation procedure outlined above is implemented in
Ltac.

3.2.1 The Facade Language
Facade 8 is an Algol-like untyped imperative language oper-
ating on Facade states, which are finite maps from variable
names to Facade values. A Facade value can be either an
integer (stack-allocated), which we call a “scalar”, or it can
be an ADT (heap-allocated), similar to an object in an OOP
language. Syntactically, Facade includes standard program-
ming constructs like assignments, conditionals, loops, and
function calls. What distinguishes the language is its oper-
ational semantics. First, that semantics follows that of Cito
in supporting modularity by modeling calls to externally de-
fined functions via preconditions and postconditions. That
is, something of Hoare logic is built into the operational se-
mantics, to serve as a bridge with code compiled from other
languages. Second, we have built linearity in Facade’s opera-
tional semantics, enforcing that every ADT value on the heap
will be referred to by exactly one live variable (no aliasing
and no leakage). Such a pattern of linearity simplifies reason-
ing about the formal connection to functional programs: if
every object has at most one referrent, then we can almost
pretend that variables hold abstract values instead of pointers

7 A slight subtlety here is that the formulation may lead one to think that we
may end up constructing a different program for each value of r. This is not
the case: p2 is an existential variable whose context does not contain r; it
cannot depend on it.
8 A formal definition of the Facade language is presented in the technical
report accompanying this paper.

to mutable objects, while remaining compatible with standard
semantics of C-like languages and their verified compilers.

Facade’s operational semantics are defined by two predi-
cates, (p,st)↓ and (p,st,st’)⇓, expressing respectively
that Facade program p will run safely when started in Fa-
cade state st, and that p may reach state st’ when started
from st (this latter predicate essentially acts as a big-step
semantics of Facade). The semantics is nondeterministic in
the sense that there can be more than one possible st’.

Modularity is achieved by the fact that Facade’s semantics
contains a rule allowing a Facade program to call a function
specified axiomatically. A function call’s effect includes both
the return value and a list of “output values.” These output
values represent the result of in-place modification of input
ADT arguments. When an input argument is an ADT, the
corresponding output value can be either (1) another ADT
representing the new value of the input argument or (2) a
null value indicating that the input ADT has been deallocated.
The ability of Facade function calls to modify or deallocate
input arguments makes them manifestly “impure,” but we
benefit from the flexibility to express memory effects such
as combining, moving, and deallocation. A precondition is
a predicate on input argument values to the callee. A post-
condition is a predicate on input values, output values, and
return value. The semantics prescribes that such a function
call will nondeterministically pick a list of output values and
a return value satisfying the postcondition, and use them to
update the relevant variables in the caller’s post-call state.

Linearity is achieved by a set of syntactic and semantic
provisions. For instance, variables currently holding ADT
values cannot appear on the righthand sides of assignments,
to avoid aliasing. They also cannot appear on the lefthand
sides of assignmemts, to avoid losing their current payloads
and causing memory leaks. Restrictions of this flavor appear
throughout the operational semantics.

We have implemented a verified compiler from Facade to
Cito, and from there we reuse established infrastructure to
connect into the Bedrock framework for verified assembly
code. Our Facade-to-Cito compiler accepts a record con-
taining (1) a Facade program, (2) an axiomatic specifica-
tion for the functions that the program exports, (3) a list of
name/axiomatic-spec pairs representing the available func-
tions the program can call from other modules, and (4) a
proof that the program actually “refines” (i.e. implements)
the export spec. Through composition with the verified Cito
compiler, the Facade compiler generates a Bedrock module
with the given export spec (meaning the assembly code in
the Bedrock module satisfies the export spec). The refine-
ment in (4) is defined in a form morally equivalent to the

pre
p

post relation introduced in the previous section. Thus
the Facade-to-Bedrock compiler is readily connected to the
Fiat-to-Facade compiler described in this paper to form a
complete pipeline.

4

∀v0. v0 ∈ v =⇒ t v0
p

[k←v0]::ext
t′ v0

[k← v as v0] :: (t v0)
p

ext
[k← v as v0] :: (t

′ v0)
CHOMP

(a) The chomp rule: to synthesize a program whose pre- and postconditions share
the same prefix [k← v], it is enough to synthesize a program that works for any
constant values permitted by the Fiat computation v.

st
p

ext
[← comp as x] ::
[k← f x] :: st′

st
p

ext

[
k← x← comp

f x

]
:: st′

BIND

(b) The bind rule: dependencies between consec-
utive bindings in Fiat states accurately model the
semantics of Fiat’s bind operation.

∅
pC

ext
[cmp← pC]

pC =⇒ ∅
pT

[cmp←pC]::ext
[k← pT] ¬pC =⇒ ∅

pF

[cmp←pC]::ext
[k← pF]

∅

pC; If cmp Then pT
Else pF

ext
[k← if pC then pT else pF]

IF

(c) The if rule: provided that the three intermediate programs pC, pT, pF respectively evaluate the condition of the if,
implement its true branch, and implement its right branch, we can connect the semantics of Facade’s If statement to
the Gallina-level if.

Figure 1: Three rules used by our synthesizing compiler: chomp, bind, and if

3.2.2 Fiat and Facade states
We connect Gallina’s and Fiat’s semantics to that of Facade
by introducing a notion of Fiat states, helping us express
constraints on the program being synthesized in a concise
and systematic way and simplifying the synthesis by proof-
search procedure. The intent is that, instead of a having a map
relating names to Facade values and a number of propositions
describing the relations and dependencies between these
bindings, we may have a single data structure tracking exactly
the required information to allow for compilation to succeed.

On the surface, Fiat states are similar to Facade states, as
they both describe a collection of bindings. The two, however,
differ crucially in a number of ways: indeed, Facade states
are unordered collections of bindings, with dependencies be-
tween bindings being expressed by additional propositions
learned as one reasons about program transitions. Fiat states,
on the other hand, are self-contained, dependently typed het-
erogeneous ordered lists of bindings (also called telescopes),
where the head of each cons cell bundles a variable name and
a propositionally described set of permissible values for that
variable, while the tail of each cell is a function from values
to telescopes, allowing later bindings to depend on earlier
values.

One can think of them as Fiat computations, where the
Bind constructor is extended to allow naming certain vari-
ables9. Finally, for convenience and to be able to implement
the aforementioned chomp rule, Fiat states are extended with
an unordered map from names to single values, which morally

9 In addition to a name string, named bindings are required to be accom-
panied by an instance of a type class mapping values of the type of bound
computation in and out of the representation type used in Facade specifica-
tions.

represents the Fiat variables for which a particular value has
been picked among permissible values.

We relate Fiat states to Facade states using a recursively
defined ternary predicate

st u st] ext

that ensures that the values assigned to each variable in the
Facade state st are compatible with the bindings described in
the Fiat state st] ext, and that the values chosen for each of
the Facade computations are compatible with choices made
for previous bindings. Because of Facade’s manual memory
management model, we require that all ADTs bound in st
be compatible with st] ext. For scalars, on the other hand,
we require that bindings in st be mirrored in st, but we only
require ext to be a submap of the remaining parts of st.
Intuitively, this means that we are allowed to forget about
previously allocated scalar values, but that we must track
ADTs precisely until we deallocate them.

3.2.3 Synthesis framework
Armed with this predicate, we are ready to give the full

definition of st
p

ext
st′, shown below:

∀st. st u st] ext =⇒ (p,st)↓
∀st st’. st u st] ext ∧ (p,st,st’)⇓

=⇒ st’ u st′] ext

This specification reads as follows:

• For all starting Facade states st, if st is in relation with
the Fiat state st extended by ext, then it is safe to run the
Facade program p from state st.

5

• For all starting and ending Facade states st and st’, if
st is in relation with the Fiat state st extended by ext and
if running the Facade program p starting from st may
produce the Facade state st’, then st’ is in relation with
the Fiat state st′ extended by ext.

This definition is enough to concisely and precisely phrase
the three types of lemmas required to synthesize Facade
programs:

• Properties of the relation (most importantly the chomp
rule of figure 1a), used to drive the proof search and
provide the compilation architecture

• Connections between the relation and Fiat’s semantics
(for example the bind rule of figure 1b), used to reduce
compilation of Fiat programs to that of Gallina programs

• Connections between Fiat and Facade, through the
relation (such as the if rule of figure 1c). This last category
is the one in which user extensions are found: additional
lemmas extend the scope of the compiler and broaden the
range of source programs that the synthesizing compiler
is able to handle.

Furthermore, this relation has the pleasant property that it
only manipulates Fiat states through the u relation, under the
same ext: this makes it automatically compatible with the
equivalence relation derived from u defined by connecting
two Fiat states st1] ext and st2] ext when any Facade state
is related to st1] ext iff it is related to st2] ext. This makes
the second category of lemmas easy to express, owing to the
close parallel between Fiat computations and Fiat states, by
reducing them to lemmas about this equivalence relation on
telescopes.

3.2.4 Automatic extraction by synthesis
With these lemmas, the complexity of the compilation process
is reduced to automating a proof-search problem by applying
the right lemmas and introducing the right cuts.

Compilation proceeds in three steps: from a Fiat ADT
specification, comprising multiple method written as Fiat
computations mixing Gallina code with calls to Fiat ADTs,
we produce a Facade module whose methods are yet un-
determined; each of these methods is given a Hoare-style
specification based on the predicate. For a Fiat computa-
tion f taking arguments x1 . . . xn, this specification takes the
following form:

∃p. ∀x1 . . . xn.

["x1"← x1] ::
. . . ::
["xn"← xn]

p

∅
["out"← f x1 . . . xn]

From this starting point, extraction proceed by repeated
pattern matching on the joint shapes of the pre and post-states.
This pattern matching yields candidate compilation lemmas,

which are applied to break down and simplify the post-
state. This stage explains why we chose strongly constrained
representations for pre and post-states: unlike a verification
task, where the program source drives the computation and
of verification conditions, we do not have a program source
to guide us; instead, we must rely on the shape of the pre-
and postconditions. Just like the best programming languages
prevent users from writing meaningless programs, the best
specifications for such a synthesis task are those whose
structure is regular enough to permit easy synthesis.

In practice, this pattern matching is implemented by a
collection of matching functions written in Ltac which, given
pre- and postconditions, either return without changing the
goal, solve the current goal by applying a synthesis lemma,
or produce a new goal (by applying a compilation lemma
or by introducing an intermediate state after splitting the
unknown program into two consecutive subprograms). For
example, one of these matching rules looks at the first binding
in the precondition’s telescope and searches for use of the
corresponding value in the postcondition. If the value is
not used, then the program being synthesised is replaced
by a sequence of two operations: the deallocation of the
head variable in the precondition, followed by an unknown
program to be synthesized with a precondition not mentioning
the recently deallocated variable.

The compiler architecture is extensible: the main extrac-
tion loop exposes hooks that users can rebind to call their own
matching rules, providing support for more Gallina or Fiat
forms. Examples of such rules are provided in the following
section10.

3.3 Implementation details
The full extraction framework consists of 5000 lines of
specifications and theorem statements and 1700 lines of Coq
proofs. Most of the derivations are done in a highly automated
manner, with one main prof strategy per type of statement:
a low-level tactic that systematically unfolds the u relation;
an intermediate one that that treats the u relation abstractly
(using only properties proven with the lower level tactic) and
always unfold the relation; and one that treats the
abstractly.

The trusted base of this paper comprises three main parts:
the Coq Kernel, a number of facts about ensembles repre-
sented as functions from elements to propositions (the deriva-
tions rely on ensemble extensionality, and use a number of
admitted facts about combinations of ensembles), and a trans-
lation function between Facade specifications and telescope-
based specifications (proving an equivalence between these
two types of specifications is feasible on a case-by-case ba-
sis).

10 Of course, since our focus is not on writing a general extraction mechanism
(but instead on describing a convenient technique for extracting DSLs
embedded in Gallina) these rules do not cover all possible Gallina programs.
We are not aware, however, of patterns that would be fundamentally
incompatible with this extraction strategy.

6

4. Evaluation
4.1 Micro-benchmarks
We started out by extracting a number of small Gallina pro-
grams performing tests and computing expressions using ma-
chine words, all of which are handled by the default library of
compilation rules that comes with our extraction framework.
In all these cases, the extraction process completes in a matter
of seconds.11

We then extended the compiler by providing a trivial spec-
ification for a rand function (allowing it to return any num-
ber), proving a lemma that connected the Facade specifi-
cations of that function (expressed in unconstrained Hoare
logic) with telescope-based specifications (expressed in terms
of the relation). By adding a compilation rule to the ex-
traction engine, in the form of one Ltac function, we were
then able to extract the example given at the very beginning
of this paper. The effort involved beyond the writing of the
Fiat and Facade specification of the function was minimal,
as the structure of the relation used to connect these two
specifications makes it amenable to proof automation. In to-
tal, extending the compiler to support this external function
whose behavior could not be obtained in pure Gallina re-
quired 20 lines of specifications, 5 lines of proofs, and about
10 lines to write the compiler extension.

Another convenient feature of optimizing compilers is
intrinsics: although some constructs may be expressible in
the source language, it may be interesting to give them special
treatment while compiling. To replicate this pattern in our
extraction engine, we added a rule to the compiler which,
when spotting an application of a Gallina function, looks at
the externally available functions to find one that matches
the Gallina function12. Should such a function be found,
compilation does not proceed by unfolding the definition
of the function and examining its body, but instead emits a
single function call. We made use of this construct to extract
snippets doing bit-level manipulations on machine words
– these operations would otherwise be hard to implement
efficiently in Facade.

As another more advanced example of intrinsics, we added
support to our extraction engine for maps and left folds13,
implemented as destructive while loops14. The rule for foldl
is presented in Figure 2. Interestingly, while our extraction
strategy has a strong flavor of synthesis, proving the lemmas

11 The benchmarks can be run interactively by stepping through the
src/CertifiedExtraction/Benchmarks/Microbenchmarks.v
file in the attached source
12 This matching is expressed by using parametrized specifications special-
ized to particular Gallina functions, connected by a single generic function
13 This pattern of adding support for new language constructs illustrates that
the source language of our extraction engine is a fluid DSL, including small
parts of Gallina, and encompassing many programs beyond pure Gallina (the
sources that we extract are nondeterministic Fiat computations).
14 The destructive nature of loops is not an issue; it is easy to detect cases
where a list is needed multiple times and to create a copy of it before iterating
over it.

[ls← ret `] :: t
pinit

ext
[out← a0] :: [ls← ret `] :: t

∀h a `.
[head← ret h] ::
[out← a] :: t

pbody

[ls←`]::ext
[out← f a h] :: t

[ls← ret `] :: t

pinit;

end := empty?(ls)

While (not end)

hd := pop!(ls)

pbody
end := empty?(ls)

delete!(ls)

ext
[out← foldl f a0 `] :: t

FOLDL

Figure 2: The foldl rule, reducing ` with f on initial value a0

threshold← rand();
ret (foldl (fun acc w =⇒

if threshold ≺ w then acc
else w :: acc)

seq []))

random := std.rand()
out := list[W].nil()
test := list[W].empty?(seq)
While (test = 0)
head := list[W].pop(seq)
test0 := random < head
If Const 1 = test0 Then

pass
Else

call list[W].push(out, head)
EndIf
test := list[W].empty?(seq)

call list[W].delete(seq))

Figure 3: Example of a micro-benchmark: the first part of
the figure shows a Fiat program filtering out elements of a
list falling below a randomly selected threshold; the bottom
shows the extracted program. The derivation guarantees that
when given a sequence of words seq as an argument "seq",
the resulting Facade program will end in a state containing
a list of word permissible by the original Fiat specification,
stored in the variable "seq".

required to add support for high-level constructs such as maps
and folds has a strong flavor of traditional imperative program
verification, where Fiat telescopes serve as a specification
language for Facade programs. This makes it relatively easy
to prove these lemmas, as they are mostly series of deductions
following Facade’s semantics. This allowed us to compile
examples such as filtering lists, or flattening lists of lists
(compiling to nested while loops).

In total, our micro-benchmark suite contains about 25 pro-
grams manipulating words, lists of machine words, and lists
of lists of machine words, with optional calls to a random

7

Definition SchedulerSpec : ADT :=
QueryADTRep SchedulerSchema {
Def Constructor0 ”Init” : rep := empty,

Def Method2 ”Spawn” (r : rep)
(new pid cpu : W) : rep * bool :=

Insert (<”pid” :: new pid,
”state” :: SLEEPING,
”cpu” :: cpu>)

into r!”Processes”,

Def Method1 ”Enumerate” (r : rep)
(state : State) : rep * list W :=

procs← For (p in r!”Processes”)
Where (p!”state” = state)
Return (p!”pid”);

ret (r, procs),

Def Method1 ”GetCPUTime” (r : rep)
(id : W) : rep * list W :=

proc← For (p in r!”Processes”)
Where (p!”pid” = id)
Return (p!”cpu”);

ret (r, proc)
}.

Figure 4: The original Fiat specification of the process sched-
uler. The refinement process derives an efficient functional
implementation of this specification by implementing it using
nested trees keyed on the process ID, followed by the process
state. Fields in the final program are indexed by machine
words, instead of the original strings.

method specified to return an arbitrary machine word. Exam-
ples of micro-benchmarks range from simple operations such
as performing basic arithmetic, allocating data structures,
calling compiler intrinsics, or sampling random numbers to
more complex operations involving sequence manipulations,
such as reversing, filtering (e.g. removing elements greater
than a threshold), reducing (e.g. reading in a number written
as a list of digits in a given base), flattening, duplicating or
replacing elements (e.g. ensuring that a sequence contains no
zeroes). A detailed example of such a micro-benchmark, and
the corresponding code, is given in Figure 3.

4.2 Macro-benchmarks
To evaluate the performance and capabilities of our extraction
engine on real-life scenarios, we targeted the query-structure
ADT library of the Fiat paper [4], as well as an additional
ADT modeling process scheduling (see Figure 4). The source
programs in this collection of tests were full ADTs, collec-
tions of Fiat methods obtained by refining Fiat specifications
expressed in an SQL-like language into computations inter-
mixing Gallina terms and non-deterministic method calls to
bag ADTs.

In all cases, the final result of extraction is a Facade mod-
ule, a collection of exported methods, dependency declara-
tions, and proofs. Each exported method corresponds to one
of the methods of the original Fiat ADT, and is paired with an
axiomatic specification inherited from the Fiat method and a
proof of conformance to that specification15.

Each dependency declared by the Facade module is ex-
pressed through an axiomatic specification, and resolved upon
linking with a suitable implementation. Part of the extraction
process consists in synthesizing Facade calls to the relevant
external methods to implement calls made at the Fiat level to
structures obeying the Fiat concept of a bag. These synthesis
steps are justified by proving lemmas connecting the seman-
tics each Fiat-level bag operations to axiomatically-specified
operations on nested trees: thus, following a process simi-
lar to the one used in the intrinsics part of our extensibility
micro-benchmarks, we wrote descriptions of the operations
provided by Fiat bags in Facade terms, and proved lemmas
connecting the two specs through the relation.16. Due to
the structure of the source Fiat programs, we were able to
use Facade specifications expressing nested tree operations in
terms of mutations17. Finally, we added corresponding rules
to the extraction engine.

The programs that we started from were similar to the
following:

(* Find all processes in a given state
and return their process IDs *)

a← CallBagMethod BagFind table (, STATE,);
ret (fst a, revmap (fun x =⇒ GetAttribute x 0) (snd a))

(* Find a process by process ID
and return its running time *)

a← CallBagMethod BagFind table (ID, ,);
ret (fst a, revmap (fun x =⇒ GetAttribute x 2) (snd a))

(* Insert a new process with id ID;
fail if the key already exists *)

a← CallBagMethod BagFind r (ID, ,);
if length (snd a) = 0 then

u← CallBagMethod BagInsert (fst a) [d, SLEEPING, d0]
ret (fst u, true)

else
ret (fst a, false)

And the resulting, extracted programs were similar to the
following (the other methods have been omitted):

snd := Tree.findByFirstIndex(table, d);
ret := List[W].new();
test := List[Tuple].empty(snd);

15 This proof of conformance is lifted from the trace of the extraction process,
which yields a witness expressed in terms of the relation
16 These lemmas are generally straightforward, and mostly serve to bridge
small encoding gaps (introducing the concept of mutations, for example)
and to lift axiomatic specifications into operational specifications.
17 Thus Facade’s linearity requirement, which simplifies many aspects of
extraction, did not prove limiting

8

While (Var test = Const 0)
head := List[Tuple].pop(snd);
pos := Const 2;
head’ := Tuple.get(head, pos);
size := Const 3;
call Tuple.delete(head, size);
call List[W].push(ret, head’);
test := List[Tuple].empty(snd);

test := List[Tuple].delete(snd);

Interestingly, and in conformance with the Fiat idea of
domain-specific optimizations providing better performance,
initial extraction results led us to extend Fiat refinements to
use revmap instead of map where allowed by the specification:
indeed, revmap can be implemented in a single pass over its
input list in constant stack space, while map cannot.

After extracting the adts (extraction takes less than a
minute in all cases), we compiled the resulting programs
using the new Facade to Bedrock compiler. At that point in
the process, we had obtained assembly programs with proofs
of partial correctness with regard to the original SQL-flavored
specifications, assuming availability of a number of external
methods on nested treed.

All that remained to be done was to implement and verify
these external dependencies. Facade, Cito, and Bedrock were
all potential candidates; we chose Bedrock for performance,
and used the Bedrock linker to obtain executable programs.

This table shows the running time in seconds for each of
several tests of the extracted assembly code. For each value i
in the #Pids column, we create i random processes with IDs
from 0 to #Pids-1, giving each a random CPU ID in the same
range. Then we measure the time for 2000 random Enumerate
operations, which should be fast, as they are perfectly suited
to the binary-search-tree structure we are using; and 1 random
GetCPUTime operation, which can be quite slow, as it needs
to visit every node of the outer search tree, calling a method
on the inner search tree in each case.

#Pids 2000 Enumerates 1 GetCPUTime
10 .01 .00
100 .02 .00

1000 .02 .01
10000 .04 .88

We cannot resist pointing out that the benchmarks worked
correctly on the first try, with no debugging time required for
the verified code, only in our benchmarking harness.

5. Related work
Quite closely related to our work is a project by Lammich
that uses Isabelle/HOL to do automated refinement of func-
tional programs to an embedded imperative language called
Imperative/HOL, which includes garbage collection (unlike
our Facade) but exposes mutable objects. Our project and his
proceeded independently at the same time, and there are both
important similarities and differences between our solutions.
Lammich’s tool has been applied to derive implementations

of classic textbook algorithms and other challenging cases,
whereas our focus is on fully automatic derivation from SQL-
style specs, and so we have only looked at starting specs that
are simpler in some sense, along the lines of what real-world
programmers write regularly in mundane applications. Both
approaches use some kind of linearity checking to bridge the
gap between functional code, where sharing of data structures
is natural, and imperative code, where object identity mat-
ters. Lammich’s approach reasons with separation logic [16]
and axiomatic semantics, while we apply the lighter-weight
approach of Facade’s decidable syntactic checks on linear
usage of variables, as a post-phase after we derive programs
in a novel sequent-calculus style supporting nondeterminism,
without explicit pointer reasoning. Furthermore, Lammich’s
tool only supports generating verified Imperative/HOL code,
whereas our pipeline allows integration of synthesized imper-
ative programs with data structures implemented in assembly
language, compiled with proofs from any of the several lan-
guages in the Bedrock ecosystem, or any other for which
someone writes a certified or certifying compiler. An impor-
tant part of the larger context is that our translation has been
successfully integrated into an automated, proof-generating
pipeline from relational specifications to executable assem-
bly code, and, as far as we know, no such pipeline has been
presented before.

Another closely related project is by Myreen and Owens,
on extracting terms written in the pure functional program-
ming subset of the logic of HOL4 into programs written in a
dialect of ML called CakeML. The main differences between
that project and ours are in the language choices, external
linking abilities, and optimization opportunities, in addition
to a significant difference in focus. Indeed, the target lan-
guage for the extraction procedure described by Myreen and
Owens has semantics that are relatively close to that of the
source language: both the pure functional subset of HOL4
and miniML are functional languages with relatively expres-
sive type systems, and neither exposes memory management
to the user. In contrast, our source language is more restricted,
but also further remote from the language that we are target-
ing: this gives us many more opportunities for optimizations,
including those related to memory management. We expose
these opportunities to users of our compiler by letting them
inject their domain-specific optimization knowledge into the
compiler by proving compilation lemmas: in that sense, our
work may be better thought of as a compilation library, pro-
viding a large degree of extensibility and flexibility to allow
for compilation of domain-specific languages of various na-
tures. Our approach further differs from that of Myreen and
Owens by allowing us to compile partially refined Fiat pro-
grams, including dependencies on externally implemented
method calls.

Beyond that, our project draws inspiration from a number
of related efforts that can broadly be categorized into four
groups: program extraction from proof assistants, compiler

9

verification, extensible compilation, and formal decompila-
tion in proof assistants.

Program extraction Many recent verified software devel-
opment efforts use program extraction to produce executable
binaries from their code: examples include the verified C com-
piler CompCert [10], as well as the Ynot framework [14] for
verifying Haskell-style monadic Gallina programs. Such ex-
traction facilities are found in Coq [21] and other proof assis-
tants, including Nuprl [2] and more recently F* [19], a proof
assistant developed at Microsoft Research. These extractors
are rather complex programs, subject to varying degrees of
scrutiny: for example, the theory on which Coq’s extraction
is based was mechanically formalized and verified [11], but
the corresponding concrete implementation itself was not
subjected to verification. Our new compilation strategy does
not suffer from these limitations: in particular, we ensure
that the guarantees provided at the Gallina level are fully
preserved as we move down to Facade, and from there down
to Bedrock. As such, our method can be viewed as a sound
and flexible alternative to extraction, which shines when the
source language is small and presents patterns amenable to
specific optimizations.

Compiler verification In addition to preserving semantics,
our compilation strategy allows Fiat programs to take advan-
tage of the external linking capabilities offered by Bedrock
through Facade. This contrasts with work on verified com-
pilers such as CompCert [10] or CakeML [7]: in the former,
correctness guarantees indeed only extend to linking modules
compiled with the same version of the compiler: crucially,
CompCert does not allow users to link their programs against
manually implemented and verified performance-critical soft-
ware libraries. More recent work [18] generalized these guar-
antees to cover cross-language compilation, but these de-
velopments have not yet been used to perform functional
verification of low-level programs assembled from separately
verified components.

An alternative approach, recently used in the context of
verified operating-system kernel development [17], is to use
translation validation instead of compiler verification: much
like our extraction mechanism proves a specific theorem for
each derivation, these efforts focus on validating individual
compiler outputs. This approach is particularly attractive
in the case of existing compilers, but generally falls short
when trying to verify complex optimizations. One of the most
fascinating uses of translation verification is the work on
seL4 [6], a microkernel verified using Isabelle/HOL. Security
properties of seL4 are established by directly reasoning about
deeply embedded C code, and these formal guarantees are
propagated to assembly by using a mix of automated checkers
and verification tools like SONOLAR [15] and Z3 [3].

Extensible compilation Multiple research projects have fo-
cused on providing optimization opportunities to users be-
yond the core of an existing compiler. Some of these projects,

with the recent example of Racket’s extensibility API [22], do
not focus on verification. Other efforts, such as the Rhodium
system [9], let users express and verify transformations in a
domain-specific language for optimizations. Unfortunately,
most of these tools are not themselves proven sound and have
not been integrated in larger systems to provide end-to-end
guarantees. One recent and impressive exception is the XCert
project [20], which extends CompCert with an interpreter for
an embedded DSL describing optimizations, allowing users
to describe program transformations in a sound way. Parts
of our approach can be related to this project by noting that
we build our architecture on a collection of sound rewriting
rules; in a sense, our entire compiler is written as a collection
of transformations, each of which gets us closer to the final
desired Facade program.

Formal decompilation A number of projects have used
HOL-family proof assistants for automatic proof-generating
translation of low-level to high-level code, which is some-
thing of an inverse to the kind of derivation that concerns us
in this paper. Myreen et al. have carried out a significant line
of work on decompilation from assembly code to HOL func-
tional programs, where those programs are clean enough to
reason about directly in further proofs. Greenaway et al. have
applied a similar strategy to decompile C code into HOL func-
tional programs. Decompilation is attractive for cases where
the low-level code is fixed by external concerns or where it
may be infeasible to verify the compiler used to produce that
code, while the reverse direction of program derivation from
specifications may be a better fit for from-scratch projects
that invest in compiler verification.

6. Conclusion
The synthesis-based extraction techniques presented in this
paper are a convenient and lightweight approach for gener-
ating certified extracted programs, reducing the trusted base
of verified programs to the sole kernel of the proof assistant.
Beyond describing our technique and detailing its implemen-
tation, we have shown it to be suitable to the extraction of
DSLs embedded in proof assistants: we first applied it on
a series of micro-benchmarks and then used it to push the
guarantees offered by nondeterministic programs refined by
Fiat all the way down to the verification-aware assembly lan-
guage Bedrock, via a new language designed to facilitate
reasoning about memory allocation as we synthesized ex-
tracted programs. In the process, we have closed the last gap
in the first mechanically certified translation pipeline from
declarative specifications to assembly-language libraries, sup-
porting user-guided optimizations and abstraction over ADT
implementations.

10

References
[1] A. Chlipala. The Bedrock structured programming system:

Combining generative metaprogramming and Hoare logic in
an extensible program verifier. In Proc. ICFP, pages 391–402.
ACM, 2013.

[2] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland,
J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock,
N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, NJ, 1986.

[3] L. de Moura and N. Bjrner. Z3: An efficient smt solver. In
Proc. TACAS, pages 337–340, 2008.

[4] B. Delaware, C. Pit-Claudel, J. Gross, and A. Chlipala. Fiat:
Deductive synthesis of abstract data types in a proof assistant.
In Proc. POPL, 2015.

[5] D. Greenaway, J. Andronick, and G. Klein. Bridging the gap:
Automatic verified abstraction of C. In Lennart Beringer and
Amy Felty, editor, International Conference on Interactive
Theorem Proving, pages 99–115, Princeton, New Jersey, USA,
aug 2012. Springer Berlin / Heidelberg. doi: 10.1007/
978-3-642-32347-8_8.

[6] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal
verification of an OS kernel. In Proc. SOSP, pages 207–220.
ACM, 2009.

[7] R. Kumar, M. O. Myreen, S. Owens, and M. Norrish. CakeML:
A verified implementation of ML. In Proc. POPL. ACM, 2014.

[8] P. Lammich. Refinement to Imperative/HOL. In C. Ur-
ban and X. Zhang, editors, Interactive Theorem Prov-
ing, volume 9236 of Lecture Notes in Computer Sci-
ence, pages 253–269. Springer International Publishing,
2015. ISBN 978-3-319-22101-4. doi: 10.1007/
978-3-319-22102-1_17. URL http://dx.doi.
org/10.1007/978-3-319-22102-1_17.

[9] S. Lerner, E. Rice, T. Millstein, and C. Chambers. Automated
soundness proofs for dataflow analyses and transformations
via local rules. Technical report, 2004.

[10] X. Leroy. Formal certification of a compiler back-end or:
programming a compiler with a proof assistant. In Proc. POPL,
pages 42–54. ACM, 2006.

[11] P. Letouzey. A new extraction for Coq. In Proc. TYPES.
Springer-Verlag, 2003.

[12] M. O. Myreen and S. Owens. Proof-producing synthesis of
ML from higher-order logic. In International Conference on
Functional Programming (ICFP). ACM, 2012.

[13] M. O. Myreen, M. J. C. Gordon, and K. Slind. Decompilation
into logic - improved. In G. Cabodi and S. Singh, editors,
Formal Methods in Computer-Aided Design (FMCAD), pages
78–81. IEEE, 2012.

[14] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and
L. Birkedal. Ynot: Dependent types for imperative programs.
In Proc. ICFP, pages 229–240. ACM, 2008.

[15] J. Peleska, E. Vorobev, and F. Lapschies. Automated test case
generation with SMT-solving and abstract interpretation. In
M. Bobaru, K. Havelund, G. Holzmann, and R. Joshi, edi-
tors, NASA Formal Methods, volume 6617 of Lecture Notes
in Computer Science, pages 298–312. Springer Berlin Hei-
delberg, 2011. ISBN 978-3-642-20397-8. doi: 10.1007/
978-3-642-20398-5_22.

[16] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In Proc. LICS, pages 55–74. IEEE Computer
Society, 2002.

[17] T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation
validation for a verified OS kernel. In Proc. PLDI, pages
471–482. ACM, 2013.

[18] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compo-
sitional CompCert. In Proc. POPL. ACM, 2015.

[19] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-
Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub,
M. Kohlweiss, and J.-K. Zinzindohoue. Dependent types and
multi-monadic effects in F*. Draft, July 2015.

[20] Z. Tatlock and S. Lerner. Bringing extensibility to verified
compilers. In Proc. PLDI, pages 111–121. ACM, 2010.

[21] The Coq Development Team. The Coq proof assistant refer-
ence manual, version 8.4. 2012.

[22] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. In Proc. PLDI, pages
132–141. ACM, 2011.

[23] P. Wadler. Comprehending monads. In Mathematical Struc-
tures in Computer Science, pages 61–78, 1992.

[24] P. Wang, S. Cuellar, and A. Chlipala. Compiler verification
meets cross-language linking via data abstraction. In Proc.
OOPSLA, pages 675–690. ACM, 2014.

11

http://dx.doi.org/10.1007/978-3-642-32347-8_8
http://dx.doi.org/10.1007/978-3-642-32347-8_8
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1007/978-3-642-20398-5_22
http://dx.doi.org/10.1007/978-3-642-20398-5_22

	Introduction
	Background
	Technical outline
	Example of compilation by synthesis
	Technical details
	The Facade Language
	Fiat and Facade states
	Synthesis framework
	Automatic extraction by synthesis

	Implementation details

	Evaluation
	Micro-benchmarks
	Macro-benchmarks

	Related work
	Conclusion

