
Feature Modularity in Mechanized Reasoning

Ph.D. Proposal

Benjamin Delaware

Department of Computer Science
University of Texas at Austin

bendy@cs.utexas.edu

Abstract. One common and effective approach to reuse is to decompose
a system into modules representing features. New variants can then be
built by combing these features in different ways. This thesis proposes
that proofs establishing semantic properties of a system can be simi-
larly decomposed and reused to prove properties for novel feature com-
binations. Features can cut across the standard modularity boundaries,
presenting a fundamental challenge to modular reasoning. The proposed
contributions are threefold:
1. Showing how the mechanized syntax, semantics and meta-theory

proofs of a programming language can be effectively modularized
into features that can be composed in different ways to build pro-
gramming languages with fully mechanized meta-theory.

2. Demonstrating how modularization of semantic properties alongside
definitions enables efficient reasoning about an entire family of pro-
grams built from a common set of features.

3. Investigating how that these techniques can aid in the semantically
correct composition of interpreters for different languages.

1 Introduction

Mechanized theorem proving can be quite hard: large-scale proof developments
take multiple person-years and consist of tens of thousand lines of proof scripts [23,
27]. Given the effort invested in formal verification, it is desirable to reuse as
much of an existing formalization as possible when modifying it or extending it
with new features. One common and effective approach to reuse is to decom-
pose a system into modules which can then be combined with new features in
novel ways. Allowing researchers to share language designs and facilitating ex-
perimentation were two key reasons the authors of the PoplMark challenge [21]
identified reuse of components as a key challenge in mechanizing programming
language meta-theory.

Modularization of programming language proofs is a challenging problem
precisely because the natural decomposition of a language cuts across standard
modularity boundaries. Reuse is commonly achieved by copying an existing
formalization and manually adapting it to incorporate new features, evoking
(and suffering from the same drawbacks as) the cut-paste-patch approach to

code reuse in software engineering. An extreme case of this cut-paste-patch ap-
proach can be found in Leroy’s three person-year CompCert verified compiler
project [27]. CompCert consists of eight intermediate languages in addition to
the source and target languages, many of which are minor variations of each
other.

The programming language literature is replete with these sorts of language
variations. Taking a core language such as Featherweight Java (FJ) [25] and
extending it with a single feature is standard practice – the original FJ paper
itself introduced Featherweight Generic Java (FGJ), a modified version of FJ
with support for generics. These pen-and-paper formalizations employ a similar
cut-paste-patch approach to proof reuse. Patching up proofs composed in this
manner requires care, making integration of new features something of an art;
this is one reason why small core languages are typically extended. One of the
benefits of modularization is to make composition less ad-hoc, potentially al-
lowing for cleaner integration of new features. Modularization transforms mech-
anized semantics from an important confidence-booster into a powerful vehicle
for reuse.

Component-based reuse has long been studied in the software engineering
community, with cross-cutting features being particularly useful in the imple-
mentation of the families of related programs known as Software Product Lines

(SPLs). The potentially exponential number of products in a SPL family makes
efficiency key for product-line analyses which reason about each member. Re-
ducing a proof about a product to proofs about its constituent features is an
effective way to efficiently scale product line analyses. Finding this decompo-
sition and developing techniques for reasoning about cross-cutting features are
both important challenges in SPL engineering.

This work sits squarely at the intersection of programming languages, soft-
ware engineering, and theorem proving and proposes contributions in all three
areas. This thesis proposes that the mechanized syntax, semantics and meta-
theory proofs of a programming language can be effectively modularized into
features which can be composed to build programming languages with fully
mechanized meta-theory. In addition, it proposes that modularization of seman-
tic properties enables efficient reasoning about the entire family of products
that can be built from these definitions. Finally, it proposes to leverage these
techniques to aid in the semantically correct composition of interpreters.

2 Feature Modularization of Mechanized Meta-Theory

Modularity is not a foreign concept in theorem proving– the eleven phases of
Leroy’s certified compiler are each independently verified components. The issue
with modularizing the mechanized formalization of a programming language into
features is that features can cut across the standard modularity boundaries of
theorem provers. Consider the (pen-and-paper) definitions of the FJ calculus [25]
presented in the left-hand column of Figure 1. These definitions are a subset of

the syntax in which FJ programs are written and the semantics that governs
their behavior.

FJ Expression Syntax FGJ Expression Syntax

e ::= x
| e.f
| e.m (e)
| new C(e)
| (C) e

Z)
e ::= x

| e.f

| e.m hTi � (e)

| new C hTi � (e)

| (C hTi �) e

FJ Subtyping T <: T FGJ Subtyping � � ` T <: T

S<:T T<:V

S<:V
(S-Trans)

T<:T (S-Refl)

class C extends D {. . .}
C<:D

(S-Dir)

Z)

� ` X<:�(X)
(GS-Var)

↵

� � `S<:T � � `T<:V
� � `S<:V

(GS-Trans)

� � `T<:T (GS-Refl)

class C hX / Ni
�
extends D hVi

�
{. . .}

�
�
` C hTi

�
<: [T/X]

⌘
D hVi

�

(GS-Dir)

FJ New Typing � ` e : T FGJ New Typing �; �� ` e : T

fields(C) = V f � ` e : U U<:V

� ` new C(e) : C
(T-New)

Z)
� ` ChTi

�
fields(C hTi �) = V f

�;
�
� ` e : U �

�
` U<:V

�;
�
� ` new C hTi

�
(e) : C
(GT-New)

Fig. 1: Selected FJ Definitions with FGJ Changes Highlighted

The right hand column highlights how these definitions can be extended to
build the FGJ calculus. The changes are not completely ad-hoc and can be
broadly categorized:

↵. Adding new rules or pieces of syntax. FGJ adds type variables to parameter-
ize classes and methods. The subtyping relation adds the GS-Var rule for
this new kind of type.

�. Modifying existing syntax. FGJ adds type parameters to method calls, object
creation, casts, and class definitions.

�. Adding new premises to existing semantic rules. The updated GT-New rule
includes a new premise requiring that the type of a new object must be
well-formed.

�. Extending judgment signatures. The added rule GS-Var looks up the bound
of a type variable using a typing context, �. This context must be added
to the signature of the subtyping relation, transforming all occurrences to a
new ternary relation.

⌘. Modifying premises and conclusions in existing rules. The type parameters
used for the parent class D in a class definition are instantiated with the
parameters used for the child in the conclusion of GS-Dir.
The addition of generics makes changes that are woven throughout the ex-

isting syntax and semantics of FJ. The standard approach to formalizing pro-
gramming languages uses closed definitions which do not support extension. The
proofs forming the meta-theory of a language ensuring the semantics are con-
sistent (e.g. type soundness) are written over these closed definitions. The lack
of extensibility forces a cut-paste-patch approach to reuse of both definitions
and proofs. The first contribution of this thesis is a framework for defining and
composing language features, enabling a more structured approach to reuse of
mechanized proofs.

2.1 Feature Modularization and Composition

Conceptually, the two languages in Figure 1 are compositions of the FJ and
Generic features, succinctly written as expressions of an abstract algebra with
binary composition operator +: FJ = FJ and FGJ = FJ + Generic. As the
set of language features grows (e.g. with the addition of an Interface feature
Interface), so does the number and complexity of possible languages. Given an
operation � which maps algebraic expressions to definitions, the two expressions
build the languages given in Figure 1. One (inefficient) strategy for constructing
� is as a 1-1 mapping by simply formalizing each possible language individually,
which of course greatly limits reuse.

Full modularization of a language amounts to making � distribute: �(FJ +
Generic) = �(FJ) +� �(Generic). Modularizing the syntax and semantics of
a language depends on both developing reusable language components (�(·))
and composition operators (+�) that can assemble complete definitions from
components. There have been a number of previous approaches to modularizing
syntax and semantics that embed the components in a variety of programming
languages: Semantic Lego [20] used Lisp, whileDatatypes a lá Carte [43] used
Haskell.

The focus of this dissertation is another operation, ⇡, for modularization and
composition of proofs. This operator builds the meta-theory of a language. None
of the previous approaches consider proof composition. (The Tinkertype [28]
project does consider composition of handwritten proofs, but without the associ-
ated semantics, this is effectively �-composition). Modularizing fully mechanized
language formalizations into features depends on both operators: � is used for
syntax and semantics, while ⇡ builds the meta-theory.

This first contribution of this thesis is to show how to realize ⇡ operation
in the Coq proof assistant [7] through the decomposition of proofs into reusable
proof components [17] and an proof composition operator [18]. We have imple-
mented our approach as framework for building and composing modular defini-
tions and proofs in Coq called Meta-Theory a lá Carte (MTC).

2.2 Modular Definitions

To reason about the syntax and semantics components, � also has to be defined
within the proof assistant. The lack of general recursion in proof assistants pre-
vents a direct port of existing approaches to the modularization of syntax and
semantics.

Implementing the final four changes of Figure 1 as instantiation of variation

points (VPs) in existing definitions reduces the five categories of changes into
two simple operations. Variation points are a standard concept in product line
designs [3]. In this setting, they are parameters representing where variation can
occur and which must be instantiated to build a concrete language.

As an example, Figure 2a shows the the FJ expression grammars with the VPs
TPm and TPt added. Inlining the instantiations of Figure 2b produces the grammar
of FJ while Figure 2c builds the grammar of FGJ. Figure 3 demonstrates how
judgements can be similarly extended to produce typing rules for both FJ and
FGJ.

e ::= x
| e.f
| e.m TPm (e)
| new C TPt (e)
| (C TPt) e ;

(a)

TPm ::= ✏;
TPt ::= ✏;

(b)

TPm ::= hTi;
TPt ::= hTi;

(c)

Fig. 2: Modification of grammars through VP instantiation.

Typically syntax and semantics are embedded in Coq as inductive datatypes.
A program is a datatype member, as are typing and reduction derivations. Ac-
cordingly, we need operations to extend inductive datatypes with new cases and
to instantiate VPs in order to support the extensions of Figure 1. The latter
operation is supported quite naturally through Coq’s abstraction mechanisms:
a VP is simply a parameter of a definition which is instantiated appropriately.
Case addition requires more care, however.

The fundamental issue is that case addition requires modifying inductive
structures, but standard inductive datatypes are closed. Wrapping inductive
datatypes doesn’t work: the combined BNF rule E ::= E1 | E2 doesn’t allow E2

WFc(D, TPt C)
fields(TPt C) = V f

D; � ` e : U
D ` U<:V

D; �`new(TPt C)(e) : TPt C

(T-New)

(a)

T
WFc(✏, C, ✏)

D := ✏

(b)

� ` hTiC ok

WFc(�, hTi C)

D := �

(c)

Fig. 3: Modification of typing rules through VP instantiation.

expressions to be used in E1 expressions or vice versa. A category theoretic pre-
sentation of datatypes provides an elegant foundation for solving this problem.

Functors provide a unifying framework for describing datatypes. A functor
F is simply an operation mapping objects to objects and arrows (functions) to
arrows which respects composition:

F(f � g) = F(f) � F(g)

and identity:
F(idA) = idF(A)

The datatype µF “described” by F is the least fixpoint of the functor, or in
category theory terms the initial object in the category of F-algebras.

This separates datatype description (using a functor) from datatype defi-
nition (taking the least fixed point). The two are combined in Coq’s datatype
definition mechanism. Importantly, functors can be modified and composed to
build different datatype “descriptions”. Figure 4 presents an example of this for-
mulation. The Arith and Bool functors define simple Arithmetic and Boolean
expressions. We can then take the fixpoint of either function with in to build the
syntax of arithmetic (Exp1) or boolean (Exp2) expression languages. FPlus is a
generic operation for combining two functors which Exp3 uses to build the syntax
of a combined boolean and arithmetic expression language. Similar techniques
can modularize semantic judgements using indexed functors.

Missing from Figure 4 is a definition of in, and for good reason, as it cannot
be defined within Coq! A least fixpoint operator for datatypes could be used to
build inductive datatypes that violate the positivity condition, jeopardizing the
soundness of the theorem prover. Coq’s standard inductive datatype definition
mechanism enforces this using a syntactic check that an occurrence of an induc-
tive type never appears in a negative position. Without this check, the untyped
lambda calculus could be embedded in Coq, from which ? could be derived.
A general in could be applied to a definition with a negative occurrence of its
parameter, breaking the soundness of Coq.

Inductive Arith (A : Set) :=
Lit : nat ! Arith A | Add : A ! A ! Arith A.

Inductive Bool (A : Set) :=
BLit : bool ! Bool A | If : A ! A ! A ! Bool A.

Definition FPlus (F G : Set ! Set) : Set ! Set :=
fun A : Set) {F A} + {G A}.

Definition Exp1 := in Arith.
Definition Exp2 := in Bool.
Definition Exp3 := in (FPlus Arith Bool).

Fig. 4: Product line of simple expression languages.

One direct solution is to use the standard inductive datatype definition mech-
anism to define a wrapper type for each functor, closing the induction by hand.
Because the functors are known, the positivity condition can be syntactically
checked. This is effectively defining a ad-hoc in operator [17] for each func-
tor, which quickly leads to a large amount of boilerplate code. It also prevents
generic definitions of functions. MTC implements an alternate approach that
uses church-encoded datatypes[18] which do not suffer from the positivity re-
strictions.

2.3 Modular Proofs

Functions from the fixpoint of a functor F to a type A can be built as folds of
F-algebras, or morphisms from F(A) to A: f :: F(A) ! A. Since µF is the initial
object in the category of F-algebras, for each F-algebra f there exists a unique
function, foldf : µF ! A, such that:

foldf � in = f � F(foldf) (1)

Expressed as a commuting diagram:

F(µF)
in //

F(fold f)
✏✏

µF

fold f

✏✏
F(A)

f
// A

Figure 5 presents evaluation algebras that build interpreters for the languages
in Figure 4. Importantly, there is a generic operator FAlgebraPlus for building
composite “FPlus”-algebras from components. In the same way that FPlus is the
composition operator for functors, FAlgebraPlus is the composition operator
for F-algebras. The definition of fold depends on the method used to build
the fixpoint of the corresponding functor. If the per-definition approach is used,

fold is also defined on a per-algebra basis as the fixpoint which dispatches to
the constituent algebras. Recursive application is embedded in Church-encoded
datatypes, so fold is simply application.

Definition evalArith (fa : Arith val) :=
match fa with

| Lit n) n | Add m n) m + n
end.

Definition evalArith (fa : Bool val) :=
match fa with

| BLit b) b | If c t e) if c then t else e
end.

Definition FAlgebraPlus (F G : Set ! Set)
(FAlgebra : F val ! val) (GAlgebra G val ! val) :
(FPlus F G) val ! val :=

fun A : Set) {F A} + {G A}.

Definition eval1 := fold evalArith.
Definition eval2 := fold evalBool.
Definition eval3 := fold (FAlgebraPlus evalArith evalBool).

Fig. 5: Defining interpreters for the languages of Figure 4.

Since proofs in Coq are essentially functions with particularly rich datatypes,
they can also be expressed as algebras with an analogous composition operator
+⇡. The choice of datatype encoding has an important impact on the signature
of these algebras, however. The standard encoding presents no trouble. Defining
induction principles for Church-encoded datatypes without resorting to axioms,
on the other hand, has long been an open problem and was the reason inductive
datatypes were introduced to Coq[37]. We have shown that such principles can
be recovered through a novel axiom-free approach based on an adaptation of the
Universal Property [24] of folds. This allows proof algebras to be used to reason
about church encoded datatypes and is the foundation for modular reasoning in
MTC.

2.4 Proof Interfaces

Actually building reusable proof components adds an important wrinkle to the
mix: the notion of proof interfaces[17]. In order to build reusable components,
each feature must abstract over the functors and VPs defining the final lan-
guage. Case analysis and inversion principles, which are absolutely standard
proof techniques, are not available when reasoning about these parameters. In
order to reason about these abstractions, a proof algebra must constrain the set

of possible functors and VPs through a set of assumptions about their proper-
ties. These assumptions move the case analysis to the abstract super-functor and
form an interface for each proof algebra. This is effectively an object-oriented
style dispatch.

Building meta-theory proofs for a language now depends on ensuring that the
interface of each proof algebra component is satisfied by checking for proofs of
each assumption. The algebras used to build these proofs may themselves have
assumptions which need to be discharged. MTC uses typeclasses and Coq’s auto
tactic to automate this interface check as a backtracking search using a database
of proof algebras.

These interfaces naturally expose feature interactions[6]– proofs and defini-
tions that are only required when two features are composed together. Feature
interaction detection and resolution are important challenges in SPLs. A more
precise definition of feature interactions covers both domains: given a specifica-
tion of the composition of two features, Spec(F + G), a feature interaction is the
(possibly empty) feature F#G that makes the composition satisfy its specifica-
tion:

F + G + F#G ✏ Spec(F + G) (2)

Feature interactions can be difficult to detect in SPLs, due to both lack of spec-
ification and appropriate analyses. In the theorem proving setting, the task is
much simpler. Since a language’s meta-theory makes up a complete semantic
specification, missing feature interactions are simply missing proof pieces. These
are automatically detected during a proof search. If there is no proof of an as-
sumption in the fact database, some interactions can be automatically resolved
through the use of custom tactics. Thanks to proof irrelevance, the efficiency of
the generated proof is unimportant.

3 SPL Reasoning with Features

Defining reusable proof components is particularly useful when checking whether
a property holds for every member of a feature-based product line. Doing so has
two important benefits:

1. Features can be reused in multiple products, avoiding repeated work. For
example, ⇡(F) can be developed once, and then used to establish both ⇡(F+
G) and ⇡(F + H + K).

2. Multiple products can take advantage of common feature selections to effi-
ciently check satisfaction of a module’s proof interface for each product.

These benefits can be exploited to efficiently check properties of SPLs.

3.1 Safe Composition of Software

SPLs usually have a feature model(FM) describing the desired set of feature
selections that make up the product line. One standard SPL analysis is ensuring

that all feature selections permitted by the feature model compose into well-
formed programs, also known as checking safe composition:

8G ✓ F,FM(G) ! ` Compose(G) OK (3)

Of course, it is possible to type-check individual programs by building and then
compiling them. A product line can have thousands of programs, making enu-
meration a highly inefficient strategy for ensuring that all legal programs are
type-safe (this is true of any product line analysis). Efficiently checking safe
composition requires a novel approach to type checking.

Our approach relies on separating type-checking into a constraint generation
phase and a constraint satisfaction phase. This separation allows a feature to be
type-checked in isolation, delaying satisfaction of its constraints until the feature
is included in a complete program. The soundness of this approach relies on two
important lemmas:

Lemma 31 (Safety of Constraint-Based Typing) If a program is well-formed

subject to a set of constraints, and that program satisfies those constraints, that

program is well-formed under the standard typing rules.

` P : C ! P ✏ C ! ` P OK.

Lemma 31 establishes that the two-phased, constraint-based type system is
sound with respect to the standard type system.

Lemma 32 (Monotonicity of Features Constraints) If a set of features Fi
is well-formed subject to a set of constraints Ci, its composition is a program that

is typeable under the constraints C, and those constraints are a subset of Ci.

(8 i,` Fi : Ci) ! 9 C,` Compose(Fi) : C ^ C ✓
[

i
Ci.

Lemma 32 shows that the constraints generated for a program built from a given
feature selection are a subset of those generated for each included feature. Taken
together, the two proofs show that satisfaction of the constraints of a product’s
constituent features ensures that a program is well-formed. Type safety of the
approach follows immediately:

Theorem 33 (Type Safety for Feature Typing) If a base set of features Fi
is well-formed subject to a set of constraints Ci, and if the composition of every

valid selection of features satisfies the constraints of its constituent features, then

every valid feature selection builds a well-typed program.

8 i,` Fi : Ci !

8G ✓ F,FM(G) ! Compose(G) ✏
[

i
Ci !

8G0 ✓ F,FM(G0) ! ` Compose(G0) OK

Checking Compose(G) ✏ S
i Ci is equivalent to checking the validity of a

propositional formula. Given a constraint, each feature in the product line is
analyzed to see if including it in a product would satisfy that constraint. A
SAT clause is built that encodes the fact that as long as one of the satisfying
features is included, that constraint will be satisfied. If a constraint entails the
inclusion of another feature, the boolean variable representing that feature is set
to true, and the SAT solver continues searching under the newly constrained
feature selection. In this manner, a SAT solver can easily check whether a valid
feature selection satisfies all of the clauses generated by the included features.
Checking validity of this formula is equivalent to checking whether its negation is
satisfiable. Thus, (3) has been reduced to checking 9G,FM(G)^¬Propify(G).
This problem is decidable, and SAT-solvers are quite good at efficiently solving
such formulas.

Table 1 presents the runtimes of a tool based on this approach. The tool
identified several errors in the existing feature models of these product lines. It
took less than 30 seconds to analyze the code, generate the SAT formula, and
run the SAT solver for JPL, the largest product line, less than the time it took
to generate and compile a single program in the product line.

Product # of # of Code Base Program
Line Features Prog. Jak/Java LOC Jak/Java LOC
PPL 7 20 2000/2000 1K/1K
BPL 17 8 12K/16K 8K/12K
GPL 18 80 1800/1800 700/700
JPL 70 56 34K/48K 22K/35K

Table 1: Product Line Statistics from [44].

Just as with proof algebra components, well-formedness of a software feature
module cannot be completely established in isolation. Type-checking depends
on querying the product that a feature is included in. In order to separate con-
straint generation from satisfaction, an interface is needed to abstract the final
product away. This means that composition of typing derivations can fail when
the interface is not satisfied. At its core, the goal of safe composition is to ensure
that the semantic interface of each feature is satisfied by the composition of
every feature selection allowed by the feature model.

3.2 Semantic Interfaces

The proof interfaces of Theorem Product Lines and the typing constraints of
Software Product Lines provide this interface. In both cases, inclusion of a feature
places constraints on the final product, allowing the verification of a feature that
is independent of a specific product in which it is included. The typing constraints

of SPLs specify the signatures of methods, fields and classes that must be present
in the product in order for the structure being typed to be well-formed. These
constraints are also a kind of interface which specifies the shape of programs in
which the structure can be safely included.

In both cases, a proof guarantees that satisfaction of the constraints entails
a desired property, i.e. they form a semantic interface. Lemma 31 ensures that
checking that a single program is well-typed reduces to checking that the program
satisfies the constraints of its constituent features. The analog for TPLs is a
proof of consistency for Coq’s underlying logic. This is actually a very powerful
property: FAlgebraPlus can compose proofs of arbitrary properties, so there is
no need for a proof of correctness for each individual property. Soundness for
any proof built from FAlgebraPlus is immediate by virtue the search and proof
construction for TPLs being done entirely within the theorem prover.

4 Current Contributions

The work on proof modularization outlined in Section 3 has produced two pa-
pers[17][18], the first of which appeared in OOPSLA ’11 and the second of which
is to be published in POPL’13. Both papers are attached as appendices, but to
summarize their technical contributions:

– An approach to language modularization based on case extension and varia-
tion point instantiation, formalized as functor and proof algebra composition.

– A formulation of language modules as functors and algebras using church-
encoded datatypes to avoid positivity problems.

– A novel axiom-free approach to reasoning about church-encoded datatypes
using proof algebras and the Universal Property of folds.

– The MTC framework for the Coq proof assistant, which uses church-encodings
for extensibility.

– The development of mediating typeclass instances for integrating existing
algebras into languages with higher-order features.

– Two case studies of modular mechanized metatheory in Coq using two dif-
ferent approaches to formalizing semantics:
GiFJ Featherweight Generic Java with interfaces using standard typing

judgements and reduction rules for its semantics and featuring an in-
tricate proof of soundness.

miniML A ML-like core language with binders and general recursion using
interpreters for a denotational-style semantics.

The work on safe composition of product lines of Section 3 was published [16]
in FSE ’09 and is also attached as an appendix. To summarize its technical
contributions:

– A formalization of a core language for feature composition called Lightweight
Feature Java.

– A proof of safe composition for the constraint-based type system of LFJ.
– Full mechanizations of the LFJ calculus and the proof of safe composition

in the Coq type assistant.

5 Proposed Work

The proposed work is to implement an efficient check of safe composition of prod-
uct lines of theorems and to study semantically correct interpreter composition
using MTC.

5.1 Unifying Safe Composition

At its core, the goal of safe composition is to ensure that the semantic interface

of each feature is satisfied by the composition of every feature selection it is
allowed to be in. I propose to investigate safe composition for product lines of
theorems. Preliminary work developing a conditional composition operator has
been promising. A thoughtful design of the corresponding proof operator avoids
an exponential blowup during proof search. Observations from this investigation
should provide insights into product-line analyses for SPLs as well.

Remaining work includes:

– Design and implementation of the conditional operators for VP instantiation.
– Further experimentation by checking safe composition for the two product

lines of languages already developed. Checking safe composition of the GiFJ
product line in particular might require further optimizations to the search
algorithm and should be a good case study of how to scale the approach.

5.2 Interpreter Composition

One approach to model-driven development is through interpretation of mod-
els[11]. Integrating interpreters is a challenging problem because they can inter-
act in surprising (and potentially hard-to-detect ways. Our current miniML case
study uses interpreters to define semantic functions, suggesting that MTC might
provide a good framework for studying interpreter composition.

One proposed contribution is to study the integration of monads into the
MTC framework. Polymorphic monads allow for the easy integration of com-
ponents that use different effects, but reasoning about them is very challenging
in the open-functor world of MTC. Solving this is a major contribution that
increases the applicability of the MTC framework.

Furthermore, assuming that an interpreter’s correctness is fully specified as
a theorem, feature interactions are missing proof pieces which can be caught au-
tomatically during proof search. In some cases, they can even be automatically
discharged through smart tactics hooked into the search algorithm. Existing
work has shown how automatic feature detection can be useful in the realm
of SPLs[41], suggesting similar benefits can be achieved fo TPLs. I propose to
further investigate the application of MTC towards interpreter composition, fo-
cusing on automatic detection and resolution of feature interactions.

5.3 Long-term Research: Advanced Composition Operators

One disadvantage of VP instantiation is that inserting appropriate VPs requires
domain analysis and foresight. Designing appropriate proof interfaces for VPs
involves tradeoffs between extensibility and ease-of-reasoning. While engineering
will always be an important part of the reusable component design, additional
operators have the potential to decrease the amount of preplanning needed by
component designers. These operators should replace VPs as the vehicle for the
four categories of changes from Figure 1.

In particular, a product operator ⇥ would be a useful complement to FPlus
(�) for functor composition. A analogous operator ⇥⇡ should be used to compose
proof algebras. The signature of this operator will define the necessary proof
updates that a component with a modification must provide.

I anticipate (at least) the following challenges:

– The operator must distinguish between the different sums allowed by a func-
tor, appending appropriate information for each branch. Experimentation
has shown that a dependently typed function can do this quite naturally.

– Since these components must name the modified product integrating multi-
ple ⇥ modifications is an open questions– after one application, the functor’s
“name” has been changed. One potential solution is to merge multiple appli-
cations into a single one.

– MTC’s injection framework breaks down under this operator– it is no longer
possible for a component to directly project into a superfunctor. Further
investigation is needed into how much overhead is needed to work around
this.

– Alterations to types can affect types that depend on them, e.g. typing judge-
ments. Updating these will require a new operator as well.

Given these challenges, it is unclear that ⇥ can be implemented within the
desired time span of this thesis. I propose to tackle some of these challenges in
the thesis, making some progress towards its eventual realization.

6 Related Work

The proposed contributions are to both programming languages and software
engineering, and the related work also spans both fields.

Modular Language Components An initial datapoint for the structuring
of modular language developments was the development of a complete Java 1.0
compiler through incremental refinement of a set of Abstract State Machines [42].
Starting with a core language of imperative Java expressions which contains a
grammar, interpreter, and complier, the authors added features to incrementally
derive an interpreter and compiler for the full Java 1.0 specification. The authors
then wrote a monolithic proof of correctness for the full language. Later work cast
this approach in the calculus of features [5], suggesting that the proof could also

have been developed incrementally. An important difference is that this proposal
focuses on structuring languages and proofs for mechanized proof assistants,
while the development proposed by [5] is completely by hand.

The modular development of reduction rules are the focus of Mosses’ Mod-
ular Structural Operational Semantics (MSOS) [31]. In this paradigm, rules are
written with an abstract label which effectively serves as a repository for all
effects, allowing rules to be written once and reused with different instantiations
depending on the effects supported by the final language. Effect-free transitions
pass around the labels of their subexpressions:

d X�! d0

let d in e X�! let d0 in e
(R-LetB)

Those rules which rely on an effectual transition specify that the final labeling
supports effects:

e
{p=p1[p0]...}
��������! e0

let p0 in e
{p=p1...}
��������! let p0 in e

(R-LetE)

These abstract labels correspond to the abstract contexts used by the cFJ sub-
typing rules to accommodate the updates of the Generic feature. In the same
way that R-LetE depends on the existence of a store in the final language,
S-Var requires the final context to support a type lookup operation. Similarly,
both R-LetB and S-Trans pass along the abstract labels / contexts from their
subjudgements.

MSOS serves as the foundation for the recently proposed Programming Lan-
guage Components and Specifications project [40]. The project is focused on the
development of modular semantics through the use of “highly reusable” language
components (called funcons). The ultimate goal of the project is a large library
of these funcons. Semantics of higher-level languages is given through a reduction
to a collection of funcons; modular verification is not a focus.

Reuse of Mechanized Meta-Theory Several tool-based approaches have
been developed for modularizing mechanized meta-theory, although none is based
on a proof assistant’s modularity features alone. The Tinkertype project [28] is a
framework for modularly specifying formal languages. It was used to format the
language variants used in Pierce’s “Types and Programming Languages” [39],
and to compose traditional pen-and-paper proofs.

Both Boite [9] and Mulhern [32] consider how to extend existing inductive
definitions and reuse related proofs in the Coq proof assistant. Both their tech-
niques rely on external tools that are no longer available and extensions are
written with respect to an existing specification. As such, features cannot be
checked independently or easily reused with new specifications. In contrast, our
approach is fully implemented within Coq and allows for independent develop-
ment and verification of features.

Chlipala [10] proposes a using adaptive tactics written in Coq’s tactic def-
inition language LTac [15] to achieve proof reuse for a certified compiler. The
generality of the approach is tested by enhancing the original language with let
expressions, constants, equality testing, and recursive functions, each of which
required relatively minor updates to existing proof scripts. In contrast to our ap-
proach, each refinement was incorporated into a new monolithic language, with
the new variant having a distinct set of proofs to maintain. Our approach avoid
this problem, as each target language derives its proofs from a set of indepen-
dently checked proof algebras. Adaptive proofs could also be used within our
feature modules to make existing proofs robust in to the addition of new syntax
and semantic variation points.

Extensibility in MTC An important contribution of MTC is the use of univer-

sal properties to provide modular reasoning techniques for encodings of inductive
data types that are compatible with theorem provers like Coq. Old versions of
Coq, based on the calculus of constructions [12], also use Church encodings to
model inductive data types [38]. However, the induction principles for reasoning
about those encodings had to be axiomatized and, among other problems, they
endangered strong normalization of the calculus. The calculus of inductive con-

structions [37] has inductive data types built-in and was introduced to avoid the
problems with Church encodings. MTC returns to Church encodings to allow
extensibility but does not use standard induction principles since they are not
extensible. Instead, by using a reasoning framework based on universal proper-
ties we get two benefits for the price of one: universal properties allow modular
reasoning and they can be proved without axioms in Coq.

Our approach to extensibility combines and extends ideas from existing solu-
tions to the expression problem. The type class infrastructure for (Mendler-style)
F-algebras is inspired by DTC [19, 43]. However type-level fixpoints, central to
DTC, cannot be used in Coq because they require general recursion. To avoid
general recursion, we use least-fixpoints encoded as Church encodings [8, 38].
Church encodings inspired other solutions to the expression problem before (es-
pecially in object-oriented languages) [35, 33, 34]. However those solutions do
not use F-algebras: instead, they use an isomorphic representation called object

algebras [34]. Object algebras are a better fit for languages where records are the
main structuring construct (such as OO languages). Our solution differs from
previous approaches in the use of Mendler-style F-algebras instead of conven-
tional F-algebras or object algebras. Unlike previous solutions to the expression
problem, which focus only on the extensibility aspects of implementations, we
also deal with modular reasoning and the extensibility aspects of proofs and
logical relations.

Semantics and Interpreters A particularly prominent line on modular in-
terpreters is that of using monads to structure semantics. Moggi [30] pioneered
monads to model computation effects and structure denotation semantics. Liang
et al. [29] introduced monad transformers to compose multiple monads and build

modular interpreters. Jaskelioff et al. [26] used an approach similar to DTC in
combination with monads to provide modular implementation of mathemati-
cal operational semantics. The proposed work includes incorporating monads
into MTC so that it can be used to model more complex language features.
However, unlike previous work, MTC also has to consider modular reasoning.
Monads introduce important challenges in terms of modular reasoning. Only
very recently some modular proof techniques for reasoning about monads have
been introduced [36, 22]. While this is a good step forward, it remains to be
seen whether these techniques are sufficient to reason about suitably generalized
modular statements like soundness.

The above approaches mainly involve pencil-&-paper proofs. Mechanization
of interpreter-based semantics clearly poses its own challenges. Yet, it is highly
relevant as it bestows the high degree of confidence in correctness directly on
the executable artifact, rather than on an intermediate formulation based on
logical relations. Danielsson [14] uses the partiality monad, which fairly similar
to our bounded fixpoint, to formalize semantic interpreters in Agda. He argues
that this style is more easily understood and more obviously deterministic and
computable than logical relations. Danielsson does not consider modularization
of definitions and proofs, however.

Product Line Analyses Much of the existing work on type checking feature-
oriented languages has focused on checking a single product specification, as
opposed to checking an entire product line. Apel et al. [2] propose a type system
for a model of feature-oriented programming based on Featherweight Java [39]
and prove soundness for it and some further extensions of the model. gdeep

[1] is a language-independent calculus designed to capture the core ideas of fea-
ture refinement. The type system for gdeep transfers information across feature
boundaries and is combined with the type system for an underlying language to
type feature compositions.

Thüm et. al [45] consider proof composition in the verification of a Java-based
software product line. Each product is annotated with invariants from which the
Krakatoa/Why tool generates proof obligations to be verified in Coq. To avoid
maintaining these proofs for each product, the authors maintain proof pieces in
each feature and compose the pieces for an individual product. Their notion of
composition is strictly syntactic: proof scripts are copied together to build the
final proofs and have to be rechecked for each product. Importantly, features
only add new premises and conjunctions to the conclusions of the obligations
generated by Krakatoa/Why, allowing syntactic composition to work well for
this application. As features begin to apply more subtle changes to definitions
and proofs, it is not clear how to effectively syntactically glue together Coq’s
proof scripts.

The strategy of representing feature models as propositional formulas in or-
der to verify their consistency was first proposed in [4]. The authors checked the
feature models against a set of user-provided feature dependences of the form
F ! A _ B for features F, A, and B. This approach was adopted by Czarnecki

and Pietroszek [13] to verify software product lines modelled as feature-based
model templates. The product line is represented as an UML specification whose
elements are tagged with boolean expressions representing their presence in an
instantiation. These boolean expressions correspond to the inclusion of a fea-
ture in a product specification. These templates typically have a set of well-
formedness constraints which each instantiation should satisfy. In the spirit of
[4], these constraints are converted to a propositional formula; feature models are
then checked against this formula to make sure that they do not allow ill-formed
template instantiations.

The previous two approaches relied on user-provided constraints when val-
idating feature models. The genesis of our constraint-based type system was
a system developed by Thaker et al. [44] which generated the implementation
constraints of an AHEAD product line of Java programs by examining field,
method, and class references in feature definitions. Analysis of existing product
lines using this system detected previously unknown errors in their feature mod-
els. This system relied on a set of rules for generating these constraints with
no formal proof showing they were necessary and sufficient for well-formedness,
which we have addressed here.

7 Timeline of Proposed Accomplishments

This thesis proposes three important contributions in the realm of feature mod-
ularity in mechanized theorem proving:

1. I will show how the mechanized syntax, semantics and meta-theory proofs
of a programming language can be effectively modularized into components
that can be composed in different ways to build programming languages with
fully mechanized meta-theory.
Framework for composing reusable language modules. [Accomplished].
FGJ and miniML case studies showing applicability of approach. [Accom-

plished].
2. I will demonstrate how modularization of semantic properties alongside defi-

nitions enables efficient reasoning about the entire family of products in both
product lines of theorems and SPLs.
Type system for checking safe composition of SPLs. [Accomplished].
Techniques for efficiently checking safe composition of TPLs. [ETA: 3

months.]
3. I will investigate how that these techniques can aid in the integration of

interpreters for different languages, broadening its applicability through a
monadic extension of MTC and through a study of automatic interaction
detection for interpreter composition.
Modular reasoning techniques for monadic interpreters. [ETA: 3 months]
Investigation of feature interaction detection for interpreter composition.

[ETA: 4 months]

Acknowledgments. This work was supported by NSF’s Science of Design
Project CCF 0724979.

References

1. S. Apel and D. Hutchins. An overview of the gDEEP calculus. Technical Re-
port MIP-0712, Department of Informatics and Mathematics, University of Passau,
November 2007.

2. S. Apel, C. Kästner, and C. Lengauer. Feature Featherweight Java: A calculus for
feature-oriented programming and stepwise refinement. In GPCE ’08: Proceedings
of the 7th International Conference on Generative Programming and Component
Engineering. ACM Press, Oct. 2008.

3. P. Bassett. Frame-based software engineering. IEEE Software, 4(4), 1987.
4. D. Batory. Feature models, grammars, and propositional formulas. In In Software

Product Lines Conference, LNCS 3714, pages 7–20. Springer, 2005.
5. D. Batory and E. Börger. Modularizing theorems for software product lines: The

jbook case study. Journal of Universal Computer Science, 14(12):2059–2082, 2008.
6. D. Batory, J. Kim, and P. Höfner. Feature interactions, products, and composition.

In GPCE, 2011.
7. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-

ment. Springer-Verlag, Berlin, 2004.
8. C. Böhm and A. Berarducci. Automatic synthesis of typed lambda-programs on

term algebras. Theor. Comput. Sci., 39, 1985.
9. O. Boite. Proof reuse with extended inductive types. In Theorem Proving in Higher

Order Logics, pages 50–65, 2004.
10. A. Chlipala. A verified compiler for an impure functional language. In POPL 2010,

Jan. 2010.
11. W. R. Cook, B. Delaware, T. Finsterbusch, A. Ibrahim, and B. Wiedermann.

Model transformation by partial evaluation of model interpreters. Technical report,
Department of Computer Science, University of Texas at Austin, 2009.

12. T. Coquand and G. Huet. The calculus of constructions. Technical Report RR-
0530, INRIA, May 1986.

13. K. Czarnecki and K. Pietroszek. Verifying feature-based model templates against
well-formedness ocl constraints. In GPCE ’06: Proceedings of the 5th international
conference on Generative programming and component engineering. ACM Press,
2006.

14. N. A. Danielsson. Operational semantics using the partiality monad, 2012. To
appear at ICFP’12.

15. D. Delahaye. A tactic language for the system coq. In Proceedings of Logic for
Programming and Automated Reasoning (LPAR), Reunion Island, volume 1955 of
LNCS, pages 85–95. Springer, 2000.

16. B. Delaware, W. R. Cook, and D. Batory. Fitting the pieces together: a machine-
checked model of safe composition. In ESEC/FSE ’09, 2009.

17. B. Delaware, W. R. Cook, and D. Batory. Product lines of theorems. In OOPSLA
’11, 2011.

18. B. Delaware, B. Oliveria, and T. Schrievers. Meta-theory a la carte. In POPL ’13,
2013. To Appear.

19. L. Duponcheel. Using catamorphisms, subtypes and monad transformers for writ-
ing modular functional interpreters., 1995.

20. D. A. Espinosa. Semantic Lego. PhD thesis, Columbia University, 1995.
21. B. A. et. al. Mechanized Metatheory for the Masses: The PoplMark Challenge. In

TPHOLs’05, 2005.

22. J. Gibbons and R. Hinze. Just do it: simple monadic equational reasoning. In
ICFP ’11, 2011.

23. G. Gonthier. In Computer Mathematics, chapter The Four Colour Theorem: En-
gineering of a Formal Proof. Springer-Verlag, 2008.

24. G. Hutton. A tutorial on the universality and expressiveness of fold. J. Funct.
Program., 9(4):355–372, 1999.

25. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight java: a minimal core
calculus for java and gj. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

26. M. Jaskelioff, N. Ghani, and G. Hutton. Modularity and implementation of math-
ematical operational semantics. Electron. Notes Theor. Comput. Sci., 229(5), Mar.
2011.

27. X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52:107–115,
July 2009.

28. M. Y. Levin and B. C. Pierce. Tinkertype: A language for playing with formal
systems. Journal of Functional Programming, 13(2), Mar. 2003.

29. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In POPL ’95, 1995.

30. E. Moggi. Notions of computation and monads. Inf. Comput., 93(1), July 1991.
31. P. D. Mosses. Modular structural operational semantics. J. Log. Algebr. Program.,

60-61:195–228, 2004.
32. A. Mulhern. Proof weaving. In Proceedings of the First Informal ACM SIGPLAN

Workshop on Mechanizing Metatheory, September 2006.
33. B. C. d. S. Oliveira. Modular visitor components. In ECOOP’09, 2009.
34. B. C. d. S. Oliveira and W. R. Cook. Extensibility for the masses: Practical

extensibility with object algebras. In ECOOP’12, 2012.
35. B. C. d. S. Oliveira, R. Hinze, and A. Löh. Extensible and modular generics for

the masses. In Trends in Functional Programming, 2006.
36. B. C. d. S. Oliveira, T. Schrijvers, and W. R. Cook. Effectiveadvice: disciplined

advice with explicit effects. In AOSD ’10, 2010.
37. C. Paulin-Mohring. Inductive definitions in the system Coq - rules and properties.

In TLCA ’93, 1993.
38. F. Pfenning and C. Paulin-Mohring. Inductively defined types in the calculus of

constructions. In MFPS V, 1990.
39. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
40. http://www.plancomps.org/.
41. N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. S. Batory, M. Rosenmüller,

and G. Saake. Predicting performance via automated feature-interaction detection.
In ICSE, 2012.

42. R. Stärk, J. Schmid, and E. Börger. Java and the java virtual machine - definition,
verification, validation, 2001.

43. W. Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–436, 2008.
44. S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition of product lines.

In GPCE ’07: Proceedings of the 6th international conference on Generative pro-
gramming and component engineering, pages 95–104, New York, NY, USA, 2007.
ACM.

45. T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel. Proof composition for deduc-
tive verification of software product lines. In Software Testing, Verification and
Validation Workshops (ICSTW) 2011, pages 270 –277, march 2011.

Meta-Theory à la Carte

Benjamin Delaware
University of Texas at Austin

bendy@cs.utexas.edu

Bruno C. d. S. Oliveira
National University of Singapore

oliveira@comp.nus.edu.sg

Tom Schrijvers
Universiteit Gent

tom.schrijvers@ugent.be

Abstract
Formalizing meta-theory, or proofs about programming languages,
in a proof assistant has many well-known benefits. Unfortunately,
the considerable effort involved in mechanizing proofs has pre-
vented it from becoming standard practice. This cost can be amor-
tized by reusing as much of existing mechanized formalizations as
possible when building a new language or extending an existing
one. One important challenge in achieving reuse is that the induc-
tive definitions and proofs used in these formalizations are closed
to extension. This forces language designers to cut and paste ex-
isting definitions and proofs in an ad-hoc manner and to expend
considerable effort to patch up the results.

The key contribution of this paper is the development of an in-
duction technique for extensible Church encodings using a novel
reinterpretation of the universal property of folds. These encodings
provide the foundation for a framework, formalized in Coq, which
uses type classes to automate the composition of proofs from mod-
ular components. This framework enables a more structured ap-
proach to the reuse of meta-theory formalizations through the com-
position of modular inductive definitions and proofs.

Several interesting language features, including binders and
general recursion, illustrate the capabilities of our framework.
We reuse these features to build fully mechanized definitions and
proofs for a number of languages, including a version of mini-ML.
Bounded induction enables proofs of properties for non-inductive
semantic functions, and mediating type classes enable proof adap-
tation for more feature-rich languages.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

Keywords Modular Mechanized Meta-Theory, Extensible Church
Encodings, Coq

1. Introduction
With their POPLMARK challenge, Aydemir et al. [3] identified rep-
resentation of binders, complex inductions, experimentation, and
reuse of components as key challenges in mechanizing program-
ming language meta-theory. While progress has been made, for ex-
ample on the representation of binders, it is still difficult to reuse
components, including language definitions and proofs.

The current approach to reuse still involves copying an exist-
ing formalization and adapting it manually to incorporate new fea-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’13, January 23–25, 2013, Rome, Italy.
Copyright c� 2013 ACM 978-1-4503-1832-7/13/01. . . $10.00

tures. An extreme case of this copy-&-adapt approach can be found
in Leroy’s three person-year verified compiler project [22], which
consists of eight intermediate languages in addition to the source
and target languages, many of which are minor variations of each
other. Due to the crosscutting impact of new features, the adapta-
tion of existing features is unnecessarily labor-intensive. Moreover,
from a software/formalization management perspective a prolifer-
ation of copies is obviously a nightmare. Typical formalizations
present two important challenges to providing reuse:

1. Extensibility: Conventional inductive definitions and proofs
are closed to extension and cannot simply be imported and ex-
tended with new constructors and cases. This is a manifestation
of the well-known Expression Problem (EP) [45].

2. Modular reasoning: Reasoning with modular definitions re-
quires reasoning about partial definitions and composing partial
proofs to build a complete proof. However, conventional induc-
tion principles which are the fundamental reasoning techniques
in most theorem provers only work for complete definitions.

The lack of reuse in formalizations is somewhat surprising,
because proof assistants such as Coq and Agda have powerful
modularity constructs including modules [26], type classes [17,
42, 46] and expressive forms of dependent types [11, 34]. It is
reasonable to wonder whether these language constructs can help
to achieve better reuse. After all, there has been a lot of progress in
addressing extensibility [14, 30, 32, 43] issues in general-purpose
languages using advanced type system features – although not a lot
of attention has been paid to modular reasoning.

This paper presents MTC, a framework for defining and reason-
ing about extensible inductive datatypes. The framework is imple-
mented as a Coq library which enables modular mechanized meta-
theory by allowing language features to be defined as reusable com-
ponents. Using MTC, language developers can leverage existing
efforts to build new languages by developing new and interesting
features and combining them with previously written components.

The solution to extensibility in MTC was partly inspired by
the popular “Data types à la Carte” (DTC) [43] technique. How-
ever, DTC fundamentally relies on a type-level fixpoint definition
for building modular data types, which cannot be encoded in Coq.
MTC solves this problem by using (extensible) Church encodings
of data types [30, 34, 35]. These encodings allow DTC-style mod-
ular data types to be defined in the restricted Coq setting. Another
difference between DTC and MTC is the use of Mendler-style folds
and algebras instead of conventional folds to express modular def-
initions. The advantage of Mendler-style folds [44] and algebras
is that they offer explicit control over the evaluation order, which
is important when modeling semantics of programming languages.
MTC employs similar techniques to solve extensibility problems in
proofs and inductively defined predicates.

MTC’s solution to modular reasoning uses a novel reinterpre-
tation of the universal property of folds. Because MTC relies on

folds, the proof methods used in the initial algebra semantics of
data types [16, 27] offer an alternative to structural induction. With
some care, universal properties can be exploited to adapt these tech-
niques to modular Church encodings. In addition to enabling mod-
ular reasoning about extensible inductive datatypes, universal prop-
erties also overcome some theoretical issues related to Church en-
codings in the Calculus of (Inductive) Constructions [34, 35].

MTC also supports ubiquitous higher-order language features
such as binders and general recursion. Binders are modeled with
a parametric HOAS [8] representation (a first-order representation
would be possible too). Because these features require general re-
cursion, they cannot be defined inductively using folds. To support
these non-inductive features MTC uses a variation of mixins [10].
Mixins are closely related to Mendler-style folds, but they allow
uses of general recursion, and can be modeled on top of Mendler-
style Church encodings using a bounded fixpoint combinator.

To illustrate the utility of MTC, we present a case study modu-
larizing several orthogonal features of a variant of mini-ML [9].
The case study illustrates how various features and partial type
soundness proofs can be modularly developed and verified and later
composed to assemble complete languages and proofs.

1.1 Contributions
The main contribution of our work is a novel approach to defining
and reasoning about extensible inductive datatypes. MTC is a Coq
framework for building reusable components that implements this
approach to modular mechanized meta-theory.

More technically this paper makes the following contributions:

• Extensibility Techniques for Mechanization: The paper pro-
vides a solution to the EP and an approach to extensible mecha-
nization of meta-theory in the restricted type-theoretic setting of
Coq. This solution offers precise control over the evaluation or-
der by means of Mendler folds and algebras. Mixins are used to
capture ubiquitous higher-order features, like PHOAS binders
and general recursion.

• Non-Axiomatic Reasoning for Church Encodings: The paper
reinterprets the universal property of folds to recover induction
principles for Mendler-style Church encodings. This allows us
to avoid the axioms used in earlier approaches and preserves
Coq’s strong normalization.

• Modular Reasoning: The paper presents modular reasoning
techniques for modular components. It lifts the recovered in-
duction principle from individual inductive features to compo-
sitions, while induction over a bounded step count enables mod-
ular reasoning about non-inductive higher-order features mod-
eled with mixins.

MTC is implemented in the Coq proof assistant and the code
is available at http://www.cs.utexas.edu/

~

bendy/MTC. Our
implementation minimizes the user’s burden for adding new fea-
tures by automating the boilerplate with type classes and default
tactics. Moreover, the framework already provides modular com-
ponents for mini-ML as a starting point for new language formal-
izations. We also provide a complimentary Haskell implementation
of the computational subset of code used in this paper.

1.2 Code and Notational Conventions
While all the code underlying this paper has been developed in Coq,
the paper adopts a terser syntax for its code fragments. For the com-
putational parts, this syntax exactly coincides with Haskell syntax,
while it is an extrapolation of Haskell syntax for proof-related con-
cepts. The Coq code requires the impredicative-set option.

2. Extensible Semantics in MTC
This section shows MTC’s approach to extensible and modular se-
mantic components in the restrictive setting of Coq. The approach
is partly inspired by the DTC solution to the Expression Problem in
Haskell, in particular its composition mechanisms for extensible in-
ductive definitions. MTC differs from DTC in two important ways.
Firstly, it uses Church encodings to avoid the termination issues of
DTC’s generally recursive definitions. Secondly, it uses Mendler-
style folds instead of conventional folds to provide explicit control
over evaluation order.

2.1 Data Types à la Carte
This subsection reviews the core ideas of DTC. DTC represents
the shape of a particular data type as a functor. That functor uses its
type parameter a for inductive occurrences of the data type, leaving
the data type definition open. ArithF is an example functor for a
simple arithmetic expression language with literals and addition.

data ArithF a = Lit Nat | Add a a

The explicitly recursive definition Fix
DTC

f closes the open re-
cursion of a functor f .

data Fix
DTC

f = In (f (Fix
DTC

f))

Applying Fix
DTC

to ArithF builds the data type for arithmetic
expressions.

type Arith = Fix
DTC

ArithF

Functions over Fix
DTC

f are expressed as folds of f -algebras.

type Algebra f a = f a ! a

fold
DTC

:: Functor f) Algebra f a ! Fix
DTC

f ! a
fold

DTC

alg (In fa) = alg (fmap (fold
DTC

alg) fa)

For example, the evaluation algebra of ArithF is defined as:

data Value = I Int | B Bool

eval
Arith

:: Algebra ArithF Value
eval

Arith

(Lit n) = I n
eval

Arith

(Add (I v1) (I v2)) = I (v1 + v2)

Note that the recursive occurrences in eval
Arith

are of the same
type as the result type Value .1 In essence, folds process the recur-
sive occurrences so that algebras only need to specify how to com-
bine the values (for example v1 and v2) resulting from evaluating
the subterms. Finally, the overall evaluation function is:

J·K :: Fix
DTC

ArithF ! Value
J·K = fold

DTC

eval
Arith

> J(Add (Lit 1) (Lit 2))K
3

Unfortunately, DTC’s two uses of general recursion are not permit-
ted in Coq. Coq does not accept the type-level fixpoint combinator
Fix

DTC

f because it is not strictly positive. Coq similarly disal-
lows the fold

DTC

function because it is not structurally recursive.

2.2 Recursion-Free Church Encodings
MTC encodes data types and folds with Church encodings [6,
35], which are recursion-free. Church encodings represent (least)
fixpoints and folds as follows:

type Fix f = 8a.Algebra f a ! a

fold :: Algebra f a ! Fix f ! a
fold alg fa = fa alg

1 Boolean values are not needed yet, but they are used later in this section.

Both definitions are non-recursive and can be encoded in Coq
(although we need to enable impredicativity for certain definitions).
Since Church encodings represent data types as folds, the definition
of fold is trivial: it applies the folded Fix f data type to the algebra.

Example Church encodings of ArithF ’s literals and addition
are given by the lit and add functions:

lit :: Nat ! Fix ArithF

lit n = �alg ! alg (Lit n)

add :: Fix ArithF ! Fix ArithF ! Fix ArithF

add e1 e2 = �alg ! alg (Add (fold alg e1) (fold alg e2))

The evaluation algebra and evaluation function are defined as in
DTC, and expressions are evaluated in much the same way.

2.3 Lack of Control over Evaluation
Folds are structurally recursive and therefore capture composition-
ality of definitions, a desirable property of semantics. A disadvan-
tage of the standard fold encoding is that it does not provide the
implementer of the algebra with explicit control of evaluation. The
fold encoding reduces all subterms; the only freedom in the algebra
is whether or not to use the result.

Example: Modeling if expressions As a simple example that
illustrates the issue of lack of control over evaluation consider
modeling if expressions and their corresponding semantics. The
big-step semantics of if expressions is:

Je1K ; true Je2K ; v2

J if e1 e2 e3K ; v2

Je1K ; false Je3K ; v3

J if e1 e2 e3K ; v3

Using our framework of Church encodings, we could create a
modular feature for boolean expressions such as if expressions and
boolean literals as follows:

data LogicF a = If a a a | BLit Bool -- Boolean functor
eval

Logic

:: Algebra LogicF Value
eval

Logic

(If v1 v2 v3) = if (v1 ⌘ B True) then v2 else v3

eval
Logic

(BLit b) = B b

However, an important difference with the big-step semantics
above is that eval

Logic

cannot control where evaluation happens.
All it has in hand are the values v1, v2 and v3 that result from eval-
uation. While this difference is not important for simple features
like arithmetic expressions, it does matter for if expressions.

Semantics guides the development of implementations. Accord-
ingly, we believe that it is important that a semantic specification
does not rely on a particular evaluation strategy (such as laziness).
This definition of eval

Logic

might be reasonable in a lazy meta-
language like Haskell (which is the language used by DTC), but
it is misleading when used as a basis for an implementation in a
strict language like ML. In a strict language eval

Logic

is clearly not
a desirable definition because it evaluates both branches of the if

expression. Aside from the obvious performance drawbacks, this is
the wrong thing to do if the object language features, for example,
non-termination. Furthermore, this approach can be quite brittle: in
more complex object languages using folds and laziness can lead
to subtle semantic issues [4].

2.4 Mendler-style Church Encodings
To express semantics in a way that allows explicit control over
evaluation and does not rely on the evaluation semantics of the
meta-language, MTC adapts Church encodings to use Mendler-
style algebras and folds [44] which make recursive calls explicit.

type AlgebraM f a = 8r .(r ! a) ! f r ! a

A Mendler-style algebra differs from a traditional f -algebra in that
it takes an additional argument (r ! a) which corresponds to

recursive calls. To ensure that recursive calls can only be applied
structurally, the arguments that appear at recursive positions have
a polymorphic type r . The use of this polymorphic type r pre-
vents case analysis, or any other type of inspection, on those ar-
guments. Using AlgebraM f a , Mendler-style folds and Mendler-
style Church encodings are defined as follows:

type FixM f = 8a.AlgebraM f a ! a

foldM :: AlgebraM f a ! FixM f ! a
foldM alg fa = fa alg

Mendler-style folds allow algebras to state their recursive calls
explicitly. As an example, the definition of the evaluation of if

expressions in terms of a Mendler-style algebra is:

eval
Logic

:: AlgebraM LogicF Value
eval

Logic

J·K (BLit b) = B b
eval

Logic

J·K (If e1 e2 e3) = if (Je1K ⌘ B True) then Je2K
else Je3K

Note that this definition allows explicit control over the evaluation
order just like the big-step semantics definition. Furthermore, like
the fold-definition, eval

Logic

enforces compositionality because all
the algebra can do to e1, e2 or e3 is to apply the recursive call J·K.

2.5 A Compositional Framework for Mendler-style Algebras
DTC provides a convenient framework for composing conventional
fold algebras. MTC provides a similar framework, but for Mendler-
style algebras instead of f -algebras. In order to write modular
proofs, MTC regulates its definitions with a number of laws.

Modular Functors Individual features can be modularly defined
using functors, like ArithF and LogicF . Functors are composed
with the � operator:

data (�) f g a = Inl (f a) | Inr (g a)

FixM (ArithF � LogicF) represents a data type isomorphic to:

data Exp = Lit Nat | Add Exp Exp
| If Exp Exp Exp | BLit Bool

Modular Mendler Algebras A type class is defined for every
semantic function. For example, the evaluation function has the
following class:

class Eval f where eval
alg

:: AlgebraM f Value

In this class eval
alg

represents the evaluation algebra of a feature f .
Algebras for composite functor are built from feature algebras:

instance (Eval f ,Eval g)) Eval (f � g) where

eval
alg

J·K (Inl fexp) = eval
alg

J·K fexp
eval

alg

J·K (Inr gexp) = eval
alg

J·K gexp

Overall evaluation can then be defined as:

eval :: Eval f) FixM f ! Value
eval = foldM eval

alg

In order to avoid the repeated boilerplate of defining a new type
class for every semantic function and corresponding instance for�,
MTC defines a single generic Coq type class, FAlg , that is indexed
by the name of the semantic function. This class definition can be
found in Figure 3 and subsumes all other algebra classes found in
this paper. The paper continues to use more specific classes to make
a gentler progression for the reader.

Injections and Projections of Functors Figure 1 shows the
multi-parameter type class�:. This class provides a means to lift or
inject (inj) (sub)functors f into larger compositions g and project
(prj) them out again. The inj prj and prj inj laws relate the

class f �: g where
inj :: f a ! g a

prj :: g a ! Maybe (f a)
inj prj :: prj ga = Just fa ! ga = inj fa -- law
prj inj :: prj � inj = Just -- law

instance (f �: g)) f �: (g � h) where
inj fa = Inl (inj fa)
prj (Inl ga) = prj ga

prj (Inr ha) = Nothing

instance (f �: h)) f �: (g � h) where
inj fa = Inr (inj fa)
prj (Inl ga) = Nothing

prj (Inr ha) = prj ha

instance f �: f where
inj fa = fa

prj fa = Just fa

Figure 1. Functor subtyping.

injection and projection methods in the �: class, ensuring that the
two are effectively inverses. The idea is to use the type class resolu-
tion mechanism to encode (coercive) subtyping between functors.
In Coq this subtyping relation can be nicely expressed because
Coq type classes [42] perform a backtracking search for match-
ing instances. Hence, highly overlapping definitions like the first
and second instances are allowed. This is a notable difference to
Haskell’s type classes, which do not support backtracking. Hence,
DTC’s Haskell solution has to provide a biased choice that does
not accurately model the expected subtyping relationship.

The inf function builds a new term from the application of f to
some subterms.

inf :: f (FixM f) ! FixM f
inf fexp = �alg ! alg (foldM alg) fexp

Smart constructors are built using inf and inj as follows:

inject :: (g �: f)) g (FixM f) ! FixM f
inject gexp = inf (inj gexp)

lit :: (ArithF �: f)) Nat ! FixM f
lit n = inject (Lit n)

blit :: (LogicF �: f)) Bool ! FixM f
blit b = inject (BLit b)

cond :: (LogicF �: f)
) FixM f ! FixM f ! FixM f ! FixM f

cond c e1 e2 = inject (If c e1 e2)

Expressions are built with the smart constructors and used by oper-
ations like evaluation:

exp :: FixM (ArithF � LogicF)
exp = cond (blit True) (lit 3) (lit 2)

> eval exp
3

The outf function exposes the toplevel functor again:

outf :: Functor f) FixM f ! f (FixM f)
outf exp = foldM (�rec fr ! fmap (inf � rec) fr) exp

We can pattern match on particular features using prj and outf :

project :: (g �: f ,Functor f))
FixM f ! Maybe (g (FixM f))

project exp = prj (outf exp)

isLit :: (ArithF �: f ,Functor f)) FixM f ! Maybe Nat

isLit exp = case project exp of

Just (Lit n) ! Just n
Nothing ! Nothing

2.6 Extensible Semantic Values
In addition to modular language features, it is also desirable to
have modular result types for semantic functions. For example,
it is much cleaner to separate natural number and boolean values
along the same lines as the ArithF and LogicF features. To easily
achieve this extensibility, we make use of the same sorts of exten-
sional encodings as the expression language itself:

data NValF a = I Nat
data BValF a = B Bool
data StuckF a = Stuck

vi :: (NValF �: r)) Nat ! FixM r
vi n = inject (I n)

vb :: (BValF �: r)) Bool ! FixM r
vb b = inject (B b)

stuck :: (StuckF �: r)) FixM r
stuck = inject Stuck

Besides constructors for integer (vi) and boolean (vb) values, we
also include a constructor denoting stuck evaluation (stuck).

To allow for an extensible return type r for evaluation, we need
to parametrize the Eval type class in r :

class Eval f r where

eval
alg

:: AlgebraM f (FixM r)

Projection is now essential for pattern matching on values:

instance (StuckF �: r ,NValF �: r ,Functor r))
Eval ArithF r where

eval
alg

J·K (Lit n) = vi n
eval

alg

J·K (Add e1 e2) =
case (project Je1K, project Je2K) of

(Just (I n1), (Just (I n2))) ! vi (n1 + n2)
! stuck

This concludes MTC’s support for extensible inductive data types
and functions. To cater to meta-theory, MTC must also support
reasoning about these modular definitions.

3. Reasoning with Church Encodings
While Church encodings are the foundation of extensibility in
MTC, Coq does not provide induction principles for them. It is
an open problem to do so without resorting to axioms. MTC solves
this problem with a novel axiom-free approach based on adapta-
tions of two important aspects of folds discussed by Hutton [19].

3.1 The Problem of Church Encodings and Induction
Coq’s own original approach [35] to inductive data types was based
on Church encodings. It is well-known that Church encodings of
inductive data types have problems expressing induction principles
such as A

ind

, the induction principle for arithmetic expressions.

A
ind

:: 8P :: (Arith ! Prop).
8H

l

:: (8n.P (Lit n)).
8H

a

:: (8a b.P a ! P b ! P (Add a b)).
8a.P a

A
ind

P H
l

H
a

e =
case e of Lit n ! H

l

n
Add x y ! H

a

a b (A
ind

P H
l

H
a

x)
(A

ind

P H
l

H
a

y)

The original solution to this problem in Coq involved axioms for
induction, which endangered strong normalization of the calculus
(among other problems). This was the primary motivation for the
creation of the calculus of inductive constructions [34] with built-in
inductive data types.

Why exactly are proofs problematic for Church encodings,
where inductive functions are not? After all, a Coq proof is es-
sentially a function that builds a proof term by induction over a
data type. Hence, the Church encoding should be able to express a
proof as a fold with a proof algebra over the data type, in the same
way it represents other functions.

The problem is that this approach severely restricts the proposi-
tions that can be proven. Folds over Church encodings are destruc-
tive, so their result type cannot depend on the term being destructed.
For example, it is impossible to express the proof for type sound-
ness because it performs induction over the expression e mentioned
in the type soundness property.

8e.� ` e : t ! � ` JeK : t

This restriction is a showstopper for the semantics setting of this
paper, as it rules out proofs for most (if not all) theorems of inter-
est. Supporting reasoning about semantic functions requires a new
approach that does not suffer from this restriction.

3.2 Type Dependency with Dependent Products
Hutton’s first aspect of folds is that they become substantially more
expressive with the help of tuples. The dependent products in Coq
take this observation one step further. While an f -algebra cannot
refer to the original term, it can simultaneously build a copy e of
the original term and a proof that the property P e holds for the
new term. As the latter depends on the former, the result type of
the algebra is a dependent product ⌃ e.P e . A generic algebra can
exploit this expressivity to build a poor-man’s induction principle,
e.g., for the ArithF functor:

A2

ind

:: 8P :: (FixM ArithF ! Prop).
8H

l

:: (8n.P (lit n)).
8H

a

:: (8a b.P a ! P b ! P (add a b)).
Algebra ArithF (⌃ e.P e)

A2

ind

P H
l

H
a

e =
case e of

Lit n ! 9 (lit n) (H
l

n)
Add x y ! 9 (add (⇡1 x) (⇡1 y)) (H

a

(⇡1 x) (⇡1 y)
(⇡2 x) (⇡2 y))

Provided with the necessary proof cases, A2

ind

can build a specific
proof algebra. The corresponding proof is simply a fold over a
Church encoding using this proof algebra.

Note that since a proof is not a computational object, it makes
more sense to use regular algebras than Mendler algebras. Fortu-
nately, regular algebras are compatible with Mendler-based Church
encodings as the following variant of fold 0

M shows.

fold 0
M :: Functor f) Algebra f a ! FixM f ! a

fold 0
M alg = foldM (�rec ! alg � fmap rec)

3.3 Term Equality with the Universal Property
Of course, the dependent product approach does not directly prove
a property of the original term. Instead, given a term, it builds a
new term and a proof that the property holds for the new term. In
order to draw conclusions about the original term from the result,
the original and new term must be equal.

Clearly the equivalence does not hold for arbitrary terms that
happen to match the type signatures FixM f for Church encodings
and Algebra f (⌃ e.P e) for proof algebras. Statically ensuring

this equivalence requires additional well-formedness conditions on
both. These conditions formally capture our notion of Church en-
codings and proofs algebras.

3.3.1 Well-Formed Proof Algebras
The first requirement, for algebras, states that the new term pro-
duced by application of the algebra is equal to the original term.

8alg :: Algebra f (⌃ e.P e).⇡1 � alg = inf � fmap ⇡1

This constraint is encoded in the typeclass for proof algebras, PAlg .
It is easy to verify that A2

ind

satisfies this property. Other proof
algebras over ArithF can be defined by instantiating A2

ind

with
appropriate cases for H

l

and H
a

. In general, well-formedness needs
to be proven only once for any data type and induction algebra.

3.3.2 Well-Formed Church Encodings
Well-formedness of proof algebras is not enough because a proof
is not a single application of an algebra, but rather a fold 0

M of it.
So the fold 0

M used to build a proof must be a proper fold 0
M . As the

Church encodings represent inductive data types as their folds, this
boils down to ensuring that the Church encodings are well-formed.

Hutton’s second aspect of folds formally characterizes the defi-
nition of a fold using its universal property:

h = fold 0
M alg , h � inf = alg h

In an initial algebra representation of an inductive data type,
there is a single implementation of fold 0

M that can be checked once
and for all for the universal property. In MTC’s Church-encoding
approach, every term of type FixM f consists of a separate fold 0

M
implementation that must satisfy the universal property. Note that
this definition of the universal property is for a fold 0

M using a tradi-
tional algebra. As the only concern is the behavior of proof algebras
(which are traditional algebras) folded over Church encodings, this
is a sufficient characterization of well-formedness. Hinze [18] uses
the same characterization for deriving Church numerals.

Fortunately, the left-to-right implication follows trivially from
the definitions of fold 0

M and inf , independent of the particular term
of type FixM f . Thus, the only hard well-formedness requirement
for a Church-encoded term e is that it satisfies the right-to-left
implication of the universal property.

type UP f e =
8a (alg :: AlgebraM f a) (h :: FixM f ! a).

(8e 0
.h (inf e 0) = alg h e 0) ! h e = fold 0

M alg e

This property is easy to show for any given smart constructor.
MTC actually goes one step further and redefines its smart con-
structors in terms of a new inf , that only builds terms with the
universal property:

in 0
f :: Functor f) f (⌃ e.UP f e) ! ⌃ e.UP f e

about Church-encoded terms built from these smart-er construc-
tors, as all of the nice properties of initial algebras hold for these
terms and, importantly, these properties provide a handle on rea-
soning about these terms.

Two known consequences of the universal property are the
famous fusion law, which describes the composition of a fold with
another computation,

h � alg1 = alg2 � fmap h) h � fold 0
M alg1 = fold 0

M alg2

and the lesser known reflection law,

fold 0
M inf = id

3.3.3 Soundness of Input-Preserving Folds
Armed with the two well-formedness properties, we can prove the
key theorem for building inductive proofs over Church encodings:

Theorem 3.1. Given a functor f , property P , and a well-formed
P -proof algebra alg , for any Church-encoded f -term e with the
universal property, we can conclude that P e holds.

Proof. Given that fold 0
M alg e has type ⌃ e 0

.P e 0, we have
that ⇡2 (fold 0

M alg e) is a proof for P (⇡1 (fold 0
M alg e)). From

that the lemma is derived as follows:

P (⇡1 (fold 0
M alg e))

=) {-well-founded algebra and fusion law -}
P (fold 0

M inf e)
() {-reflection law -}
P e

Theorem 3.1 enables the construction of a statically-checked proof
of correctness as an input-preserving fold of a proof algebra. This
provides a means to achieve our true goal: modular proofs for
extensible Church encodings.

4.Modular Proofs for Extensible Church Encodings
The aim of modularity in this setting is to first write a separate
proof for every feature and then compose the individual proofs into
an overall proof for the feature composition. These proofs should
be independent from one another, so that they can be reused for
different combinations of features.

Fortunately, since proofs are essentially folds of proof algebras,
all of the reuse tools developed in Section 2 apply here. In partic-
ular, composing proofs is a simple matter of combining proof al-
gebras with�. Nevertheless, the transition to modular components
does introduce several wrinkles in the reasoning process.

4.1 Algebra Delegation
Due to injection, propositions range over the abstract (super)functor
f of the component composition. The signature of A2

ind

, for exam-
ple, becomes:

A2

ind

:: 8f .ArithF �: f)
8P :: (FixM f ! Prop).
8H

l

:: (8n.P (lit n)).
8H

a

:: (8a b.P a ! P b ! P (add a b)).
Algebra ArithF (⌃ e.P e)

Consider building a proof of

8e.typeof e = Just nat ! 9 m :: nat .eval e = vi m

using A2

ind

. Then, the first proof obligation is

typeof (lit n) = Just nat ! 9 m :: nat .eval (lit n) = vi m

While this appears to follow immediately from the definition of
eval , recall that eval is a fold of an abstract algebra over f and is
thus opaque. To proceed, we need the additional property that this
f -algebra delegates to the ArithF -algebra as expected:

8r (rec :: r ! Nat).eval
alg

rec � inj = eval
alg

rec

This delegation behavior follows from our approach: the intended
structure of f is a�-composition of features, and�-algebras are in-
tended to delegate to the feature algebras. We can formally capture
the delegation behavior in a type class that serves as a precondition
in our modular proofs.

class (Eval f ,Eval g , f �: g))
WF Eval f g where

wf eval alg :: 8r (rec :: r ! Nat) (e :: f r).
eval

alg

rec (inj e :: g r) =
eval

alg

rec e

instance (Eval f ,Eval g,Eval h,WF Eval f g))
WF Eval (f �: g � h)

instance (Eval f ,Eval g,Eval h,WF Eval f h))
WF Eval (f �: g � h)

instance (Eval f))WF Eval f f

Figure 2. WF Eval instances.

MTC provides the three instances of this class in Figure 2, one for
each instance of�:, allowing Coq to automatically build a proof of
well-formedness for every composite algebra.

4.1.1 Automating Composition
A similar approach is used to automatically build the definitions
and proofs of languages from pieces defined by individual features.
In addition to functor and algebra composition, the framework de-
rives several important reasoning principles as type class instances,
similarly to WF Eval . These include the DistinctSubFunctor
class, which ensures that injections from two different subfunctors
are distinct, and the WF Functor class that ensures that fmap dis-
tributes through injection.

Figure 3 provides a summary of all the classes defined in MTC,
noting whether the base instances of a particular class are provided
by the user or inferred with a default instance. Importantly, in-
stances of all these classes for feature compositions are built au-
tomatically, analogously to the instances in Figure 2.

4.2 Extensible Inductive Predicates
Many proofs appeal to rules which define a predicate for an im-
portant property. In Coq these predicates are expressed as inductive
data types of kind Prop. For instance, a soundness proof makes use
of a judgment about the well-typing of values.

data WTValue :: Value ! Type ! Prop where

WTNat :: 8n.WTValue (I n) TNat
WTBool :: 8b.WTValue (B b) TBool

When dealing with a predicate over extensible inductive data types,
the set of rules defining the predicate must be extensible as well.
Extensibility of these rules is obtained in much the same way as
that of inductive data types: by means of Church encodings. The
important difference is that logical relations are indexed data types:
e.g., WTValue is indexed by a value and a type. This requires
functors indexed by values x of type i . For example, WTNatF v t
is the corresponding indexed functor for the extensible variant of
WTNat above.

data WTNatF :: v ! t ! (WTV :: (v , t) ! Prop)
! (v , t) ! Prop

where WTNat :: 8n.(NValF �: v ,Functor v ,

NTypF �: t ,Functor t)
)WTNatF v t WTV (vi n, tnat)

This index is a pair (v , t) of a value and a type. As object-language
values and types are themselves extensible, the corresponding
meta-language types v and t are parameters of the WTNat functor.

To manipulate extensible logical relations, we need indexed
algebras, fixpoints and operations:

type iAlg i (f :: (i ! Prop) ! (i ! Prop)) a
= 8x :: i .f a x ! a x

type iFix i (f :: (i ! Prop) ! (i ! Prop)) (x :: i)
= 8a :: i ! Prop.iAlg f a ! a x ...

As these indexed variants are meant to construct logical rela-
tions, their parameters range over Prop instead of Set . Fortunately,

Class Definition Description
class Functor f where

fmap :: (a ! b)! (f a ! f b)
fmap id :: fmap id = id

fmap fusion :: 8g h.
fmap h � fmap g = fmap (h � g)

Functors
Supplied by the user

class f �: g where
inj :: f a ! g a

prj :: g a ! Maybe (f a)
inj prj :: prj ga = Just fa !

ga = inj fa

prj inj :: prj � inj = Just

Functor Subtyping
Inferred

class (Functor f , Functor g, f �: g))
WF Functor f g where

wf functor :: 8a b (h :: a ! b).
fmap h � inj = inj � fmap h

Functor Delegation
Inferred

class (Functor h, f �: h, g �: h))
DistinctSubFunctor f g h where

inj discriminate :: 8a (fe :: f a)
(ge :: g a).inj fe 6= inj ge

Functor Discrimina-
tion
Inferred

class FAlg name t a f where
f algebra : Mixin t f a

Function Algebras
Supplied by the user

class (f �: g, FAlg n t a f , FAlg n t a g))
WF FAlg n t a f g where

wf algebra :: 8rec (fa :: f t).
f algebra rec (inj fa) =

f algebra rec fa

Algebra Delegation
Inferred

class (Functor f , Functor g, f �: g))
PAlg name f g a where

p algebra :: Algebra f a

proj eq :: 8e.⇡1 (p algebra e) =
inf (inj (fmap ⇡1 e))

Proof Algebras
Supplied by the User

Figure 3. Type classes provided by MTC

this shift obviates the need for universal properties for iFix -ed
values: it does not matter how a logical relation is built, but sim-
ply that it exists. Analogues to WF Functor , WF Algebra , and
DistinctSubFunctor are similarly unnecessary.

4.3 Case Study: Soundness of an Arithmetic Language
Here we briefly illustrate modular reasoning with a case study
proving soundness for the ArithF � LogicF language.

The previously defined eval function captures the operational
semantics of this language in a modular way and reduces an ex-
pression to a NValF �BValF � StuckF value. Its type system is
similarly captured by a modularly defined type-checking function
typeof that maybe returns a TNatF�TBoolF type representation:

data TNatF t = TNat
data TBoolF t = TBool

For this language soundness is formulated as:

Theorem soundness ::
8e t env , typeof e = Just t !WTValue (eval e env) t

The proof of this theorem is a fold of a proof algebra over the ex-
pression e which delegates the different cases to separate proof al-
gebras for the different features. A summary of the most notewor-
thy aspects of these proofs follows.

Sublemmas The modular setting requires every case analysis to
be captured in a sublemma. Because the superfunctor is abstract,
the cases are not known locally and must be handled in a distributed
fashion. Hence, modular lemmas built from proof algebras are not

just an important tool for reuse in MTC – they are the main method
of constructing extensible proofs.

Universal Properties Everywhere Universal properties are key to
reasoning, and should thus be pervasively available throughout the
framework. MTC has more infrastructure to support this.

As an example of their utility when constructing a proof, we
may wish to prove a property of the extensible return value of an
extensible function. Consider the LogicF case of the soundness
proof: given that typeof (If c e1 e2) = Some t1, we wish to
show that WTValue (eval (If c e1 e2)) t1. If c evaluates to
false , we need to show that WTValue e2 t1.

Since If c e1 e2 has type t1, the definition of typeof says that
e1 has type t1:

typeof alg rec (If c e1 e2) =
case project (rec c) of

Just TBool !
case (rec e1, rec e2) of

(Just t1, Just t2) !
if eqtype t1 t2 then Just t1 else Nothing

! Nothing
Nothing ! Nothing

In addition, the type equality test function, eqtype, says that e1 and
e2 have the same type: eqtype t1 t2 = true . We need to make use
of a sublemma showing that 8t1 t2. eqtype t1 t2 = true ! t1 =
t2. As we have seen, in order to do so, the universal property must
hold for typeof e1. This is easily accomplished by packaging a
proof of the universal property alongside t1 in the typeof function.

Using universal properties is so important to reasoning that
this packaging should be the default behavior, even though it is
computationally irrelevant. Thankfully, packaging becomes trivial
with the use of smarter constructors. These constructors have the
additional advantage over standard smart constructors of being
injective: lit j = lit k ! j = k , an important property for
proving inversion lemmas. The proof of injectivity requires that
the subterms of the functor have the universal property, established
by the use of in 0

f . To facilitate this packaging, we provide a type
synonym that can be used in lieu of FixM in function signatures:

type UPF f = Functor f) ⌃ e.(UP f e)

Furthermore, the universal property should hold for any value sub-
ject to proof algebras, so it is convenient to include the property in
all proof algebras. MTC provides a predicate transformer, UPP ,
that captures this and augments induction principles accordingly.

UPP :: Functor f)
(P :: 8e.UP f e ! Prop) ! (e :: FixM f) ! ⌃ e.(P e)

Equality and Universal Properties While packaging universal
properties with terms enables reasoning, it does obfuscate equality
of terms. In particular, two UPF terms t and t 0 may share the same
underlying term (i.e., ⇡1 t = ⇡1 t 0), while their universal property
proof components are different.2

This issue shows up in the definition of the typing judgment
for values. This judgment needs to range over UPF f

v

values and
UPF f

t

types (where f
v

and f
t

are the value and type functors),
because we need to exploit the injectivity of inject in our inversion
lemmas. However, knowing WTValue v t and ⇡1 t = ⇡1 t 0

no longer necessarily implies WTValue v t 0 because t and t 0

may have distinct proof components. To solve this, we make use of
two auxiliary lemmas WTV⇡1,v and WTV⇡1,t that establish the
implication:

2 Actually, as proofs are opaque, we cannot tell if they are equal.

Theorem WTV⇡1,v (i :: WTValue v t) =
8v 0

.⇡1 v = ⇡1 v 0 !WTValue v 0 t

Theorem WTV⇡1,t (i :: WTValue v t) =
8t 0

.⇡1 t 0 = ⇡1 t 0 !WTValue v t 0

Similar lemmas are used for other logical relations. Features which
introduce new rules need to also provide proofs showing that they
respect this ”safe projection” property.

5. Higher-Order Features
Binders and general recursion are ubiquitous in programming lan-
guages, so MTC must support these sorts of higher-order features.
The untyped lambda calculus demonstrates the challenges of im-
plementing both these features with extensible Church encodings.

5.1 Encoding Binders
To encode binders we use a parametric HOAS (PHOAS) [8] repre-
sentation. PHOAS allows binders to be expressed as functors, while
still preserving all the convenient properties of HOAS.

LambdaF is a PHOAS-based functor for a feature with func-
tion application, abstraction and variables. The PHOAS style re-
quires LambdaF to be parameterized in the type v of variables, in
addition to the usual type parameter r for recursive occurrences.

data LambdaF v r = Var v | App r r | Lam (v ! r)

As before, smart constructors build extensible expressions:

var :: (LambdaF v �: f)) v ! FixM f
var v = inject (Var v)

app :: (LambdaF v �: f)) FixM f ! FixM f ! FixM f
app e1 e2 = inject (App e1 e2)

lam :: (LambdaF v �: f)) (v ! FixM f) ! FixM f
lam f = inject (Lam f)

5.2 Defining Non-Inductive Evaluation Algebras
Defining an evaluation algebra for the LambdaF feature presents
additional challenges. Evaluation of the untyped lambda-calculus
can produce a closure, requiring a richer value type than before:

data Value =
Stuck | I Nat | B Bool | Clos (Value ! Value)

Unfortunately, Coq does not allow such a definition, as the closure
constructor is not strictly positive (recursive occurrences of Value
occur both at positive and negative positions). Instead, a closure is
represented as an expression to be evaluated in the context of an
environment of variable-value bindings. The environment is a list
of values indexed by variables represented as natural numbers Nat .

type Env v = [v]

The modular functor ClosureF integrates closure values into the
framework of extensible values introduced in Section 2.6.

data ClosureF f a = Clos (FixM f) (Env a)

closure :: (ClosureF f �: r))
FixM f ! Env (FixM r) ! FixM r

closure mf e = inject (Clos mf e)

A first attempt at defining evaluation is:

eval
Lambda

:: (ClosureF f �: r ,StuckF �: r ,Functor r))
AlgebraM (LambdaF Nat) (Env (FixM r) ! FixM r)

eval
Lambda

J·K exp env =
case exp of

Var index ! env !! index

Lam f ! closure (f (length env)) env
App e1 e2 !

case project $ Je1K env of

Just (Clos e
3

env 0) ! Je
3

K (Je2K env : env 0)
! stuck

The function eval
Lambda

instantiates the type variable v of the
LambdaF v functor with a natural number Nat , representing an
index in the environment. The return type of the Mendler algebra
is now a function that takes an environment as an argument. In
the variable case there is an index that denotes the position of the
variable in the environment, and eval

Lambda

simply looks up that
index in the environment. In the lambda case eval

Lambda

builds
a closure using f and the environment. Finally, in the application
case, the expression e1 is evaluated and analyzed. If that expression
evaluates to a closure then the expression e2 is evaluated and added
to the closure’s environment (env 0), and the closure’s expression e

3

is evaluated under this extended environment. Otherwise e1 does
not evaluate to a closure, and evaluation is stuck.

Unfortunately, this algebra is ill-typed on two accounts. Firstly,
the lambda binder function f does not have the required type
Nat ! FixM f . Instead, its type is Nat ! r , where r is uni-
versally quantified in the definition of the AlgebraM algebra. Sec-
ondly, and symmetrically, in the App case, the closure expression
e3 has type FixM f which does not conform to the type r expected
by J·K for the recursive call.

Both these symptoms have the same problem at their root.
The Mendler algebra enforces inductive (structural) recursion by
hiding that the type of the subterms is FixM f using universal
quantification over r . Yet this information is absolutely essential for
evaluating the binder: we need to give up structural recursion and
use general recursion instead. This is unsurprising, as an untyped
lambda term can be non-terminating.

5.3 Non-Inductive Semantic Functions
Mixin algebras refine Mendler algebras with a more revealing type
signature.

type Mixin t f a = (t ! a) ! f t ! a

This algebra specifies the type t of subterms, typically FixM f , the
overall expression type. With this mixin algebra, eval

Lambda

is now
well-typed:

eval
Lambda

:: (ClosureF e �: v ,StuckF �: v))
Mixin (FixM e) (LambdaF Nat)
(Env (FixM v) ! FixM v)

Mixin algebras have an analogous implementation to Eval as type
classes, enabling all of MTC’s previous composition techniques.

class Eval
X

f g r where

eval
xalg

:: Mixin (FixM f) g (Env (FixM r) ! FixM r)

instance (StuckF �: r ,ClosureF f �: r ,Functor r))
Eval

X

f (LambdaF Nat) r where

eval
xalg

= eval
Lambda

Although the code of eval
Lambda

still appears generally recursive,
it is actually not because the recursive calls are abstracted as a
parameter (like with Mendler algebras). Accordingly, eval

Lambda

does not raise any issues with Coq’s termination checker. Mixin
algebras resemble the open recursion style which is used to model
inheritance and mixins in object-oriented languages [10]. Still,
Mendler encodings only accept Mendler algebras, so using mixin
algebras with Mendler-style encodings requires a new form of fold.

In order to overcome the problem of general recursion, the open
recursion of the mixin algebra is replaced with a bounded inductive

fixpoint combinator, boundedFix , that returns a default value if the
evaluation does not terminate after n recursion steps.

boundedFix :: 8f a.Functor f) Nat ! a !
Mixin (FixM f) f a ! FixM f ! a

boundedFix n def alg e =
case n of

0 ! def
m ! alg (boundedFix (m � 1) def alg) (outf e)

The argument e is a Mendler-encoded expression of type FixM f .
boundedFix first uses outf to unfold the expression into a value
of type f (FixM f) and then applies the algebra to that value re-
cursively. In essence boundedFix can define generally recursive
operations by case analysis, since it can inspect values of the recur-
sive occurrences. The use of the bound prevents non-termination.

Bounded Evaluation Evaluation can now be modularly defined
as a bounded fixpoint of the mixin algebra Eval

X

. The definition
uses a distinguished bottom value,?, that represents a computation
which does not finish within the given bound.

data ?F a = Bot
?= inject Bot

eval
X

:: (Functor f ,?F�: r ,Eval
X

f f r))
Nat ! FixM f ! Env ! FixM r

eval
X

n e env = boundedFix n (\ !?) eval
xalg

e env

5.4 Backwards compatibility
The higher-order PHOAS feature has introduced a twofold change
to the algebras used by the evaluation function:

1. eval
X

uses mixin algebras instead of Mendler algebras.
2. eval

X

now expects algebras over a parameterized functor.

The first change is easily accommodated because Mendler al-
gebras are compatible with mixin algebras. If a non-binder feature
defines evaluation in terms of a Mendler algebra, it does not have to
define a second mixin algebra to be used alongside binder features.
The mendlerToMixin function automatically derives the required
mixin algebra from the Mendler algebra.

mendlerToMixin :: AlgebraM f a ! Mixin (FixM g) f a
mendlerToMixin alg = alg

This conversion function can be used to adapt evaluation for the
arithmetic feature to a mixin algebra:

instance Eval ArithF f) Eval
X

f ArithF r where

eval
xalg

J·K e env =
mendlerToMixin evalAlgebra (flip J·K env) e

The algebras of binder-free features can be similarly adapted to
build an algebra over a parametric functor. Figure 4 summarizes
the hierarchy of algebra adaptations. Non-parameterized Mendler
algebras are the most flexible because they can be adapted and
reused with both mixin algebras and parametric superfunctors.
They should be used by default, only resorting to mixin algebras
when necessary.

6. Reasoning with Higher-Order Features
The switch to a bounded evaluation function over parameterized
Church encodings requires a new statement of soundness.

Theorem soundness
X

:: 8f f
t

env t � n.

8e
1

:: FixM (f (Maybe (FixM f
t

))).
8e

2

:: FixM (f Nat).

Algebras

Parameterized
Algebras

B
in

de
rs

Controlled
Evaluation

Mendler
Algebras

Parameterized
Mendler
Algebras

Parameterized
Mixin Algebras

Mixin
Algebras

General
Recursion

Figure 4. Hierarchy of Algebra Adaptation

� ` e
1

⌘ e
2

!WF Environment � env !
typeof e

1

= Just t !WTValue (eval
X

n e
2

env) t

The proof of soundness
X

features two substantial changes to
the proof of soundness from Section 4.3.

6.1 Proofs over Parametric Church Encodings
The statement of soundness

X

uses two instances of the same
PHOAS expression e :: 8v .FixM (f v). The first, e

1

, instanti-
ates v with the appropriate type for the typing algebra, while e

2

instantiates v for the evaluation algebra.
In recursive applications of soundness

X

, the connection be-
tween e

1

and e
2

is no longer apparent. As they have different types,
Coq considers them to be distinct, so case analysis on one does
not convey information about the other. Chlipala [8] shows how the
connection can be retained with the help of an auxiliary equivalence
relation � ` e1 ⌘ e2, which uses the environment � to keep track
of the current variable bindings. The top-level application, where
the common origin of e

1

and e
2

is apparent, can easily supply a
proof of this relation. By induction on this proof, recursive appli-
cations of soundness

X

can then analyze e
1

and e
2

in lockstep.
Figure 5 shows the rules for determining equivalence of lambda
expressions.

(x, x

0) 2 �

� ` var x ⌘ var x

0

(EQV-VAR)

� ` e1 ⌘ e

0
1 � ` e2 ⌘ e

0
2

� ` app e1 e2 ⌘ app e

0
1 e

0
2

(EQV-APP)

8xx

0
.(x, x

0), � ` f(x) ⌘ f

0(x0)

� ` lam f ⌘ lam f

0 (EQV-ABS)

Figure 5. Lambda Equivalence Rules

6.2 Proofs for Non-Inductive Semantics Functions
Proofs for semantic functions that use boundedFix proceed by
induction on the bound. Hence, the reasoning principle for mixin-
based bounded functions f is in general: provided a base case
8e, P (f 0 e), and inductive case 8n e, (8e0

, P (f n e

0)) !
8e, P (f (n + 1) e) hold, 8n e, P (f n e) also holds.

In the base case of soundness
X

, the bound has been reached
and eval

X

returns ?. The proof of this case relies on adding to the
WTValue judgment the WF-BOT rule stating that every type is
inhabited by ?.

`?: T

(WF-BOT)

Hence, whenever evaluation returns ?, soundness trivially holds.
The inductive case is handled by a proof algebra whose state-

ment includes the inductive hypothesis provided by the induction
on the bound: IH :: 8n e, (8e0

, P (f n e

0)) ! P (f (n + 1) e).
The App e1 e2 case of the soundness theorem illustrates the rea-
son for including IH in the statement of the proof algebra. After

using the induction hypothesis to show that eval
X

e1 env pro-
duces a well-formed closure Clos e3 env 0, we must then show
that evaluating e3 under the (eval

X

e2 env) : env 0 environment is
also well-formed. However, e3 is not a subterm of App e1 e2, so
the conventional induction hypothesis for subterms does not apply.
Because eval

X

e3 ((eval
X

e2 env) : env 0) is run with a smaller
bound, the bounded induction hypothesis IH can be used.

6.3 Proliferation of Proof Algebras
In order to incorporate non-parametric inductive features in the
soundness

X

proof, existing proof algebras for those features need
to be adapted. To cater to the four possible proof signatures of
soundness (one for each definition of J·K), a naive approach re-
quires four different proof algebras for an inductive non-parametric
feature.3 This is not acceptable, because reasoning about a fea-
ture’s soundness should be independent of how a language adapts
its evaluation algebra. Hence, MTC allows features to define a sin-
gle proof algebra, and provides the means to adapt and reuse that
proof algebra for the four variants. These proof algebra adaptations
rely on mediating type class instances which automatically build an
instance of the new proof algebra from the original proof algebra.

6.3.1 Adapting Proofs to Parametric Functors
Adapting a proof algebra over the expression functor to one over
the indexed functor for the equivalence relation first requires a
definition of equivalence for non-parametric functors. Fortunately,
equivalence for any such functor f

np

can be defined generically:

� ` a ⌘ b

� ` inject(C a) ⌘ inject(C b)
(EQV-NP)

EQV-NP states that the same constructor C of f
np

, applied to
equivalent subterms ā and b̄, produces equivalent expressions.

The mediating type class adapts f
np

proofs of propositions on
two instances of the same PHOAS expression, like soundness, to
proof algebras over the parametric functor.

instance (PAlg N P f
np

)) iPAlg N P (EQV-NP f
np

)

This instance requires a small concession: proofs over f
np

have to
be stated in terms of two expressions with distinct superfunctors f
and f 0 rather than two occurrences of the same expression. Induc-
tion over these two expressions requires a variant of PAlg for pairs
of fixpoints.

6.3.2 Adapting Proofs to Non-Inductive Semantic Functions
To be usable regardless of whether foldM or boundedFix is used
to build the evaluation function, an inductive feature’s proof needs
to reason over an abstract fixpoint operator and induction principle.
This is achieved by only considering a single step of the evaluation
algebra and leaving the recursive call abstract:

type soundness e tp ev =
8env t .tp (outf (⇡1 e)) = Just t !

WTValue (ev (out t 0 (⇡1 e)) env) t)

type soundnessalg rect rece

(typeof alg :: Mixin (FixM f) f (Maybe (FixM t))
(evalalg :: Mixin (FixM f) f (Env (FixM r) ! FixM r))
(e :: FixM f) (e UP 0 :: UP e) =
8IHc :: (8e 0

.

soundness e 0 (typeof alg rect) (evalalg rece) !
soundness e 0 rect rece).

soundness e (typeof alg rect) (evalalg rece)

3 Introducing type-level binders would further compound the situation with
four possible signatures for the typeof algebra.

The hypothesis IHc is used to relate calls of rece and rect to
applications of evalalg and typeof alg .

A mediating type class instance again lifts a proof algebra with
this signature to one that includes the Induction Hypothesis gener-
ated by induction on the bound of boundedFix .

instance (PAlg N P E)) iPAlg N (IH ! P) E

7. Case Study
As a demonstration of the MTC framework, we have built a set
of five reusable language features and combined them into a mini-
ML [9] variant. The study also builds five other languages from
these features.4 Figure 6 presents the syntax of the expressions,
values, and types provided by the features; each line is annotated
with the feature that provides that set of definitions.

The Coq files that implement these features average roughly
1100 LoC and come with a typing and evaluation function in ad-
dition to soundness and continuity proofs. Each language needs on
average only 100 LoC to build its semantic functions and soundness
proofs from the files implementing its features. The framework it-
self consists of about 2500 LoC.

e ::= N | e + e Arith
| B | if e then e else e Bool
| case e of { z) e ; S n) e} NatCase
| lam x : T.e | e e | x Lambda
| fix x : T.e Recursion

V ::= N Arith
| B Bool
| closure e V Lambda

T ::= nat Arith
| bool Bool
| T ! T Lambda

Figure 6. mini-ML expressions, values, and types

The generic soundness proof, reused by each language, relies
on a proof algebra to handle the case analysis of the main lemma.
Each case is handled by a sub-algebra. These sub-algebras have
their own set of proof algebras for case analysis or induction over
an abstract superfunctor. The whole set of dependencies of a top-
level proof algebra forms a proof interface that must be satisfied by
any language which uses that algebra.

Such proof interfaces introduce the problem of feature interac-
tions [5], well-known from modular component-based frameworks.
In essence, a feature interaction is functionality (e.g., a function or
a proof) that is only necessary when two features are combined. An
example from this study is the inversion lemma which states that
values with type nat are natural numbers: ` x : nat ! x :: N.
The Bool feature introduces a new typing judgment, WT-BOOL
for boolean values. Any language which includes both these fea-
tures must have an instance of this inversion for WT-BOOL. Our
modular approach supports feature interactions by capturing them
in type classes. A missing case, like for WT-BOOL, can then be
easily added as a new instance of that type class, without affecting
or overriding existing code.

In the case study, feature interactions consist almost exclusively
of inversion principles for judgments and the projection principles
of Section 4.3. Thankfully, their proofs are relatively straightfor-
ward and can be dispatched by tactics hooked into the type class
inference algorithm. These tactics help minimize the number of in-
teraction type class instances, which could otherwise easily grow
exponentially in the number of features.

4 Also available at http://www.cs.utexas.edu/
~

bendy/MTC

8. Related Work
This section discusses related work.

Modular Reasoning There is little work on mechanizing mod-
ular proofs for extensible components. An important contribution
of our work is how to use universal properties to provide modular
reasoning techniques for encodings of inductive data types that are
compatible with theorem provers like Coq. Old versions of Coq,
based on the calculus of constructions [11], also use Church en-
codings to model inductive data types [35]. However, the inductive
principles to reason about those encodings had to be axiomatized,
which endangered strong normalization of the calculus. The calcu-
lus of inductive constructions [34] has inductive data types built-in
and was introduced to avoid the problems with Church encodings.
MTC returns to Church encodings to allow extensibility, but does
not use standard, closed induction principles. It instead uses a rea-
soning framework based on universal properties which allow mod-
ular reasoning without axioms in Coq.

Extensibility Our approach to extensibility combines and extends
ideas from existing solutions to the expression problem. The type
class infrastructure for (Mendler-style) f -algebras is inspired by
DTC [14, 43]. However the type-level fixpoints that are central to
DTC cannot be used in Coq because of their use of general recur-
sion. To avoid general recursion, MTC encodes least-fixpoints with
Church encodings [6, 35]. Church encodings have inspired other
solutions to the expression problem (especially in object-oriented
languages) [30–32]. Those solutions do not use f -algebras: in-
stead, they use an isomorphic representation called object alge-
bras [31]. Object algebras are a better fit for languages where
records are the main structuring construct (such as OO languages).
MTC differs from previous approaches by using Mendler-style f -
algebras instead of conventional f -algebras or object algebras. Un-
like previous solutions to the expression problem, which focus only
on the extensibility aspects of implementations, MTC also deals
with modular reasoning and extensibile inductively defined predi-
cates.

Mechanized Meta-Theory and Reuse Several ad-hoc tool-based
approaches provide reuse, but none is based on a proof assistant’s
modularity features alone. The Tinkertype project [23] is a frame-
work for modularly specifying formal languages. It was used to
format the language variants used in Pierce’s “Types and Program-
ming Languages” [37], and to compose traditional pen-and-paper
proofs. The Ott tool [41] allows users to write definitions and the-
orem statements in an ASCII format designed to mirror pen-and-
paper formalizations. These are then automatically translated to
definitions in either LATEX or a theorem prover and proofs and func-
tions are then written using the generated definitions.

Both Boite [7] and Mulhern [29] consider how to extend exist-
ing inductive definitions and reuse related proofs in the Coq proof
assistant. Both their techniques rely on external tools which are no
longer available and have users write extensions with respect to an
existing specification. As such, features cannot be checked inde-
pendently or easily reused with new specifications. In contrast, our
approach is fully implemented within Coq and allows for indepen-
dent development and verification of features.

Delaware et al. [13] applied product-line techniques to modu-
larizing mechanized meta-theory proofs. As a case study, they built
type safety proofs for a family of extensions to Featherweight Java
from a common base of features. Importantly, composition of these
features was entirely manual, as opposed to the automated compo-
sition developed here.

Concurrently with our development of MTC, Schwaab et al.
have been working on modularizing meta-theory in Agda [40].
While MTC uses Church encodings to encode extensible datatypes,

their approach achieves extensibility by using universes which can
be lifted to the type level. Encodings and their associated proofs
can be modified to derive new languages.

Transparency One long-standing criticism of mechanized meta-
theory has been that it interferes with adequacy, i.e. convincing
users that the proven theorem is in fact the desired one [39]. Cer-
tainly the use of PHOAS can complicate the transparency of mech-
anized definitions. The soundness

X

theorem, for example, uses
a more complicated statement than the pen-and-paper version be-
cause PHOAS requires induction over the equivalence relation.
Modular inductive datatypes have the potential for exacerbating
transparency concerns, as the encodings are distributed over dif-
ferent components. Combining a higher-level notation provided by
a tool like Ott with the composition mechanisms of MTC is an
interesting direction for future work. Such a higher-level notation
could help with transparency; while MTC’s composition mecha-
nisms could help with generating modular code for Ott specifica-
tions.

Binding To minimize the work involved in modeling binders,
MTC provides reusable binder components. The problem of mod-
eling binders has previously received a lot of attention. Some proof
assistants and type theories address this problem with better sup-
port for names and abstract syntax [36, 38]. In general-purpose
proof assistants like Coq, however, such support is not available.
A popular approach, widely used in Coq formalizations, is to use
mechanization-friendly first-order representations of binders such
as the locally nameless approach [1]. This involves developing a
number of straightforward, but tedious infrastructure lemmas and
definitions for each new language. Such tedious infrastructure can
be automatically generated [2] or reused from data type-generic
definitions [21]. However this typically requires additional tool
support. A higher-order representation like PHOAS [8] avoids most
infrastructure definitions. While we have developed PHOAS-based
binders in MTC, it supports first-order representations as well.

Semantics and Interpreters While the majority of semantics for-
malization approaches use inductively defined predicates, we pro-
pose an approach based on interpreters. Of course, MTC supports
standard approaches as well.

A particularly prominent line of work based on interpreters is
that of using monads to structure semantics. Moggi [28] pioneered
monads to model computation effects and structure denotation se-
mantics. Liang et al. [25] introduced monad transformers to com-
pose multiple monads and build modular interpreters. Jaskelioff
et al. [20] used an approach similar to DTC in combination with
monads to provide modular implementation of mathematical oper-
ational semantics. Our work could benefit from using monads to
model more complex language features. However, unlike previous
work, we also have to consider modular reasoning. Monads intro-
duce important challenges in terms of modular reasoning. Only
very recently have some modular proof techniques for reasoning
about monads have been introduced [15, 33]. While these are good
starting points, it remains to be seen whether these techniques are
sufficient to reason about suitably generalized modular statements
like soundness.

Mechanization of interpreter-based semantics clearly poses its
own challenges. Yet, it is highly relevant as it bestows the high de-
gree of confidence in correctness directly on the executable artifact,
rather than on an intermediate formulation based on inductively de-
fined relations. The only similar work in this direction, developed
concurrently to our own, is that of Danielsson [12]. He uses the
partiality monad, which fairly similar to our bounded fixpoint, to
formalize semantic interpreters in Agda. He argues that this style
is more easily understood and more obviously deterministic and

computable than logical relations. Unlike us, Danielsson does not
consider modularization of definitions and proofs.

9. Conclusion
Formalizing meta-theory can be very tedious. For larger program-
ming languages the required amount of work can be overwhelming.

We propose a new approach to formalizing meta-theory that al-
lows modular development of language formalizations. By build-
ing on existing solutions to modularity problems in conventional
programming languages, MTC allows modular definitions of lan-
guage components. Furthermore, MTC supports modular reason-
ing about these components. Our approach enables reuse of modu-
lar inductive definitions and proofs that deal with standard language
constructs, allowing language designers to focus on the interesting
constructs of a language.

This paper addresses many, but obviously not all, of the funda-
mental issues for providing a formal approach to modular seman-
tics. We will investigate further extensions of our approach, guided
by the formalization of larger and more complex languages on top
of our modular mini-ML variant. A particularly challenging issue
we are currently considering of is the pervasive impact of new side-
effecting features on existing definitions and proofs. We believe
that existing work on modular monadic semantics [20, 24, 25] is a
good starting point to overcome this hurdle.

Acknowledgements We would like to especially thank William
Cook for his help in structuring the presentation of this work. Fur-
ther thanks to Don Batory, Twan van Laarhoven and the reviewers
for their comments and suggestions. This work was supported by
the National Science Foundation under Grant CCF 0724979.

References
[1] B. E. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and

S. Weirich. Engineering Formal Metatheory. In POPL ’08, 2008.
[2] B. E. Aydemir and S. Weirich. LNgen: Tool Support for Locally

Nameless Representations, 2009. Unpublished manuscript.
[3] B.E. Aydemir et al. Mechanized Metatheory for the Masses: The

PoplMark Challenge. In TPHOLs’05, 2005.
[4] P. Bahr. Evaluation à la carte: Non-strict evaluation via compositional

data types. In Proceedings of the 23rd Nordic Workshop on Program-
ming Theory, NWPT ’11, pages 38–40, 2011.

[5] D. Batory, J. Kim, and P. Höfner. Feature interactions, products, and
composition. In GPCE, 2011.

[6] C. Böhm and A. Berarducci. Automatic synthesis of typed lambda-
programs on term algebras. Theor. Comput. Sci., 39, 1985.

[7] O. Boite. Proof reuse with extended inductive types. In Theorem
Proving in Higher Order Logics, pages 50–65, 2004.

[8] A. Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. In ICFP’08, 2008.

[9] D. Clément, T. Despeyroux, G. Kahn, and J. Despeyroux. A Simple
Applicative Language: mini-ML. In LFP ’86, 1986.

[10] W. R. Cook. A denotational semantics of inheritance. PhD thesis,
Providence, RI, USA, 1989. AAI9002214.

[11] T. Coquand and Gérard Huet. The calculus of constructions. Technical
Report RR-0530, INRIA, May 1986.

[12] N. A. Danielsson. Operational semantics using the partiality monad.
In ICFP’12, 2012.

[13] B. Delaware, W. R. Cook, and D. Batory. Product lines of theorems.
In OOPSLA ’11, 2011.

[14] L. Duponcheel. Using catamorphisms, subtypes and monad transform-
ers for writing modular functional interpreters., 1995.

[15] J. Gibbons and R. Hinze. Just do it: simple monadic equational
reasoning. In ICFP ’11, 2011.

[16] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial
algebra semantics and continuous algebras. J. ACM, 24(1), Jan. 1977.

[17] G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad
hoc proof automation less ad hoc. In ICFP ’11, 2011.

[18] R. Hinze. Church numerals, twice! JFP, 15(1):1–13, 2005.
[19] G. Hutton. A tutorial on the universality and expressiveness of fold. J.

Funct. Program., 9(4):355–372, 1999.
[20] M. Jaskelioff, N. Ghani, and G. Hutton. Modularity and implemen-

tation of mathematical operational semantics. Electron. Notes Theor.
Comput. Sci., 229(5), March 2011.

[21] G. Lee, B. C. d. S. Oliveira, S. Cho, and K. Yi. Gmeta: A generic
formal metatheory framework for first-order representations. In ESOP
2012, 2012.

[22] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7), 2009.

[23] M. Y. Levin and B. C. Pierce. Tinkertype: A language for playing with
formal systems. Journal of Functional Programming, 13(2), March
2003.

[24] S. Liang and P. Hudak. Modular denotational semantics for compiler
construction. In ESOP ’96, 1996.

[25] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In POPL ’95, 1995.

[26] D. MacQueen. Modules for standard ML. In LFP ’84, 1984.
[27] G. Malcolm. Algebraic Data Types and Program Transformation. PhD

thesis, Rijksuniversiteit Groningen, September 1990.
[28] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1),

July 1991.
[29] A. Mulhern. Proof weaving. In WMM ’06, September 2006.
[30] B. C. d. S. Oliveira. Modular visitor components. In ECOOP’09,

2009.
[31] B. C. d. S. Oliveira and W. R. Cook. Extensibility for the masses:

Practical extensibility with object algebras. In ECOOP’12, 2012.
[32] B. C. d. S. Oliveira, R. Hinze, and A. Löh. Extensible and modular

generics for the masses. In Trends in Functional Programming, 2006.
[33] B. C. d. S. Oliveira, T. Schrijvers, and W. R. Cook. Effectiveadvice:

disciplined advice with explicit effects. In AOSD ’10, 2010.
[34] C. Paulin-Mohring. Inductive definitions in the system Coq - rules and

properties. In TLCA ’93, 1993.
[35] F. Pfenning and C. Paulin-Mohring. Inductively defined types in the

calculus of constructions. In MFPS V, 1990.
[36] F. Pfenning and C. Schürmann. System description: Twelf - a meta-

logical framework for deductive systems. In CADE ’99, 1999.
[37] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[38] A. M. Pitts. Nominal logic, a first order theory of names and binding.

Inf. Comput., 186(2):165–193, 2003.
[39] Robert Pollack. How to believe a machine-checked proof. In Twenty

Five Years of Constructive Type Theory, 1998.
[40] Christopher Schwaab and Jeremy G. Siek. Modular type-safety proofs

using dependant types. CoRR, abs/1208.0535, 2012.
[41] Peter Sewell et al. Ott: effective tool support for the working semanti-

cist. In ICFP ’07, 2007.
[42] M. Sozeau and N. Oury. First-class type classes. In TPHOLs ’08,

2008.
[43] W. Swierstra. Data types à la carte. J. Funct. Program., 18(4), 2008.
[44] T. Uustalu and V. Vene. Coding recursion a la Mendler. In WGP ’00,

pages 69–85, 2000.
[45] P. Wadler. The Expression Problem. Email, November 1998. Discus-

sion on the Java Genericity mailing list.
[46] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad

hoc. In POPL ’89, pages 60–76, 1989.

Product Lines of Theorems

Benjamin Delaware William R. Cook Don Batory
Department of Computer Science

University of Texas at Austin
{bendy,wcook,batory}@cs.utexas.edu

Abstract
Mechanized proof assistants are powerful verification tools,
but proof development can be difficult and time-consuming.
When verifying a family of related programs, the effort can
be reduced by proof reuse. In this paper, we show how to en-
gineer product lines with theorems and proofs built from fea-
ture modules. Each module contains proof fragments which
are composed together to build a complete proof of correct-
ness for each product. We consider a product line of pro-
gramming languages, where each variant includes metathe-
ory proofs verifying the correctness of its semantic defini-
tions. This approach has been realized in the Coq proof as-
sistant, with the proofs of each feature independently certifi-
able by Coq. These proofs are composed for each language
variant, with Coq mechanically verifying that the composite
proofs are correct. As validation, we formalize a core calcu-
lus for Java in Coq which can be extended with any combi-
nation of casts, interfaces, or generics.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: D.3.1 Formal Definitions and Theory

General Terms Design, Theory, Verification

Keywords Feature-Orientation, Mechanized Metatheory,
Product Line Verification

1. Introduction
Mechanized theorem proving is hard: large-scale proof de-
velopments [13, 16] take multiple person-years and consist
of tens of thousand lines of proof scripts. Given the effort in-
vested in formal verification, it is desirable to reuse as much
of the formalization as possible when developing similiar
proofs. The problem is compounded when verifying mem-
bers of a product line – a family of related systems [2, 5] –

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c� 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

in which the prospect of developing and maintaining indi-
vidual proofs for each member is untenable.

Product lines can be decomposed into features – units of
functionality. By selecting and composing different features,
members of a product line can be synthesized. The challenge
of feature modules for software product lines is that their
contents cut across normal object-oriented boundaries [5,
25]. The same holds for proofs. Feature modularization of
proofs is an open, fundamental, and challenging problem.

Surprisingly, the programming language literature is re-
plete with examples of product lines which include proofs.
These product lines typically only have two members, con-
sisting of a core language such as Featherweight Java
(FJ) [14], and an updated one with modified syntax, seman-
tics, and proofs of correctness. Indeed, the original FJ paper
also presents Featherweight Generic Java (FGJ), a modified
version of FJ with support for generics. An integral part of
any type system are the metatheoretic proofs showing type
soundness – a guarantee that the type system statically en-
forces the desired run-time behavior of a language, typically
preservation and progress [24].

Typically, each research paper only adds a single new fea-
ture to a core calculus, and this is accomplished manually.
Reuse of existing syntax, semantics, and proofs is achieved
by copying existing rules, and in the case of proofs, fol-
lowing the structure of the original proof with appropriate
updates. As more features are added, this manual process
grows increasingly cumbersome and error prone. Further,
the enhanced languages become more difficult to maintain.
Adding a feature requires changes that cut across the normal
structural boundaries of a language – its syntax, operational
semantics, and type system. Each change requires arduously
rechecking existing proofs by hand.

Using theorem provers to mechanically formalize lan-
guages and their metatheory provides an interesting testbed
for studying the modularization of product lines which in-
clude proofs. By implementing an extension in the proof as-
sistant as a feature module, which includes updates to ex-
isting definitions and proofs, we can compose feature mod-
ules to build a completely mechanized definition of an en-
hanced language, with the proofs mechanically checked by
the theorem prover. Stepwise development is enabled, and it

FJ Expression Syntax FGJ Expression Syntax

e ::= x
| e.f
| e.m (e)
| new C(e)
| (C) e

Z)
e ::= x

| e.f

| e.m hTi � (e)

| new C hTi � (e)

| (C hTi �) e

FJ Subtyping T <: T FGJ Subtyping � � ` T <: T

S<:T T<:V

S<:V
(S-TRANS)

T<:T (S-REFL)

class C extends D {. . .}
C<:D

(S-DIR)

Z)

� ` X<:�(X) (GS-VAR) ↵

� � `S<:T � � `T<:V

� � `S<:V
(GS-TRANS)

� � `T<:T (GS-REFL)

class C hX / Ni
�
extends D hVi

�
{. . .}

�
� ` C hTi

�
<: [T/X]

⌘
D hVi

�
(GS-DIR)

FJ New Typing � ` e : T FGJ New Typing �; �� ` e : T

fields(C) = V f � ` e : U U<:V

� ` new C(e) : C
(T-NEW) Z) � ` ChTi

�
fields(C hTi �) = V f

�;
�
� ` e : U �

� ` U<:V

�;
�
� ` new C hTi

�
(e) : C

(GT-NEW)

Figure 1: Selected FJ Definitions with FGJ Changes Highlighted

is possible to start with a core language and add features to
progressively build a family or product line of more detailed
languages with tool support and less difficulty.

In this paper, we present a methodology for feature-
oriented development of a language using a variant of FJ
as an example. We implement feature modules in Coq [8]
and demonstrate how to build mechanized proofs that can
adapt to new extensions. Each module is a separate Coq file
which includes inductive definitions formalizing a language
and proofs over those definitions. A feature’s proofs can
be independently checked by Coq, with no need to recheck
existing proofs after composition. We validate our approach
through the development of a family of feature-enriched lan-
guages, culminating in a generic version of FJ with generic
interfaces. Though our work is geared toward mechanized
metatheory in Coq, the techniques should apply to different
formalizations in other higher-order proof assistants.

2. Background
2.1 On the Importance of Engineering
Architecting product lines (sets of similar programs) has
long existed in the software engineering community [18,
23]. So too has the challenge of achieving object-oriented
code reuse in this context [26, 30]. The essence of reusable
designs – be they code or proofs – is engineering. There is no

magic bullet, but rather a careful trade-off between flexibility
and specialization. A spectrum of common changes must be
explicitly anticipated in the construction of a feature and its
interface. This is no different from using abstract classes
and interfaces in the design of OO frameworks [7]. The
plug-compatibility of features is not an after-thought but is
essential to their design and implementation, allowing the
easy integration of new features as long as they satisfy the
assumptions of existing features. Of course, unanticipated
features do arise, requiring a refactoring of existing modules.
Again, this is no different than typical software development.
Exactly the same ideas hold for modularizing proofs. It is
against this backdrop that we motivate our work.

2.2 A Motivating Example
Consider adding generics to the calculus of FJ [14] to pro-
duce the FGJ calculus. The required changes are woven
throughout the syntax and semantics of FJ. The left-hand
column of Figure 1 presents a subset of the syntax of FJ, the
rules which formalize the subtyping relation that establish
the inheritance hierarchy, and the typing rule that ensures
expressions for object creation are well-formed. The corre-
sponding definitions for FGJ are in the right-hand column.

The categories of changes are tagged in Figure 1 with
Greek letters:

FJ Fields of a Supertype Lemma FGJ Fields of a Supertype Lemma
Lemma 2.1. If S<:T and fields(T) = T f, then
fields(S) = S g and Si = Ti and gi = fi for all
i #(f). Z)

Lemma 2.2. If � � ` S<:T and fields(bound�(T) ⌘) =
T f, then fields(bound�(S) ⌘) = S g, Si = Ti and gi = fi for
all i #(f).

Proof. By induction on the derivation of S<:T Proof. By induction on the derivation of � � ` S<:T

Case GS-VAR ↵ S = X and T = �(X).
Follows immediately from the fact that bound�(�(X)) =

�(X) by the definition of bound.
Case S-REFL S = T. Case GS-REFL S = T.

Follows immediately. Z) Follows immediately.
Case S-TRANS S<:V and V<:T. Case GS-TRANS � � ` S<:V and � � ` V<:T.

By the inductive hypothesis, fields(V) = V h
and Vi = Ti and hi = fi for all i #(f). Again
applying the inductive hypothesis, fields(S) =
S g and Si = Vi and gi = hi for all i #(h). Since
#(f) #(h), the conclusion is immediate.

Z)
By the inductive hypothesis, fields(bound�(V) ⌘) = V h

and Vi = Ti and hi = fi for all i #(f). Again applying the
inductive hypothesis, fields(bound�(S) ⌘) = S g and Si = Vi
and gi = hi for all i #(h). Since #(f) #(h), the conclusion
is immediate.

Case S-DIR S = C, T = D, Case GS-DIR S = C hTi � , T = [T/X] ⌘D hVi � ,

class C extends D {S g; . . .}. class C hX / Ni
�
extends D hVi

�
{S g; . . .}.

By the rule F-CLASS, fields(C) = U f; S g,
where U f = fields(D), from which the conclu-
sion is immediate.

Z) By the rule F-CLASS, fields(C hTi �) = U f; [T/X] ⌘S g,

where U f = fields([T/X] ⌘ D hVi �).

By definition, bound�(V) = V for all non-variable types V ⌘ ,
from which the conclusion is immediate.

Figure 2: An Example FJ Proof with FGJ Changes Highlighted

↵. Adding new rules or pieces of syntax. FGJ adds type vari-
ables to parameterize classes and methods. The subtyping
relation adds the GS-VAR rule for this new kind of type.

�. Modifying existing syntax. FGJ adds type parameters to
method calls, object creation, casts, and class definitions.

�. Adding new premises to existing typing rules. The up-
dated GT-NEW rule includes a new premise requiring
that the type of a new object must be well-formed.

�. Extending judgment signatures. The added rule GS-VAR
looks up the bound of a type variable using a typing
context, �. This context must be added to the signature
of the subtyping relation, transforming all occurrences to
a new ternary relation.

⌘. Modifying premises and conclusions in existing rules.
The type parameters used for the parent class D in a class
definition are instantiated with the parameters used for
the child in the conclusion of GS-DIR.

In addition to syntax and semantics, the definitions of FJ and
FGJ include proofs of progress and preservation for their
type systems. With each change to a definition, these proofs
must also be updated. As with the changes to definitions
in Figure 1, these changes are threaded throughout existing
proofs. Consider the related proofs in Figure 2 of a lemma
used in the proof of progress for both languages. These lem-

mas are used in the same place in the proof of progress
and are structurally similar, proceeding by induction on the
derivation of the subtyping judgment. The proof for FGJ has
been adapted to reflect the changes that were made to its
definitions. These changes are highlighted in Figure 2 and
marked with the kind of definitional change that triggered
the update. Throughout the lemma, the signature of the sub-
typing judgment has been altered include a context for type
variables� . The statement of the lemma now uses the auxil-
iary bound function, due to a modification to the premises
of the typing rule for field lookup⌘ . These changes are not
simply syntactic: both affect the applications of the induc-
tive hypothesis in the GS-TRANS case. The proof must now
include a case for the added GS-VAR subtyping rule↵. The
case for GS-DIR requires the most drastic change, as the ex-
isting proof for that case is modified to include an additional
statement about the behavior of bound.

As more features are added to a language, its metatheo-
retic proofs of correctness grow in size and complexity. In
addition, each different selection of features produces a new
language with its own syntax, type system, operational se-
mantics. While the proof of type safety is similar for each
language, (potentially subtle) changes occur throughout the
proof depending on the features included. By modularizing
the type safety proof into distinct features, each language
variant is able to build its type safety proof from a com-

mon set of proofs. There is no need to manually maintain
separate proofs for each language variant. As we shall see,
this allows us to add new features to an existing language
in a structured way, exploiting existing proofs to build more
feature-rich languages that are semantically correct.

We demonstrate in the following sections how each kind
of extension to a language’s syntax and semantics outlined
above requires a structural change to a proof. Base proofs
can be updated by filling in the pieces required by these
changes, enabling reuse of potentially complex proofs for
a number of different features. Further, we demonstrate how
this modularization can be achieved within the Coq proof
assistant. In our approach, each feature has a set of as-
sumptions that serve as variation points, allowing a feature’s
proofs to be checked independently. As long as an extension
provides the necessary proofs to satisfy these assumptions,
the composite proof is guaranteed to hold for any composed
language. Generating proofs for a composed language is thus
a straightforward check that all dependencies are satisfied,
with no need to recheck existing proofs.

3. The Structure of Features
Features impose a mathematical structure on the universe of
programming languages (including type systems and proofs
of correctness) that are to be synthesized. In this section, we
review concepts that are essential to our work.

3.1 Features and Feature Compositions
We start with a base language or base feature to which
extensions are added. It is modeled as a constant or zero-
ary function. For our study, the core Featherweight Java
cFJ language is a cast-free variant of FJ. (This omission is
not without precedent, as other core calculi for Java [28]
omit casts). There are also optional features, which are unary
functions, that extend the base or other features:

cFJ core Featherweight Java
Cast adds casts to expressions
Interface adds interfaces
Generic adds type parameters

Assuming no feature interactions, features are composed
by function composition (·). Each expression corresponds to
a composite feature or a distinct language. Composing Cast
with cFJ builds the original version of FJ:

cFJ // Core FJ

Cast · cFJ // Original FJ [14]

Interface · cFJ // Core FJ with Interfaces

Interface · Cast · cFJ // Original FJ with Interfaces

Generic · cFJ // Core Featherweight Generic Java

Generic · Cast · cFJ // Original FGJ

Generic · Interface · cFJ // core Generic FJ with

// Generic Interfaces

Generic · Interface // FGJ with

· Cast · cFJ // Generic Interfaces

3.2 Feature Models
Not all compositions of features are meaningful. Some fea-
tures require the presence or absence of other features. An
if statement, for example, requires a feature that introduces
some notion of booleans to use in test conditions. Feature
models define the compositions of features that produce
meaningful languages. A feature model is a context sensitive
grammar, consisting of a context free grammar whose sen-
tences define a superset of all legal feature expressions, and
a set of constraints (the context sensitive part) that eliminates
nonsensical sentences [6]. The grammar of feature model P
(below) defines eight sentences (features k, i, j are optional;
b is mandatory). Contraints limit legal sentences to those that
have at least one optional feature, and if feature k is selected,
so too must j.

P : [k] [i] [j] b; // context free grammar

k _ j _ i; // additional constraints

k) j;
Given a sentence of a feature model (‘kjb’) a dot-product
is taken of its terms to map it to an expression (k · j · b). A
language is synthesized by evaluating the expression. The
feature model L that used in our study is context free:

L : [Generic] [Interface] [Cast] cFJ;

3.3 Multiple Representations of Languages
Every base language (cFJ) has multiple representations: its
syntax scFJ , operational semantics ocFJ , type system tcFJ ,
and metatheory proofs pcFJ . A base language is a tuple of
representations cFJ = [scFJ , ocFJ , tcFJ , pcFJ]. An optional
feature i extends each representation: the language’s syn-
tax is extended with new productions4si, its operational se-
mantics are extended by modifying existing rules and adding
new rules to handle the updated syntax 4oi, etc. Each of
these changes is modeled by a unary function. Feature i is a
tuple of such functions i = [4si,4oi,4ti,4pi] that update
each representation of a language.

The representations of a language are computed by com-
posing tuples element-wise. The tuple for language FJ =
Cast · cFJ is:
FJ = Cast · cFJ

= [4sC,4oC,4tC,4pC] · [sFJ , oFJ , tFJ , pFJ]
= [4sC · sFJ ,4oC · oFJ ,4tC · tFJ ,4pC · pFJ]

That is, the syntax of FJ is the syntax of the base sFJ com-
posed with extension 4sC, the semantics of FJ are the base
semantics oFJ composed with extension 4oC, and so on.
In this way, all parts of a language are updated lock-step
when features are composed. See [5, 12] for generalizations
of these ideas.

3.4 Feature Interactions
Feature interactions are ubiquitous. Consider the Interface
feature which introduces syntax for interface declarations:

J ::= interface I {Mty}

This declaration may be changed by other features. When
Generic is added, the syntax of an interface declaration
must be updated to include type parameters:

J ::= interface I hX / Ni {Mty}

Similarly, any proofs in Generic that induct over the deriva-
tion of the subtyping judgement must add new cases for
the subtyping rule introduced by the Interface feature.
Such proof updates are necessary only when both features
are present. The set of additional changes made across all
representations is the interaction of these features, written
Generic#Interface.1

Until now, features were composed by only one operation
(dot or ·). Now we introduce two additional operations:
product (⇥) and interaction (#). When designers want a set
of features, they really want the ⇥-product of these features,
which includes the dot-product of these features and their
interactions. The ⇥-product of features f and g is:

f⇥ g = (f#g) · f · g (1)

where # distributes over dot and # takes precedence over dot:

f#(g · h) = (f#g) · (f#h) (2)

That is, the interaction of a feature with a dot-product is the
dot-product of their interactions.⇥ is right-associative and #
is commutative and associative.2

The connection of ⇥ and # to prior discussions is sim-
ple. To allow for feature interactions, a sentence of a feature
model (‘kjb’) is mapped to an expression by a ⇥-product of
its terms (k⇥ j⇥ b). Equations (1) and (2) are used to re-
duce an expression with ⇥ operations to an expression with
only dot and #, as below:

p = k⇥ j⇥ b // def of p

= k⇥ (j#b · j · b) // (1)

= k#(j#b · j · b) · k · (j#b · j · b) // (1)

= k#j#b · k#j · k#b · k · j#b · j · b // (2) (4)

1 Our Generic#Interface example is isomorphic to the classical example
of fire and flood control [15]. Let b denote the design of a building. The
flood control feature adds water sensors to every floor of b. If standing
water is detected, the water main to b is turned off. The fire control
feature adds fire sensors to every floor of b. If fire is detected, sprinklers
are turned on. Adding flood or fire control to the building (e.g. flood · b
and fire · b) is straightforward. However, adding both (flood · fire · b)
is problematic: if fire is detected, the sprinklers turn on, standing water is
detected, the water main is turned off, and the building burns down. This
is not the intended semantics of the composition of the flood, fire, and b
features. The fix is to apply an additional extension, labeled flood#fire,
which is the interaction of flood and fire. flood#fire represents the
changes (extensions) that are needed to make the flood and fire features
work correctly together. The correct building design is flood#fire·flood·
fire · b.
2 A more general algebra has operations ⇥, #, and · that are all commutative
and associative [4]. This generality is not needed for this paper.

Language p is synthesized by evaluating expression (4).
Interpreting modules for individual features like k, j, and
b as 1-way feature interactions (where k#j denotes a 2-way
interaction and k#j#b is 3-way), the universe of modules in a
feature-oriented construction are exclusively those of feature
interactions.

An ⇥-product of n features results in O(2n) interactions
(i.e. all possible feature combinations). Fortunately, the vast
majority of feature interactions are empty, meaning that they
correspond to the identity transformation 1, whose proper-
ties are:

1 · f = f · 1 = f (3)

Most non-empty interactions are pairwise (2-way). Occa-
sionally higher-order interactions arise. The ⇥-product of
cFJ, Interface, and Generic is:
Generic⇥ Interface⇥ cFJ

= Generic#Interface#cFJ · Generic#Interface
· Generic#cFJ · Generic · Interface#cFJ
· Interface · cFJ

= Generic#Interface · Generic · Interface · cFJ
which means that all 2- and 3-way interactions, except
Generic#Interface, equal 1. In our case study, the com-
plete set of interaction modules that are not equal to 1 is:

Module Description
cFJ core Featherweight Java
Cast cast

Interface interfaces
Generic generics

Generic#Interface generic and interface interactions
Generic#Cast generic and cast interactions

Each of these interaction modules is represented by a tuple
of definitions or a tuple of changes to these definitions.

4. Decomposing a Language into Features
We designed features to be monotonic: what was true be-
fore a feature is added remains valid after composition, al-
though the scope of validity may be qualified. This is stan-
dard in feature-based designs, as it simplifies reasoning with
features [2].

All representations of a language (syntax, operational
semantics, type system, proofs) are themselves written in
distinct languages. Language syntax uses BNF, operational
semantics and type systems use standard rule notations, and
metatheoretic proofs are formal proofs in Coq.

Despite these different representations, there are only two
kinds of changes that a feature makes to a document: new
definitions can be added and existing definitions can be mod-
ified. Addition is just the union of definitions. Modification
requires definitions to be engineered for change.

In the following sections, we explain how to accomplish
addition and modification. We alert readers that our tech-

niques for extending language syntax are identical to ex-
tension techniques for the other representations. The critical
contribution of our approach is how we guarantee the cor-
rectness of composed proofs, the topic of Section 5.1.

4.1 Language Syntax
We use BNF to express language syntax. Figure 3a shows
the BNF for expressions in cFJ, Figure 3b the production
that the Cast feature adds to cFJ’s BNF, and Figure 3c
the composition (union) of these productions, that defines
the expression grammar of the FJ = Cast · cFJ language
(Figure 1).

e ::= x
| e.f
| e.m(e)
| new C(e) ;

(a)

e ::= (C) e ;
(b)

e ::= x
| e.f
| e.m(e)
| new C(e)
| (C) e ;

(c)

Figure 3: Union of Grammars

Modifying existing productions requires foresight to an-
ticipate how productions may be changed by other features.
(This is no different from object-oriented refactorings that
prepare source code for extensions – visitors, frameworks,
strategies, etc. – as discussed in Section 2.) Consider the
impact of adding the Generics feature to cFJ and Cast:
type parameters must be added to the expression syntax
of method calls and class types now have type parameters.
What we do is to insert variation points (VP), a standard
concept in product line designs [1], to allow new syntax to
appear in a production. For syntax rules, a VP is simply the
name of an (initially) empty production.

Figure 4a-b shows the VPs TPm added to method calls in
the cFJ expression grammar and TPt added to class types in
the cFJ and Cast expression grammars. Figure 4c shows the
composition (union) of the revised Cast and cFJ expression
grammars. Since TPm and TPt are empty, Figure 4c can be
inlined to produce the grammar in Figure 3c.

Now consider the changes that Generic makes to ex-
pression syntax: it redefines TPm and TPt to be lists of type
parameters, thereby updating all productions that reference
these VPs. Figure 5a shows this definition. Figure 5b shows
the productions of Figure 4c with these productions inlined,
building the expression grammar for Generic · Cast · cFJ.

Replacing an empty production with a non-empty one
is a standard programming practice in frameworks (e.g.
EJB [19]). Framework hook methods are initially empty and
users can override them with a definition that is specific to
their context. We do the same here.

e ::= x
| e.f
| TPm e.m (e)
| new (TPt C) (e);

TPm ::= ✏;
TPt ::= ✏;

(a)

e ::= (TPt C) e;

(b)

e ::= x
| e.f
| TPm e.m (e)
| new (TPt C) (e)
| (TPt C) e;

TPm : ✏;
TPt : ✏;

(c)

Figure 4: Modification of Grammars

TPm ::= hTi;
TPt ::= hTi;

e ::= x
| e.f
| hTi e.m (e)
| new (hTi C) (e)
| (hTi C) e;

(a) (b)

Figure 5: The Effect of Adding Generics to Expressions

These are simple and intuitively appealing techniques for
defining and composing language extensions. As readers
will see, these same ideas apply to rules and proofs as well.

4.2 Reduction and Typing Rules
The judgments that form the operational semantics and type
system of a language are defined by rules. Figure 6a shows
the typing rules for cFJ expressions, Figure 6b the rule that
the Cast feature adds, and Figure 6c the composition (union)
of these rules, defining the typing rules for FJ.

fields(C) = V f

� ` e : U U<:V

� ` new C(e) : C
(T-NEW)

...
(a)

� ` e0 : D D<:C

� ` e0 : C
(T-UCAST)
(b)

fields(C) = V f

� ` e : U U<:V

� ` new C(e) : C
(T-NEW)

...
� ` e0 : D D<:C

� ` e0 : C
(T-UCAST)
(c)

Figure 6: Union of Typing Rules

Modifying existing rules is analogous to language syn-
tax. There are three kinds of VPs for rules: (a) predicates
that extend the premise of a rule, (b) relational holes which

extend a judgement’s signature, and (c) functions that trans-
form existing premises and conclusions. Predicate and rela-
tional holes are empty by default. The identity function is
the default for functions. This applies to both the reduction
rules that define a language’s operational semantics and the
typing rules that define its type system.

To build the typing rules for FGJ, the Generic feature
adds non-empty definitions for the WFc(D, TPt C) predicate
and for the D relational hole in the cFJ typing definitions.
(Compare Figure 6a to its VP-extended counterpart in Fig-
ure 7a). Figure 7b shows the non-empty definitions for these
VPs introduced by the Generic feature, with Figure 7c
showing the T-NEW rule with these definitions inlined.

WFc(D, TPt C)
fields(TPt C) = V f

D; � ` e : U
D ` U<:V

D; �`new(TPt C)(e) : TPt C
(T-NEW)

T
WFc(✏, C, ✏)

D := ✏

(a)

� ` hTiC ok
WFc(�, hTi C)

D := �
(b)

� ` hTiC ok
fields(hTiC) = V f

�; � ` e : U
� ` U<:V

�; � `new(hTiC)(e) :hTiC
(GT-NEW)

(c)

Figure 7: Building Generic Typing Rules

4.3 Theorem Statements
Variation points also appear in the statements of lemmas and
theorems, enabling the construction of feature-extensible
proofs. Consider the lemma in Figure 8 with its seven VPs.

TPt : VP for Class Types
TPm : VP for Method Call Expression
µ : VP for Method Types
D : Relational Hole for Typing Rules
WFmc(D, µ, TPm) : Predicate for T-INVK
WFne(D, TPt C) : Predicate for T-NEW
�M(TPm, µ, T) : Transformation for Return Types

Lemma 4.1 (Well-Formed MBody). If
mtype(m, TPt C) = µ V ! V, and with WFne(D, TPt C)
mbody(TPm, m, TPt C) = x.e, where WFmc(D, µ, TPm),
then there exists some N and S such that
D ` TPt C<:N and D ` S<:�M(TPm, µ, V) and
D; x : �M(TPm, µ, V), this : N ` e : S.

Figure 8: VPs in a Parameterized Lemma Statement

Different instantiations of VPs produce variations of the
original productions and rules, with the lemma adapting
accordingly. Figure 9 shows the VP instantiations and the
corresponding statement for both cFJ and FGJ (✏ stands for
empty in the cFJ case) with those instantiations inlined for
clarity.

Without an accompanying proof, feature-extensible the-
orem statements are uninteresting. Ideally, a proof should
adapt to any VP instantiation or case introduction, allow-
ing the proof to be reused in any target language variant. Of
course, proofs must rule out broken extensions which do not
guarantee progress and preservation, and admit only “cor-
rect” new cases or VP instantiations. This is the key chal-
lenge in crafting modular proofs.

5. Implementing Feature Modules in Coq
The syntax, operational semantics, and typing rules of a lan-
guage are embedded in Coq as standard inductive data types.
The metatheoretic proofs of a language are then written over
these encodings. Figure 10a-b gives the Coq definitions for
the syntax of Figure 3a and the typing rules of Figure 7a. A
feature module in Coq is realized as a Coq file containing
its definitions and proofs. The target language is itself a Coq
file which combines the definitions and proofs from a set of
Coq feature modules.

Definition TP_m := unit.
Definition TP_t := unit.
Inductive C : Set :=

| ty : TP_t ! Name ! e.
Inductive e : Set :=

| e_var : Var ! e
| fd_access : e ! F ! e
| m_call : TP_m ! e ! M ! List e ! e
| new : C ! List e ! e.

(a)
Definition Context := Var_Context.
Definition WF_c (gamma : Context)(c : C):= True.
Inductive Exp_WF : Context ! e ! Ty ! Prop :=

| T_New : forall gamma c us tp d_fds es,
WF_c gamma (ty tp c) !
fields (ty tp c) d_fds !
Exps_WF gamma es us !
subtypes gamma us d_fds !
Exp_WF gamma (new (ty tp c) es) (ty tp c).
...

(b)

Figure 10: Coq Encoding of Fig. 4a and Fig. 7a.

As shown in Figure 10, each feature includes the default
definitions for its variation points. When composed with fea-
tures that provide new definitions for a variation point, these
definitions are updated for the target language. In the case
of syntax, the final definition of a VP is the juxtaposition of

TPt : ✏; TPm : ✏; µ : ✏;

D := ✏
T

WFmc(✏, ✏, T)
T

WFne(✏, C)
�M(✏, ✏, T) := T

Lemma 4.1 (cFJ Well-Formed MBody). If mtype(m, C) =
V! V and T with mbody(m, C) = x.e where T, then there
exists some N and S such that ` C<:N and ` S<:V and
x : V, this : N ` e : S.

TPt : T; TPm : T; µ : hY / Pi;

D := � � ` U ok � ` U<:[U/Y]P
WFmc(�, hY / Pi, U)

� ` hTiC ok
WFne(�, hTiC)

�M(hTi, hY / Pi, U) := [T/Y]U

Lemma 4.1 (FGJ Well-Formed MBody). If
mtype(m, hTiC) = hY / PiV ! V and � ` hTiC ok
with mbody(hUi, m, hTiC) = x.e, where � ` U ok
and � ` U<:[U/Y]P, then there exists some N and
S such that � ` hTiC<:N and � ` S<:[U/Y]V and
�; x : [U/Y]V, this : N ` e : S

Figure 9: VP Instantiations for cFJ and Generic and the resulting statements of Lemma 4.1 for cFJ and FGJ

the definitions from each of the features. For abstract pred-
icates, the target predicate is the conjuction of all the VP
definitions. The Coq encoding of expressions the Cast, and
Generic features and the result of their composition with
cFJ is given in Figure 11.

Inductive e : Set :=
| cast : C ! e ! e.

Cast

Definition TP_m := list Type.
Definition TP_t := list Type.

Generic

Definition TP_m := (list Type, unit).
Definition TP_t := (list Type, unit).
Inductive C : Set :=

| ty : TP_t ! Name ! e.
Inductive e : Set :=

| e_var : Var ! e
| fd_access : e ! F ! e
| m_call : TP_m ! e ! M ! List e ! e
| new : C ! List e ! e
| cast : C ! e ! e.

Cast · Generic · cFJ

Figure 11: Coq Encoding of Fig. 3b and Fig. 5a-b.

In the discussion so far, composition has been strictly syn-
tactic: definitions are directly unioned together or defaults
are replaced. Modular reasoning within a feature requires
a more semantic form of composition that is supported by
Coq. OO frameworks are implemented using inheritance and
mixin layers [3], techniques that are not available in most
proof assistants. Our feature modules instead rely on the
higher-order parameterization mechanisms of the Coq the-
orem prover to support case extension and VPs. Modules
can now be composed within Coq by instantiating param-
eterized definitions. Using Coq’s native abstraction mecha-
nism enables independent certification of each of the feature
modules.

Figure 12 shows a concrete example of crafting an ex-
tensible inductive definition in Coq. The target language of
FJ = Cast · cFJ is built by importing the Coq modules for
features cFJ and Cast. The target syntax is defined as a new
data type, e, with data constructors cFJ and Cast from each
feature. Each constructor wraps the syntax definitions from
their corresponding features, closing the inductive loop by
instantiating the abstract parameter e’ with e , the data type
for the syntax of target language.

Inductive e (e’ : Set): Set :=
| e_var : Var ! e
| fd_access : e’ ! F ! e
| m_call : e’ ! M ! List e’ ! e
| new : Ty ! List e’ ! e.

cFJ.v
Inductive e (e’ : Set) : Set :=

| e_cast : Ty ! e’ ! e.

cast.v
Require Import cFJ.
Require Import cast.
Inductive e : Set :=

| cFJ : cFJ.e e ! e
| cast : cast.e e ! e.

FJ.v

Figure 12: Syntax from cFJ and Cast Features and their
Union.

These parameters also affect data types which reference
open inductive definitions. In particular, the signature of typ-
ing rules and the transition relation are now over the pa-
rameter used for the final language. Exp_WF from Fig. 10b
ranges over the complete set of expressions from the final
language, so its signature becomes 8 e’ : Set, Context
! e’ ! Ty ! Prop. Of course, within a feature mod-
ule these rules are written over the actual syntax definitions
it provides. In order for the signatures to sync up, these

rules are parameterized by a function that injects the syn-
tax defined in the feature module into the syntax of the final
language. Since the syntax of a module is always included
alongside its typing and reduction rules in the target lan-
guage, such an injection always exists.

Parameterization also allows feature modules to include
VPs, as shown in Figure 13. The VPs in each module are ex-
plicitly represented as abstract sets/predicates/functions, as
with the parameter TP_m used to extend the expression for
method calls in cFJ.v. Other features can provide appropriate
instantiations for this parameter. In Figure 13, for example,
FGJ.v builds the syntax for the target language by instantiat-
ing this VP with the definition of TP_m given in Generic.v.
Alternatively, the syntax of cFJ can be built from the same
inductive definition from cFJ using the default definition of
TP_m it provides.

Definition TP_m := unit.
Inductive cFJ_e (e : Set) (TP_m : Set): Set :=

| e_var : Var ! cFJ_e
| fd_access : e ! F ! cFJ_e
| m_call : TP_m ! e ! M ! List e ! cFJ_e
| new : C ! List e ! cFJ_e.

cFJ.v
Definition TP_m := List Ty.

Generic.v
Require Import cFJ.
Require Import Generic.
Definition TP_m := Generic.TP_m.
Inductive e : Set :=

| cFJ : cFJ_e e TP_m ! e

FGJ.v

Figure 13: Coq Syntax from cFJ with a Variation Point, and
its Instantiation in FGJ.

5.1 Crafting Modular Proofs
Rather than writing multiple related proofs, our goal is to
create a single proof for a generic statement of a theorem.
This proof is then specialized for the target language by in-
stantiating the variation points appropriately. Instead of sep-
arately proving the two lemmas in Figure 2, the cFJ feature
has a single proof of the generic Lemma 5.1 (Figure 14).
This lemma is then specialized to the variants FJ and FGJ
shown in Figure 2. The proof now reasons over the generic
subtyping rules with variation points, as in the case for S-
Dir in Figure 14. The definition of these holes depends on
the set of features included in the final language, so from the
(human or computer) theorem prover’s point of view, they
are opaque. Thus, this proof becomes stuck when it requires
knowledge about behavior of �f.

In order to proceed, the lemma must constrain possible
VP instantiations to those that have the properties required
by the proof. In the case of Lemma 5.1, this behavior is that

Lemma 5.1. If � ` S<:T and fields(�f(�, T)) = T f,
then fields(�f(�, S)) = S g, Si = Ti and gi = fi for all
i #(f).

Case S-DIR
S = TP0 C, CP0 class C extends TP1 D {S g; . . .},
T = �SD(TP0, CP0, TP1 D).
By the rule F-CLASS, fields(�SD(TP0, CP0, TP1 D)) =
U h with fields(TP0 C) = U h; �SD(TP0, CP0,S) g. As-
suming that for all class types TP2 D

0, �f(�, TP2 D0) =
TP2 D

0 and �SD(TP0, CP0, TP2 D0) returns a class type,
�f(�, �SD(TP0, CP0, TP1 D)) = �SD(TP0, CP0, TP1 D). It
follows that T f = fields�SD(TP0, CP0, TP1 D)) = U h
from which the conclusion is immediate.

Figure 14: Generic Statement of Lemmas 2.2 and 2.1 and
Proof for S-Dir Case.

�f must be the identity function for non-variable types and
that �SD maps class types to class types. For this proof to
hold for the target language, the instantiations of �f and �SD
must have this property. More concretely, the proof assumes
this behavior for all instantiations of �f and �SD, produc-
ing the new generic Lemma 5.2. In order to produce the de-
sired lemma, the target language instantiates the VPs and
provides proofs of all the assumed behaviors. Each feature
which supplies a concrete realization of a VP also provides
the necessary proofs about its behavior. The assumptions of
a proof form an explicit interface against which it is written.
The interface of a feature module is the union of all these as-
sumptions together with the the set of lemmas about the be-
havior of its VP instantiations and definitions it provides. As
long as the features included in the target language provide
proofs satisfying this interface, a feature’s generic proofs can
be specialized and reused in their entirety.

Lemma 5.2. As long as �f(�, V) = V for all non-vari-

able types V and �SD maps class types to class types,
if � ` S<:T and fields(�f(�, T)) = T f, then
fields(�f(�, S)) = S g, Si = Ti and gi = fi for all
i #(f).

We also have to deal with new cases. Whenever a new rule
or production is added, a new case must be added to proofs
which induct over or case split on the original production or
rule. For FGJ, this means that a new case must be added to
Lemma 5.2 for GS-Var. When writing an inductive proof, a
feature provides cases for each of the rules or productions it
introduces. To build the proof for the target language, a new
skeleton proof by induction is started. Each of the cases is
discharged by the proof given in the introducing feature.

5.2 Engineering Extensible Proofs in Coq
Each Coq feature module contains proofs for the extensi-
ble lemmas it provides. To get a handle on the behavior of
opaque parameters, Coq feature modules make explicit as-
sumptions about their behavior. Just as definitions were pa-
rameterized on variation points, proofs are now parameter-
ized on a set of lemmas that define legal extensions. These
assumptions enable separate certification of feature mod-
ules. Coq certifies that a proof is correct for all instantiations
or case introductions that satisfy its assumptions, enabling
proof reuse for all compatible features.

As a concrete example, consider the Coq proof of Lemma
5.3 given in Figure 16. The cFJ feature provides the state-
ment of the lemma, which is over the abstract subtype rela-
tion. Both the Generic and cFJ features give proofs for their
definitions of the subtype relation. Notably, the Generic
feature assumes that if a type variable is found in a Context
Gamma, it will have the same value in app_context Gamma
Delta for any Context Delta. Any compatible extension
of Context and app_Context can thus reuse this proof.

Lemma 5.3 (Subtype Weakening). For all contexts
� and �, if � ` S<:T, �; � ` S<:T.

Figure 15: Weakening lemma for subtyping.

To build the final proof, the target language inducts over
subtype, as shown in the final box of Figure 16. For each
constructor, the lemma dispatches to the proofs from the
corresponding feature module. To reuse those proofs, each
of their assumptions has to be fulfilled by a theorem (e.g.
TLookup_app’ satisfies TLookup_app). The inductive hy-
pothesis is provided to cFJ_Weaken_subtype_app for use
on its subterms. As long as every assumption is satisfied
for each proof case, Coq will certify the composite proof.
There is one important caveat: proofs which use the induc-
tive hypothesis can only do so on subterms or subjudge-
ments. By using custom induction schemes to build proofs,
features can ensure that this check will always succeed. The
cFJ_subtype_ind induction scheme used to combine cFJ’s
cases in the first box of Figure 16 is an example.

5.3 Feature Composition in Coq
Each feature module is implemented as a Coq file which
contains the inductive definitions, variation points, and
proofs provided by that feature. These modules are certified
independently by Coq. Once the feature modules have been
verified, a target language is built as a new Coq file. This
file imports the files for each of the features included in the
language, e.g. “Require Import cFJ.” in Figure 12. First,
each target language definition is built as a new inductive
type using appropriately instantiated definitions from the
included feature modules, as shown in Figures 12 and 13.
Proofs for the target language are then built using the proofs

Variables (app_context : Context ! Context ! Context)
(FJ_subtype_Wrap : forall gamma S T,
FJ_subtype gamma S T ! subtype gamma S T).

Definition Weaken_Subtype_app_P
delta S T (sub_S_T : subtype delta S T) :=
forall gamma, subtype (app_context delta gamma) S T.

Lemma cFJ_Weaken_Subtype_app_H1 :
forall (ty : Ty) (gamma : Context),
Weaken_Subtype_app_P _ _ _ (sub_refl ty gamma).

Lemma cFJ_Weaken_Subtype_app_H2 : forall c d e gamma
(sub_c : subtype gamma c d) (sub_d : subtype gamma d e),
Weaken_Subtype_app_P _ _ _ sub_c !
Weaken_Subtype_app_P _ _ _ sub_d !
Weaken_Subtype_app_P _ _ _ (sub_trans _ _ _ _ sub_c sub_d).

Lemma cFJ_Weaken_Subtype_app_H3 :
forall ce c d fs k’ ms te te’ delta CT_c
bld_te, Weaken_Subtype_app_P _ _ _

(sub_dir ce c d fs
k’ ms te te’ delta CT_c bld_te).

Definition cFJ_Weaken_Subtype_app :=
cFJ_subtype_ind _ cFJ_Weaken_Subtype_app_H1
cFJ_Weaken_Subtype_app_H2 cFJ_Weaken_Subtype_app_H3.

Variables (app_context:Context ! Context ! Context)
(TLookup_app : forall gamma delta X ty,

TLookup gamma X ty !
TLookup (app_context gamma delta) X ty).

(GJ_subtype_Wrap : forall gamma S T,
GJ_subtype gamma S T ! subtype gamma S T).

Definition Weaken_Subtype_app_P :=
cFJ_Pinitions.Weaken_Subtype_app_P _ _ subtype app_context.

Lemma GJ_Weaken_Subtype_app : forall gamma
S T (sub_S_T : GJ_subtype gamma S T),
Weaken_Subtype_app_P _ _ _ sub_S_T.
cbv beta delta; intros; apply GJ_subtype_Wrap.
inversion sub_S_T; subst.
econstructor; eapply TLookup_app; eauto.

Qed.
Fixpoint Weaken_Subtype_app gamma S T
(sub_S_T : subtype gamma S T) :
Weaken_Subtype_app_P _ _ _ sub_S_T :=
match sub_S_T return Weaken_Subtype_app_P _ _ _ sub_S_T with
| cFJ_subtype_Wrap gamma S’ T’ sub_S_T’)
cFJ_Weaken_Subtype_app _ _ _ _ _ _ cFJ_Ty_Wrap _ _ _ CT
_ subtype GJ_Phi_sb cFJ_subtype_Wrap app_context _ _ _

sub_S_T’ Weaken_Subtype_app
| GJ_subtype_Wrap gamma S’ T’ sub_S_T’)
GJ_Weaken_Subtype_app _ _ Gty _ TLookup subtype
GJ_subtype_Wrap app_context TLookup_app’ _ _ _ sub_S_T’
end.

Figure 16: Coq proofs of Lemma 5.3 for the cFJ and
Generic features and the composite proof.

from the constituent feature modules per the above discus-
sion. Proof composition requires a straightforward check
by Coq that the assumptions of each feature module are
satisfied, i.e. that a feature’s interface is met by the target
language. Currently each piece of the final language is com-
posed by hand in this straightforward manner; future work
includes automating feature composition directly.

6. Implementation of the FJ Product Line
We have implemented the six feature modules of Section 3.4
in the Coq proof assistant. Each contains pieces of syntax,
semantics, type system, and metatheoretic proofs needed by

that feature or interaction. Using them, we can built the
seven variants on Featherweight Java listed in Section 3.23.

Module Lines of Code in Coq
cFJ 2612 LOC
Cast 463 LOC

Interface 499 LOC
Generic 6740 LOC

Generic#Interfaces 1632 LOC
Generic#Cast 296 LOC

Figure 17: Feature Module Sizes
While we achieve feature composition by manually in-

stantiating these modules, the process is straightforward and
should be mechanizable. Except for some trivial lemmas, the
proofs for a final language are assembled from proof pieces
from its constituent features by supplying them with lemmas
which satisfy their assumptions. Importantly, once the proofs
in each of the feature modules have been certified by Coq,
they do not need to be rechecked for the target language.
A proof is guaranteed to be correct for any language which
satisfies the interface formed by the set of assumptions for
that lemma. This has a practical effect as well: certifying
larger feature modules takes a non-trivial amount of time.
Figure 18 lists the certification times for feature modules
and all the possible language variants built from their com-
position. By checking the proofs of each feature in isolation,
Coq is able to certify the entire product line in roughly the
same amount of time as the cFJ feature module. Rechecking
the work of each feature for each individual product would
quickly become expensive. Independent certification is par-
ticularly useful when modifying a single feature. Recertify-
ing the product line is a matter of rechecking the proofs of
the modified features and then performing a quick check of
the products, without having to recheck the independent fea-
tures.

cFJ 1.6 1m 36s
Generic 7.3833 7m 23s Cast 0m 4s
All Other Features 0.6667 0m 40s Interface 0m 2s
All Products 1.9333 1m 56s Generic#Cast 0m 12s

Generic#Interface 0m 22s

uFJ 0m 1s
FJ 0m 2s
uIFJ 0m 2s
IFJ 0m 2s
GFJ 0m 44s
FGJ 0m 44s
GiFJ 0m 11s
iGFJ 0m 10s

avg
FJ_Tactics 0.88 0.81 1.36 1.34 1.09 1.15 0.85 1.07

cFJ 0.7878 cFJ 41.14 40.24 50.61 53.75 52.12 50.59 42.44 47.27
Generic 2.9317 Cast 5.94 5.51 5.21 5.40 5.56 5.38 5.95 5.56
All Other Features 0.6593 Interface 4.06 4.48 3.85 3.97 4.09 3.98 4.44 4.12
All Products 1.1485 Generic 172.79 171.80 178.57 178.78 169.30 171.15 188.94 175.90

Generiic_Cast 7.93 7.49 8.52 8.09 7.54 7.66 10.49 8.25
Generic#Interface 21.27 20.88 19.85 21.24 20.80 21.84 25.49 21.62

uFJ 2.48 2.33 2.33 2.38 2.43 2.38 2.56 2.41
FJ 3.27 2.90 2.92 2.97 2.97 2.92 3.29 3.03
iFJ 3.96 3.37 3.45 3.43 3.54 3.61 3.70 3.58
uIFJ 3.09 3.14 2.87 2.83 2.87 2.97 3.34 3.02
GFJ 11.93 11.28 12.95 11.43 11.64 11.74 13.64 12.09
FGJ 13.09 12.94 13.99 12.61 12.52 12.60 15.00 13.25
GiFJ 14.54 15.27 14.95 14.38 15.28 14.72 18.44 15.37
FiGJ 12.39 14.10 15.77 18.92 14.38 18.34 19.23 16.16
total 64.75 65.33 69.23 68.95 65.63 69.28 79.20 68.91

0

2

4

6

8
Coq Certification Time for Feature Modules and Products

M
in

ut
es

cFJ Generic All Other Features All Products

0

0.6

1.2

1.8

2.4

3

M
in

ut
es

cFJ Generic All Other Features All Products

Coq Certification Time for Feature Modules and Products

Figure 18: Certification Times for Feature Modules and All
Language Variants.

3 The source for these feature modules and language variants can be found
at http://www.cs.utexas.edu/users/bendy/MMMDevelopment.php.

7. Discussion and Future Work
Relying on parameterization for feature composition allows
feature modules to be built and independently certified by
Coq “out of the box” with the same level of assurance. With
this approach, a familiar set of issues is encountered when
a new feature is added to a product line. Ideally, a new fea-
ture would be able to simply update the existing definitions
and proofs, allowing language designers to leverage all the
hard work expended on formalizing the original language.
Some foresight, called domain analysis [22], allows lan-
guage designers to predict VPs in advance, thus enabling
a smooth and typically painless addition of new features.
What our work shows is a path for the structured evolution
of languages. But of course, when unanticipated features are
added using this style of composition, additional engineering
may be required.

Existing definitions can be extended and reused as long
as they already have the appropriate VPs and their inductive
definitions are left open. For example, once class definitions
have a variation point inserted for interfaces, the same VP
can also be extended with type parameters for generics.
Similarly, once the definition of subtyping has been left
open, both interfaces and generics can add new rules for the
target language.

Proof reuse is almost as straightforward: as long as an
extension is compatible with the set of assumptions in a
proof’s interface, the proof can be reused directly in the
final language. A new feature is responsible for providing
the proofs that its extension satisfies the assumptions of the
original base language.

Refactoring is necessary when a new feature requires
VPs that are not in existing features. A feature which
makes widespread changes throughout the base language
(i.e. Generic), will probably make changes in places that
the original feature designer did not anticipate. In this situ-
ation, as mentioned in Section 2.1, existing features have to
be refactored to allow the new kind of extension by inserting
variation points or breaking open the recursion on inductive
definitions. Any proofs over the original definition may have
to be updated to handle the new extensions, possibly adding
new assumptions to its interface.

Feature modules tend to be inoculated from changes in
another, unless they reference the definitions of another fea-
ture. This only occurs when two features must appear to-
gether: modules which resolve feature interactions, for ex-
ample, only appear when their base features are present.
Thus, it is possible to develop an enhanced language incre-
mentally: starting with the base and then iteratively refac-
toring other features, potentially creating new modules to
handle interactions. Once a new feature has been fully in-
tegrated into the feature set, all of the previous languages in
the product line should still be derivable. If two features F
and G commute (i.e. F · G = G · F) their integration comes
for free as their interaction module is empty (i.e. F#G = 1).

A new feature can also invalidate the assumptions of an
existing feature’s proofs. In this case, assumptions might
have to be weakened and the proof refactored to permit
the new extension. Alternatively, if an extension breaks the
assumption of an existing proof, the offending feature can
simply build a new proof of that lemma. This proof can then
be utilized in any other proofs which used that lemma as
an assumption, replacing the original lemma and allowing
the other proofs to be reused. In this manner, each proof is
insulated from features which break the assumptions of other
lemmas. Again, all of this is just another variation of the
kinds of problems that are encountered when one generalizes
and refactors typical object-oriented code bases.

Future work includes creating a new module-level com-
position operator that eases the burden of integrating new
features. Ideally, this operator will allow subsequent features
to extend a feature’s definitions with new cases or variations
without modifying the feature and to provide patches to al-
low existing proofs to work with the extended definitions. As
alluded to earlier, by operating at the module level, this oper-
ator would automate the tedious piece-by-piece composition
currently employed to build target languages.

8. Related Work
The Tinkertype project [17] is a framework for modularly
specifying formal languages. Features consist of a set of
variants of inference rules with a feature model determining
which rule is used in the final language. An implementation
of these ideas was used to format the language variants used
in Pierce’s Types and Programming Languages [24]. This
corresponds to our notion of case introduction. Importantly,
our approach uses variations points to allow variations on
a single definition. This allows us to construct of a single
generic proof which can be specialized for each variant, as
opposed to maintaining a separate proof for each variation.
Levin et al. consider using their tool to compose handwrit-
ten proofs, but these proofs must be rechecked after compo-
sition. In contrast, we have crafted a systematic approach
to proof extension that permits the creation of machine-
checkable proofs. After a module’s proofs are certified, they
can be reused without needing to be rechecked. As long as
the module’s assumptions hold, the proofs are guaranteed to
hold for the final language.

Stärk et. al [27] develop a complete Java 1.0 compiler
through incremental refinement of a set of Abstract State
Machines. Starting with ExpI, a core language of impera-
tive Java expressions which contains a grammar, interpreter,
and complier, the authors add features which incrementally
update the language until an interpreter and compiler are de-
rived for the full Java 1.0 specification. The authors then
write a monolithic proof of correctness for the full language.
Later work casts this approach in the calculus of features [2],
noting that the proof could have been developed incremen-
tally. While we present the incremental development of the

formal specification of a language here, many of the ideas
are the same. An important difference is that our work fo-
cuses on structuring languages and proofs for mechanized
proof assistants, while the development proposed by [2] is
completely by hand.

Thüm et. al [29] consider proof composition in the veri-
fication of a Java-based software product line. Each product
is annotated with invariants from which the Krakatoa/Why
tool generates proof obligations to be verified in Coq. To
avoid maintaining these proofs for each product, the authors
maintain proof pieces in each feature and compose the pieces
for an individual product. Their notion of composition is
strictly syntactic: proof scripts are copied together to build
the final proofs and have to be rechecked for each prod-
uct. Importantly, features only add new premises and con-
junctions to the conclusions of the obligations generated by
Krakatoa/Why, allowing syntactic composition to work well
for this application. As features begin to apply more subtle
changes to definitions and proofs, it is not clear how to effec-
tively syntactically glue together Coq’s proof scripts. Using
the abstraction mechanisms provided by Coq to implement
features, as we have, enables a more semantic notion of com-
position.

The modular development of reduction rules are the fo-
cus of Mosses’ Modular Structural Operational Semantics
[20]. In this paradigm, rules are written with an abstract la-
bel which effectively serves as a repository for all effects,
allowing rules to be written once and reused with different
instantiations depending on the effects supported by the fi-
nal language. Effect-free transitions pass around the labels
of their subexpressions:

d X�! d0

let d in e X�! let d0 in e
(R-LETB)

Those rules which rely on an effectual transition specify that
the final labeling supports effects:

e
{p=p1[p0]...}
��������! e0

let p0 in e
{p=p1...}

��������! let p0 in e
(R-LETE)

These abstract labels correspond to the abstract contexts
used by the cFJ subtyping rules to accommodate the updates
of the Generic feature. In the same way that R-LETE de-
pends on the existence of a store in the final language, S-
VAR requires the final context to support a type lookup op-
eration. Similarly, both R-LETB and S-TRANS pass along
the abstract labels / contexts from their subjudgements.

Both Boite [9] and Mulhern [21] consider how to extend
existing inductive definitions and reuse related proofs in the
Coq proof assistant. Both only consider adding new cases
and rely on the critical observation that proofs over the ex-
tended language can be patched by adding pieces for the
new cases. The latter promotes the idea of ’proof weaving’
for merging inductive definitions of two languages which

merges proofs from each by case splitting and reusing exist-
ing proof terms. An unimplemented tool is proposed to au-
tomatically weave definitions together. The former extends
Coq with a new Extend keyword that redefines an existing
inductive type with new cases and a Reuse keyword that
creates a partial proof for an extended datatype with proof
holes for the new cases which the user must interactively fill
in. These two keywords explicitly extend a concrete defini-
tion and thus modules which use them cannot be checked
by Coq independently of those definitions. This presents a
problem when building a language product line: adding a
new feature to a base language can easily break the proofs
of subsequent features which are written using the original,
fixed language. Interactions can also require updates to exist-
ing features in order to layer them onto the feature enhanced
base language, leading to the development of parallel fea-
tures that are applied depending on whether the new feature
is included. These keyword extensions were written for a
previous version of Coq and are not available for the current
version of the theorem prover. As a result of our formula-
tion, it is possible to check the proofs in each feature module
independently, with no need to recheck proof terms when
composing features.

Chlipala [10] proposes a using adaptive tactics written in
Coq’s tactic definition language LTac [11] to achieve proof
reuse for a certified compiler. The generality of the approach
is tested by enhancing the original language with let expres-
sions, constants, equality testing, and recursive functions,
each of which required relatively minor updates to exist-
ing proof scripts. In contrast to our approach, each refine-
ment was incorporated into a new monolithic language, with
the new variant having a distinct set of proofs to maintain.
Our feature modules avoid this problem, as each target lan-
guage derives its proofs from a uniform base, with no need
to recheck the proofs in existing feature modules when com-
posing them with a new feature. Adaptive proofs could also
be used within our feature modules to make existing proofs
robust in to the addition of new syntax and semantic varia-
tion points.

9. Conclusion
Mechanically verifying artifacts using theorem provers can
be hard work. The difficulty is compounded when verifying
all the members of a product line. Features, transformations
which add a new piece of functionality, are a natural way of
decomposing a product line. Decomposing proofs along fea-
ture boundaries enables the reuse of proofs from a common
base for each target product. These ideas have a natural ex-
pression in the evolution of formal specification of program-
ming languages, using the syntax, semantics, and metathe-
oretic proofs of a language as the core representations. In
this paper, we have shown how introductions and variation
points can be used to structure product lines of formal lan-
guage specifications.

As a proof of concept, we used this approach to imple-
ment features modules that enhance a variant of Feather-
weight Java in the Coq proof assistant. Our implementation
uses the standard facilities of Coq to build the composed
languages. Coq is able to mechanically check the proofs
of progress and preservation for the composed languages,
which reuse pieces of proofs defined in the composed fea-
tures. Each extension allows for the structured evolution of
a language from a simple core to a fully-featured language.
Harnessing these ideas in a mechanized framework trans-
forms the mechanized formalization of a language from a
rigorous check of correctness into an important vehicle for
reuse of definitions and proofs across a family of related lan-
guages.

Acknowledgments. This work was supported by NSF’s
Science of Design Project CCF 0724979. Also we appreciate
comments from Thomas Thüm and the referees on earlier
drafts of this paper.

References
[1] Paul Bassett. Frame-based software engineering. IEEE Soft-

ware, 4(4), 1987.

[2] D. Batory and E. Börger. Modularizing theorems for software
product lines: The jbook case study. Journal of Universal
Computer Science, 14(12):2059–2082, 2008.

[3] D. Batory, Rich Cardone, and Y. Smaragdakis. Object-
oriented frameworks and product-lines. In SPLC, 2000.

[4] D. Batory, J. Kim, and P. Höfner. Feature interactions, prod-
ucts, and composition. In GPCE, 2011.

[5] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE TSE, 30, June 2004.

[6] Don Batory. Feature models, grammars, and propositional
formulas. Software Product Lines, pages 7–20, 2005.

[7] Don Batory, Rich Cardone, and Yannis Smaragdakis. Object-
oriented framework and product lines. In SPLC, pages 227–
247, 2000.

[8] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development. Springer-Verlag, Berlin, 2004.

[9] Olivier Boite. Proof reuse with extended inductive types. In
Theorem Proving in Higher Order Logics, pages 50–65, 2004.

[10] Adam Chlipala. A verified compiler for an impure functional
language. In POPL 2010, January 2010.

[11] David Delahaye. A tactic language for the system coq. In
Proceedings of Logic for Programming and Automated Rea-
soning (LPAR), Reunion Island, volume 1955 of LNCS, pages
85–95. Springer, 2000.

[12] Feature oriented programming. http://en.wikipedia.
org/wiki/Feature_Oriented_Programming, 2008.

[13] Georges Gonthier. In Deepak Kapur, editor, Computer Math-
ematics, chapter The Four Colour Theorem: Engineering of a
Formal Proof, pages 333–333. Springer-Verlag, Berlin, Hei-
delberg, 2008.

[14] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.
Featherweight java: a minimal core calculus for java and gj.
ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

[15] K.C. Kang. Private Correspondence, 2005.
[16] Xavier Leroy. Formal verification of a realistic compiler.

Commun. ACM, 52:107–115, July 2009.
[17] Michael Y. Levin and Benjamin C. Pierce. Tinkertype: A lan-

guage for playing with formal systems. Journal of Functional
Programming, 13(2), March 2003. A preliminary version ap-
peared as an invited paper at the Logical Frameworks and
Metalanguages Workshop (LFM), June 2000.

[18] M. D. McIlroy. Mass-produced software components. Proc.
NATO Conf. on Software Engineering, Garmisch, Germany,
1968.

[19] R. Monson-Haefel. Enterprise Java Beans. O’Reilly, 3rd
edition, 2001.

[20] Peter D. Mosses. Modular structural operational semantics. J.
Log. Algebr. Program., 60-61:195–228, 2004.

[21] Anne Mulhern. Proof weaving. In Proceedings of the First
Informal ACM SIGPLAN Workshop on Mechanizing Metathe-
ory, September 2006.

[22] J. Neighbors. The draco approach to constructing software
from reusable components. IEEE TSE, September 1984.

[23] D.L. Parnas. On the design and development of program
families. IEEE TSE, SE-2(1):1 – 9, March 1976.

[24] Benjamin C. Pierce. Types and Programming Languages.
MIT Press, 2002.

[25] Y. Smaragdakis and D. Batory. Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs. ACM TOSEM, December
2001.

[26] Yannis Smaragdakis and Don Batory. Implementing reusable
object-oriented components. In In the 5th Int. Conf. on Soft-
ware Reuse (ICSR 98, pages 36–45. Society Press, 1998.

[27] Robert Stärk, Joachim Schmid, and Egon Börger. Java and
the java virtual machine - definition, verification, validation,
2001.

[28] Rok Strnisa, Peter Sewell, and Matthew J. Parkinson. The
Java module system: core design and semantic definition. In
OOPSLA, pages 499–514, 2007.

[29] T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel. Proof com-
position for deductive verification of software product lines.
In Software Testing, Verification and Validation Workshops
(ICSTW) 2011, pages 270 –277, march 2011.

[30] Michael VanHilst and David Notkin. Decoupling change from
design. SIGSOFT Softw. Eng. Notes, 21:58–69, October 1996.

Fitting the Pieces Together:
A Machine-Checked Model of Safe Composition∗

Benjamin Delaware, William R. Cook, Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712 U.S.A.

{bendy,wcook,batory}@cs.utexas.edu

ABSTRACT
Programs of a software product line can be synthesized by
composing features which implement a unit of program func-
tionality. In most product lines, only some combination of
features are meaningful; feature models express the high-
level domain constraints that govern feature compatibility.
Product line developers also face the problem of safe compo-
sition — whether every product allowed by a feature model
is type-safe when compiled and run. To study the problem
of safe composition, we present Lightweight Feature Java
(LFJ), an extension of Lightweight Java with support for
features. We define a constraint-based type system for LFJ
and prove its soundness using a full formalization of LFJ
in Coq. In LFJ, soundness means that any composition of
features that satisfies the typing constraints will generate
a well-formed LJ program. If the constraints of a feature
model imply these typing constraints then all programs al-
lowed by the feature model are type-safe.

Categories and Subject Descriptors
F.3.3 [Studies of Program Constructs]: Type structure

General Terms
Design, Languages

Keywords
product lines, type safety, feature models

1. INTRODUCTION
Programs are typically developed over time by the accu-

mulation of new features. However, many programs break
away from this linear view of software development: remov-
ing a feature from a program when it is no longer useful, for
example. It is also common to create and maintain multiple

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant CCF-0724979.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’09, August 23–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08 ...$5.00.

feature Bank {
class Account

extends Object{
int balance = 0;
void update(int x) {

int newBal =
balance + x;

balance = newBal;
}}}

(a) Bank Feature

feature Sync {
refines class Account

extends Object{
static Lock lock

= new Lock();
refines void update(int x) {

lock.lock();
Super.update();
lock.unlock();

}}}

(b) Synchronized Feature

class Account extends Object {
int balance = 0;
static Lock lock = new Lock();
void update(int x) {

lock.lock();
int newBal = balance + x;
balance = newBal;
lock.unlock(); }}}

(c) A composed program: Sync•Bank

Figure 1: Account with synchronization feature

versions of a product with different sets of features. The
result is a product line, a family of related products.

The inclusion, exclusion, and composition of features in a
product line is easier if each feature is defined as a modular
unit. A given feature may involve configuration settings,
user interface changes, and control logic. As such, features
typically cut across the normal class boundaries of programs.
Modularizing a program into features, or feature modularity ,
is quite difficult as a result.

There are many systems for feature modularity based on
Java, such as the AHEAD tool suite [5] and Classbox/J [7].
In these systems, a feature is a collection of Java class defini-
tions and refinements. A class refinement is a modification
to an existing class, adding new fields, new methods, and
wrapping existing methods. When a feature is applied to a
program, it introduces new classes to the program and its
refinements are applied to the existing classes.

Figure 1 is a simple example of a product line containing
two features, Bank and Sync. The Bank feature in Figure 1a
implements an elementary Account class with a balance field
and update method. Feature Sync in Figure 1b implements
a synchronization feature so that accounts can be used in a
multi-threaded environment. Sync has a refinement of class
Account that modifies update to use a lock, which is intro-

duced as a static variable. Method refinement is accom-
plished by inheritance; Super.update() indicates a substitu-
tion of the prior definition of method update(x). Composing
the refinement of Figure 1b with the class of Figure 1a pro-
duces a class that is equivalent to that in Figure 1c. The
Bank feature can also be used on its own. While this ex-
ample is simple, it exemplifies a feature-oriented approach
to program synthesis: adding a feature means adding new
members to existing classes and modifying existing methods.
The following section presents a more complex example and
more details on feature composition.

Not all features are compatible, and there may be complex
dependencies among features. A feature model defines the
legal combinations of features in a product line. A feature
model can also represent user-level domain constraints that
define which combinations of features are useful[9].

In addition to domain constraints, there are low-level im-
plementation constraints that must also be satisfied. For
example, a feature can reference a class, variable, or method
that is defined in another feature. Safe composition guar-
antees that a program synthesized from a composition of
features is type-safe. While it is possible to check individ-
ual programs by building and then compiling them, this is
impractical. In a product line, there can be thousands of
programs; it is more desirable to ensure that all legal pro-
grams are type-safe without enumerating the entire product
line and compiling each program. This requires a novel ap-
proach to type checking.

We formalize feature-based product lines using an object-
oriented kernel language extended with features, called
Lightweight Feature Java (LFJ). LFJ is based on Lightweight
Java [15], a subset of Java that includes a formalization in
the Coq proof assistant [8], using the Ott tool [14]. A pro-
gram in LFJ is a sequence of features containing classes and
class refinements. Multiple products can be constructed by
selecting and composing appropriate features according to a
product specification - a composition of features.

Feature modules are separated by implicit interfaces that
govern their composition. One solution to type checking
these modules is to require explicit feature interfaces. We
instead infer the necessary feature interfaces from the con-
straints generated by a constraint-based type system for
LFJ. Regardless of whether we use feature interfaces or not,
we would have to employ the same analysis to ensure safe
composition. The type system and its safety are formal-
ized in Coq. We then show how to relate the constraints
produced by the type system to the constraints imposed by
a feature model, using a reduction to propositional logic.
This reduction allows us to statically verify that a feature
model will only allow type-safe programs without having to
generate and check each product individually.

2. SAFE COMPOSITION
Features can make significant changes to classes. Features

can introduce new methods and fields to a class and alter
the class hierarchy by changing a the parent of a class. They
can also refine existing methods by adding new statements
before and after a method body or by replacing it altogether.

The features in Figure 2 illustrate how the Account class
in the feature Bank can be modified. The RetirementAccount
feature refines the Account class by updating its parent to
Lehman, introducing a new field for a 401k account balance
with an initial balance of 10000, and rewriting the defini-

feature InvestmentAccount {
refines class Account extends WaMu {

int 401kbalance = 0;
refines void update (int x) {

x = x/2; Super.update(); 401kbalance += x;
}}}

feature RetirementAccount {
refines class Account extends Lehman {

int 401kbalance = 10000;
int update (int x) {

401kbalance += x;
}}}

feature Investor {
class AccountHolder extends Object {

Account a = new Account();
void payday (int x; int bonus) {

a.401kbalance += bonus;
return a.update(x);

}}}

Figure 2: Definitions of InvestmentAccount, Investor, and
RetirementAccount features.

class Account extends Lehman{
int balance = 0;
int 401kbalance = 10000;
void update(int x) {

401kbalance += x;
}}

Figure 3: RetirementAccount•Bank

tion for the update method to add x to the 401k balance.
InvestmentAccount refines Account differently, updating its
parent to WaMu, introducing a 401k field, and refining the
update method to put half of x into a 401k before adding
the rest to the original account balance.

A software product line can be modelled as an algebra
that consists of a set of features and a composition oper-
ator •. We write M = {Bank, Investor, RetirementAccount,
InvestmentAccount} to mean the product line M has the fea-
tures declared above. One or more features of a product line
build base programs through a set of class introductions:

Bank a program with only the generic Account class
Investor a program with only the AccountHolder class

The remaining features contain program refinements and
extensions:

InvestmentAccount•Bank builds an investment account
RetirementAccount•Bank builds a retirement account

where B•A is read as“feature B refines program A”or equiv-
alently “feature B is added to program A”. A refinement can
extend the program with new definitions or modify existing
definitions. The design of a program is a composition of
features called a product specification.

P1 = RetirementAccount•Bank Fig. 3
P2 = InvestmentAccount•Bank Fig. 4
P3 = RetirementAccount•Investor•Bank Fig. 5

This model of software product lines is based on step-
wise development: one begins with a simple program (e.g.,
constant feature Bank) and builds more complex programs
by progressively adding features (e.g., adding feature Invest-
mentAccount to Bank).

A set of n features can be composed in an exponential
number of ways to build a set of order n! programs. A

class Account extends WaMu{
int balance = 0;
int 401kbalance = 0;
void update(int x) {

x = x/2;
int newBal = balance + x;
balance = newBal;
401kbalance += x;

}}

Figure 4: InvestmentAccount•Bank

class Account extends Lehman{
int balance = 0;
int 401kbalance = 10000;
void update(int x) {

401kbalance += x;
}}

class AccountHolder extends Object {
Account a = new Account();
void payday (int x; int bonus) {

a.401kbalance += bonus;
return a.update(x);

}}

Figure 5: RetirementAccount•Investor•Bank

composition might fail to meet the dependencies of its con-
stituent features, so only a subset of the programs built from
this set of features is well-typed. The feature model defines
the set of programs which belong to a product line by con-
straining the ways in which features can be composed. The
goal of safe composition is to ensure that the product line
described by a feature model is contained in the set of well-
typed programs, i.e. that all of its programs are well-typed.

The combinatorial nature of product lines presents a num-
ber of problems to determining safe composition. The mem-
bers and methods of a class referenced in a feature might be
introduced in several different features. Consider the Ac-
countHolder class introduced in the Investor feature: this
account holder is the employee of a company which gives a
small bonus with each paycheck which the employee adds
directly into the 401k balance in his account. In order for
a composition including the Investor feature to build a well-
typed Java program, it must be composed with a feature
that introduces this field to the Account class, in this case ei-
ther InvestmentAccount or RetirementAccount. This require-
ment could also be met by a feature which sets the parent
of Account to a different class from which it inherits the
401kbalance field. Since a parent of a class can change
through refinement, the inherited fields and methods of the
classes in a feature are dependent on a specific product spec-
ification. Each feature has a set of type-safety constraints
which can be met by the combination of a number of dif-
ferent features, each with their own set of constraints. To
study the interaction of feature composition and type safety,
we first develop a model of Java with features.

3. LIGHTWEIGHT FEATURE JAVA
Lightweight Feature Java (LFJ) is a kernel language that

captures the key concepts of feature-based product lines of
Java programs. LFJ is based on Lightweight Java (LJ), a
minimal imperative subset of Java [15]. LJ supports classes,
mutable fields, constructors, single inheritance, methods and

dynamic method dispatch. LJ does not include local vari-
ables, field hiding, interfaces, inner classes, or generics. This
imperative kernel provides a minimal foundation for study-
ing a type system for feature-oriented programming. LJ
is more appropriate for this work than Featherweight Java
[12] because of its treatment of constructors. When com-
posing features, it is important to be able to add new mem-
ber variables to a class during refinement. Featherweight
Java requires all member variables to be initialized in a sin-
gle constructor call. As a result, adding a new member
variable causes all previous constructor calls to be invalid.
Lightweight Java allows such refinements through its sup-
port of more flexible initialization of member variables. In
addition, Lightweight Java has a full formalization in Coq,
which we have extended to prove the soundness of LFJ me-
chanically. The proof scripts for the system are available at
http://www.cs.utexas.edu/~bendy/featurejava.php.

Feature Table
FT ::= {FD}

Product specification
PS ::= F

Feature declarations
FD ::= feature F {cld; rcld}

Class refinement
rcld ::= refines class C extending cl {fd ; md ; rmd}

Method refinement
rmd ::= refines method ms {rmb}

Body of method refinement
rmb ::= s; Super.meth(); s ; return y

Figure 6: Modified Syntax of Lightweight Feature Java.

The syntax extensions LFJ adds to LJ in order to sup-
port feature-oriented programming are given in Figure 6.
The syntax of LFJ is modelled after the feature-oriented ex-
tensions to Java used in the AHEAD tool suite. A feature
definition FD maps a feature name F to a list of class dec-
larations cld and a list of class refinements rcld . A class
refinement rcld includes a class name C , a set of LJ field
and method introductions, fd and md , a set of method re-
finements rmd , and the name of the updated parent class
cl . A method refinement advises a method with signature
ms with two lists of LJ statements s and an updated return
value y . When applied to an existing method, a method re-
finement wraps the existing method body with the advice.
The parameters of the original method are passed implic-
itly because the refinement has the same signature as the
method it refines. The feature table FT contains the set of
features used by a product line. A product specification PS
selects a distinct list of feature names from the feature table.

3.1 Feature Composition
In LJ, a program P is a set of class definitions. The •

operator composes a feature FD = feature F {cld ; rcld}
with an LJ program P to build a refined program:

FD•P = {cld}∪{rcld·cld | cld ∈ P∧id(cld) %∈ ids(cld)} (1)

Composition builds a refined program by first introducing
the class definitions in cld, replacing any classes in P which
share an identifier with a class in cld. The remaining classes
in P are added to this set after applying the refinements
in rcld using the · operator. For all classes cld ∈ P with

an identifier not refined by rcld, · is simply the identity
function. If a class refinement rcld in rcld has the same
identifier as cld, · builds the refined class by first advising
the methods of cld with the method refinements in rcld. The
fields and methods introduced by rcld are then added to this
class and its parent is set to the superclass named in rcld.
Composition fails if P lacks a class refined by rcld or if a
class refined by rcld lacks a method which is refined by rcld.

A product specification builds an LJ program by recur-
sively composing the features it names in this manner, start-
ing with the empty LJ program. Each LFJ feature table can
construct a family of programs through composition, with
the set of class definitions determined by the sequence of
features which produced them. The class hierarchy is also
potentially different in each program: refinements can alter
the parent of a class, and two mutually exclusive features
can define the same class with a different parent.

4. TYPECHECKING FEATURE MODELS
A feature model is safe if it only allows the creation of well-

formed LJ programs. Any particular product specification
can be checked by composing its features and then checking
the type safety of the resulting program in the standard LJ
type system. A naive approach to checking the safety of a
feature model is simply to iterate over all the programs it
describes, type checking each individually. This approach
constructs a potentially exponential number of programs,
making it computationally expensive. Instead, we propose
a type system which allows us to statically verify that all
programs described by a feature model are type-safe without
having to synthesize the entire family of programs.

The key difficulty with this approach is that features are
typically program fragments which make use of class defi-
nitions made in other features; these external dependencies
can only be resolved during composition with other features.
Every LJ construct has two categories of requirements which
must be met in order for it to be well-formed in the LJ type
system. The first category consists of premises which only
depend on the structure of the construct, e.g. the require-
ment that the parameters of a well-formed method be dis-
tinct. The remaining premises access information from the
surrounding program through the path : P ×C → cld func-
tion which maps identifiers to their definitions in P . For
example, when assigning y to x in a method body, the path
function is used to determine that the type of y is a subtype
of the type of variable x. Intuitively, these premises define
the structure of the programs in which LJ constructs are
well-formed. In the standard LJ type system, the structure
of the surrounding program is known. In a software product
line, however, each feature can be included in a number of
programs, and the final makeup of the surrounding program
depends on the other features in a product specification.
Converting these kinds of premises into constraints provides
an explicit interface for an LJ construct with any surround-
ing program. A feature’s interface determines which features
must be included in a product specification in order for its
constructs to be well-formed in the final LJ program.

4.1 LFJ Type System
In this section, we present a constraint-based type sys-

tem for LFJ. In order to relate this to the LJ type system,
we have also developed a constraint-based type system for
LJ. Both these systems retain the premises that depend on

the structure of the construct being typed and convert those
that rely on external information into constraints. By us-
ing constraints, the external typing requirements for each
feature are made explicit, separating derivation of these re-
quirements from consideration of which product specifica-
tions have a combination of features satisfying them.

The constraints used to type LJ and LFJ, listed in Fig-
ure 7, are divided into four categories. The two composition
constraints guarantee successful composition of a feature F
by requiring that refined classes and methods be introduced
by a feature in a product line before F . The two uniqueness
constraints ensure that member names are not overloaded
within the same class, a restriction in the LJ formalization.
The structural constraints come from the standard LJ type
system and determine the members of a class and its inheri-
tance hierarchy in the final program. The subtype constraint
is particularly important because the class hierarchy is mal-
leable until composition; if it were static, constraints that
depend on subtyping could be reduced to other constraints
or eliminated entirely. The feature constraint specifies that
if a feature F is included in a product specification its con-
straints must be satisfied.

Composition Constraints
C introduces ms before F
C introduced before F

Uniqueness Constraints
cl f unique in C

cl m (vdk
k
) unique in C

Structural Constraints
cl1 ≺ cl2
cl2 ≺ ftype(cl1, f)
ftype(cl1, f) ≺ cl2

mtype(cl, m) ≺ clk
k
→ cl

defined(cl)
f %∈ fields(parent(C))
pmtype(C, m) = τ

Feature Constraint
InF ⇒ ξk

k

Figure 7: Syntax of Lightweight Feature Java typing con-
straints.

The typing rules for LFJ are found in Figure 8-10 and
rely on judgements of the form * J | ξ, where J is a typ-
ing judgement from LFJ, and ξ is a set of constraints. ξ
provides an explicit interface which guarantees that J holds
in any product specification that satisfies ξ. Typing judge-
ments for statements include a context Γ mapping variable
names to their types. Typing rules for statements, methods,
and classes are those from LJ augmented with constraints.
Typing rules for class and method refinements in a feature
F are similar to those for the objects they refine, but re-
quire that the refined class or method be introduced in a
feature that comes before the F in a product specification.
Method refinements do not have to check that the names
of their parameters are distinct and that their parameter
types and return type are well-formed: a method introduc-
tion with these checks must precede the refinement in order
for it to be well-formed. Features wrap the constraints on

their introductions and refinements in a single feature con-
straint. The constraints on a feature table are the union of
the constraints on each of its features.

Γ * s | C Statement well-formed in context subject to

constraints

Γ * sk | Ck
k

Γ * {sk} |
S

k Ck

(WF-Block)

Γ(x) = τ1 Γ(var) = τ2

Γ * var = x; | {τ1 ≺ τ2}
(WF-Var-Assign)

Γ(x) = τ1 Γ(var) = τ2

Γ * var = x.f ; | {ftype(τ1, f) ≺ τ2}
(WF-Field-Read)

Γ(x) = τ1 Γ(y) = τ2

Γ * x.f = y; | {τ2 ≺ ftype(τ1, f)}
(WF-Field-Write)

Γ(x) = τ1 Γ(y) = τ2

Γ * s1 | C1 Γ * s2 | C2

C3 = {τ2 ≺ τ1 ∨ τ1 ≺ τ2}

Γ * if x == y then s1 else s2 | C1 ∪ C2 ∪ C3
(WF-If)

Γ(var) = τ1 type (cl) = τ2

Γ * var = new cl() | {τ2 ≺ τ1}
(WF-New)

Γ(x) = τ Γ(var) = π Γ(yk) = πk
k

C = {mtype(τ, meth) ≺ πk
k → π}

Γ * var = x.meth(yk
k) | C

(WF-MCall)

Figure 8: Typing Rules for LJ and LFJ statements.

Once the constraints C for a feature table are generated
according to the rules in Figure 10, we can check whether a
specific product specification PS satisfies C using the rules
in Figure 11. Satisfaction of the structural constraints is
given for LJ and uses the path function. Satisfaction of the
structural constraints in LFJ replaces path with the CT
function which mimics the behavior of path on a composed
product specification without having to build the product:

CT ((F,PS), C) =

(

path(cld, C) C ∈ ids(cld)

rcld · CT (PS , C) C %∈ ids(cld)
(2)

where feature F {cld, rcld} ∈ FT . Compositional con-
straints on a feature F are satisfied when a feature which
introduces the named class or method precedes F in PS .
Uniqueness constraints are satisfied when no two features
in PS introduce a member with the same name but differ-
ent signatures to a class C. Feature constraints on a F are

satisfied when F is not included in PS or PS |= ξk
k
.

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to sat-
isfy typing constraints which could also be overwritten by a

* P | C Program well-formed subject to constraints

* cldk | Ck
k

P = cldk
k

distinct ids (P)

* P |
S

k Ck

(WF-Program)

* FD | C Feature well-formed subject to constraints

* cldk | Ck
k

*F rcld! | C!
!

* feature F {cldk
k
rcld!

!
} | InF ⇒

S

k Ck ∪
S

! C!

(WF-Feature)

* FT | C Feature Table well-formed subject to con-

straints

FT = {FDk
k
} * FDk | Ck

k

* FT |
S

k Ck

(WF-Feature-Table)

Figure 10: Typing Rules for LFJ Programs and Features.

subsequent feature. For this reason, our type system only
considers final product specifications, making no guarantees
about the behavior of intermediate programs.

4.2 Soundness of the LFJ Type System
The soundness proof is based on successive refinements of

the type systems of LJ and LFJ, ultimately reducing it to the
proofs of progress and preservation of the original LJ type
system given in [15]. We first show that the constraint-based
LJ type system is equivalent to the original LJ type system,
in that a program with unique class names and an acyclic
class hierarchy satisfies its constraints if and only if it is
well-formed according to the original typing rules. We then
show that any LFJ product specifications will build a well-
formed LJ program if it satisfies the feature table constraints
generated by the constraint-based LFJ type system. We
have formalized in the Coq proof assistant the syntax and
semantics of LJ and LFJ presented in the previous section,
as well as all of the soundness proofs that follow. For this
reason, the following sections elide many of the bookkeeping
details, instead presenting sketches of the major pieces of
the soundness proofs.

Theorem 4.1 (Soundness of constraint-based LJ Type Sys-
tem). Let P be an LJ program with distinct class names and
an acyclic, well-founded class hierarchy. Let C be the set of
constraints generated by a class cld in P : * cld | C. cld is
well-formed if and only if P satisfies C: P * cld ↔ P |= C.

Proof. The two key pieces of this proof are: showing that
satisfaction of each of the constraints guarantees that the
corresponding judgement holds, and that there is a one-to-
one correspondence between the constraints generated by
the typing rules in Figure 9 and the external premises used
in the declarative LJ type system. The former is straightfor-
ward except for the subtyping constraint, which relies on the
path function to check for satisfaction. We can prove their
equivalence by induction on the derivation of the subtyping

*τ,F md | C Method well-formed in class subject to constraints

distinct(vark
k) type(clk) = τk

k
type(cl) = τ ′

Γ = [vark -→ τk
k][this -→ τ] Γ * s! | C!

!
Γ(y) = τ ′′

*τ cl meth (clk vark
k
) {s!

! return y; } | {τ ′′ ≺ τ ′, defined clk
k
} ∪

S

! C!

(WF-Method)

* cld | C Class well-formed subject to constraints

distinct(fj) distinct(mk) C %= cl type(C) = τ *τ clk methk (cl!,k var!,k
!
) mbk | Ck

k

ξ =
S

j{fj %∈ fields(parent(C))} υ =
S

j{clj fj unique in C} υ′ =
S

k{clk methk (cl!,k var!,k
!
) unique in C}

τ ≺ type(Object) ξ′ =
S

k{pmtype(C, methk) = cl!,k
!
→ clk}

* class C extends cl {clj fj
j
; clk methk (cl!,k var!,k

!,k
) mbk

k

} |
S

k Ck ∪ {defined cl, defined clj
j
} ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-Class)

*τ,F rmd | C Refined method well-formed in class of feature subject to constraints

type(cl) = τ ′ Γ = [vark -→ τk
k][this -→ τ]

Γ(y) = τ ′′ Γ * sj | Cj
j

Γ * s! | C!
!

C = {τ ′′ ≺ τ ′, τ introduces cl meth (clk vark
k
) before F} ∪

S

j Cj ∪
S

! C!

*τ,F refines method cl meth (clk vark
k
) {sj

j ; Super.meth(); s!
!; return y; } | C

(WF-Refines-Method)

*F rcld | C Class refinement well-formed in feature subject to constraints

C %= cl type(C) = τ *τ clk methk (cl!,k var!,k
!
) mbk | Ck

k

*τ,F rmdm | C′
m

m

ξ =
S

j{fj %∈ fields(parent(C))} υ =
S

j{clj fj unique in C} υ′ =
S

k{clk methk (cl!,k var!,k
!
) unique in C}

ξ′ =
S

k{pmtype(C, methk) = cl!,k
!
→ clk}

*F refines class C extending cl {clj fj
j
;*τ clk methk (cl!,k var!,k

!,k
) mbk

k

; rmd!,k
!,k

} |
S

k Ck ∪
S

m C′

m∪

{defined cl, defined clj
j
, C introduced before F , } ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-Refines-Class)

Figure 9: Typing Rules for LFJ method and class refinements.

judgement in one direction and induction on the length of
the path in the other. We can then show that the two type
systems are equivalent by examination of the structure of
P . At each level of the typing rules, the structural premises
are identical and each of the external premises of the rules is
represented in the set of constraints. As a result of the pre-
vious argument, satisfaction of the constraints guarantees
that premises of the typing rules hold for each structure in
P . Having shown the two type systems are equivalent, the
proofs of progress and preservation for the constraint-based
type system follow immediately.

Theorem 4.2 (Soundness of LFJ Type System). Let PS
be an LFJ product specification for feature table FT and C
be a set of constraints such that * FT | C. If PS |= C,
then the composition of the features in PS produces a valid,
well-formed LJ program.

Proof. This proof is decomposed into three key lemmas, cor-
responding to the three kinds of typing constraints.

(i) Let PS be a product specification for feature table FT
and C be a set of constraints such that * FT | C. If
PS |= C, composition of the features in PS produces
a valid LJ program, P .

For each class or method refinement of a feature F in PS ,
a composition constraint is generated by the LFJ typing
rules. Each of these are satisfied according to the definition
in Figure 11, allowing us to conclude that a feature with
appropriate declarations appears before F in PS . Each of
these declarations will appear in the program generated by
the features preceding F , allowing us to conclude that the
composition succeeds for each feature in PS .

(ii) Given (i), P is typeable in the constraint-based LJ type
system with constraints C′.

In essence, we must show that the premises of the constraint-
based LJ typing judgements hold. Our assumption that each
class in PS is a descendant of Object ensures that P has
an acyclic, well-founded class hierarchy. The premises for

ftype(P, τ1, f) = τ3 τ2 ∈ path(P, τ3)

P |= τ2 ≺ ftype(τ1, f)

ftype(P, τ1, f) = τ3 τ3 ∈ path(P, τ2)

P |= ftype(τ1, f) ≺ τ2

mtype(P, τ, m) = π′

k

k
→ π′ π′ ∈ path(P, π)

πk ∈ path(P, π′

k)
k

P |= mtype(τ, m) ≺ πk
k → π

type(cl) ∈ path(P, type(cl))

P |= defined(cl)

τ2 ∈ path(P, τ1)

P |= τ1 ≺ τ2

ftype(P,parent(C), f) = ⊥

P |= f %∈ fields(parent(C))

mtype(P,parent(C), m) = ⊥ ∨
mtype(P,parent(C), m) = τ

P |= pmtype(C, m) = τ

τ.ms ∈ H τ %∈ introductions(B!
!
)

PS = Ak
k
FB!

!
HCj

j

PS |= τ introduces ms before F

PS = Ak
k
FB!

!
HCj

j
C ∈ H

PS |= C introduced before F

type(C) = τ
∀A, B ∈ PS , τ.cl1 f ∈ A ∧ τ.cl2 f ∈ B → cl1 = cl2

PS |= cl f unique in C

type(C) = τ ms1 = cl m (vdk
k
)

ms2 = cl′ m (vd′

k

k
)

∀A,B ∈ PS , τ.ms1 ∈ Aτ.ms2 ∈ B → ms1 = ms2

PS |= cl m (vdk
k
) unique in C

F %∈ PS

PS |= InF ⇒ ξk
k

F ∈ PS PS |= ξk
k

PS |= InF ⇒ ξk
k

Figure 11: Satisfaction of typing constraints.

the LJ methods and statements are identical, leaving class
typing rules for us to consider. The LJ typing rules require
that the method and field names for a class be distinct.
These premises are removed by the LFJ typing rules, as the
members of a class are not finalized until after composition.
This requirement is instead enforced by the uniqueness con-
straints, which are satisfied when a method or field name is
only introduced by a single feature. Since PS |= C, it follows
that the premises of the LJ typing rules hold for P and that
there exists a set of constraints C′ such that * P | C′.

(iii) Given (ii), P satisfies the constraints in C′ and is thus
a well-formed LJ program.

We break this proof into two pieces:

(a) C′ ⊆ C.

The key observation for this proof is that every class, method,
and statement in P originated from some feature in PS .
Thus, for any constraint on a construct in P , there is a
corresponding constraint on the feature in PS that gener-
ated that construct. The most interesting case is for the

constraints generated by method bodies: a statement con-
tained in a method body can come from either the initial
introduction of that method or advice added by a method
refinement. In either case, the statement was included in
some feature in PS and thus generated some set of con-
straints in C. Because method signatures are fixed across
refinement, the context used in typing both kinds of state-
ments is the same as that used for the method in the final
composition. This does not entail that C = C′, however, as
there could be some construct in PS that is overwritten by
an introduction in a subsequent feature.

(b) For any structural constraint K, if PS |= K, then P |=
K.

This reduces to showing that class declaration returned by
CT (PS,C) is the same that returned by path(P, C). This
follows from tracing the definition of the CT function down
to the final introduction of C in the product line. From
here, we know that this class appears in the program syn-
thesized from the product specification starting with this
feature. Further refinements of this class are reflected in the
· operator used recursively to build CT ; each refinement suc-
ceeds by (i) above. Since the two functions are the same, the
helper functions which call path in P (i.e. ftype, mtype)
and those that use CT in PS return the same values. Thus,
the satisfaction judgements for PS and P are equivalent.

All constraints in C′ appear in C, so PS |= C′. By (b)
above, it follows that P |= C′. A type(C) ≺ type(Object)
is generated for each class in P , so P has a well-founded,
acyclic class hierarchy. Futhermore, the definition of com-
position ensures that all classes in P have distinct names.
By Theorem 4.1, P must be a well-formed LJ program.

5. TYPE-CHECKING PRODUCT LINES
The LFJ type system checks whether a given product

specification falls into the subset of type-safe specifications
described by a feature table’s constraints. These constraints
remain static regardless of the product specification being
checked, as does the feature model used to describe mem-
bers of a product line. We now show how to relate the
product specifications described by the two by expressing
both as propositional formulas. Checking safe composition
of a product line amounts to showing that the programs al-
lowed by the feature model are contained within the set of
type-safe products.

Feature models are compact representations of proposi-
tional formulas [6], making propositional logic a natural for-
malism in which to relate feature models to the constraints
generated by the LFJ type system. The variables used
in the propositional representation of feature models have
the form of the first two entries in Figure 12. A prod-
uct line is described by the satisfying assignments to its
feature model. The designer of the product line from the
introduction might want it to only include a specialized ac-
count class, which they could express with the feature model:
InAccount → (InInvestmentAccount ∨ InRetirementAccount).

InA : Feature A is included.
PrecA,B : Feature A precedes Feature B.
Styτ1,τ2

: τ1 is a subtype of τ2.

Figure 12: Description of propositional variables.

5.1 Safety of Feature Models
We now consider how to use the constraints generated by

the LFJ type system to describe type-safe product specifica-
tions in propositional logic. A product specification satisfies
an included feature’s constraints by satisfying each of the
constraints on its constructs. We can leverage this by trans-
lating each constraint into a propositional description of the
product specifications which satisfy it. The set of product
specifications which satisfy the constraints on a feature F is
one that satsifies the conjuction of those formulas, CF . Thus,
the set of well-typed product specifications is described by
V

F InF → CF .
The rules for translating constraints are given in Fig-

ure 13. The translation of the compositional, uniquess and
feature constraints is straightforward. Structural constraints
enforce two important properties: inclusion of classes and
class members and subtyping. A product specification sat-
isfies the former if some included feature introduces that
construct and it is not overwritten by the reintroduction of
a class. This is enforced by the Finalcl,F predicate which
holds when F is not followed by a feature G which rein-
troduces cl and the FinalIncl,F predicate which further re-
quires that F does not overwrite cl if it refines it. Subtyping
constraints are represented by the Styτ,τ ′ variables. Truth
assignments to these variables are forced to respect the class
hierachy of a product specification by the final four rules in
Figure 14. In effect, the Sty Total rule builds the tran-
sitive closure of the subtyping relation, starting with the
parent/child relationships established by the last definition
of a class in a product specification.

Our formulas include the Prec variables to capture fea-
ture ordering in product specifications because it affects
composition. A truth assignment must respect the prop-
erties of the precedence relation in order for it to repre-
sent valid product specifications. The first four formulas in
Figure 14 impose these properties: the precedence relation
must be transitive, irreflexive, antisymmetric, and total on
all features included in a product specification. A satisfy-
ing assignment to the conjunction of all the constraints in
Figure 14, WFSpec , obeys the properties of the precedence
and subtyping relations, and thus corresponds to a unique
product specification.

In order to type-check a product line, we first generate
the constraints on a feature table using the LFJ typesys-
tem. We then translate these constraints according to the
rules in Figure 13, building a formula ξ describing the set
of type-safe programs. With this in hand, checking that a
product line is contained in the set of type-safe programs
is reduced to checking the validity of WFSpec ∧ FM → ξ.
The left side of the implication restricts truth assignments
to valid product specifications which are allowed by the fea-
ture model FM , while the right side ensures that a product
specification is in the set of type-safe programs. A falsi-
fying assignment corresponds to a member of the product
line which isn’t type-safe; this assignment can be used to
determine the exact source of a typing problem.

5.2 Feasibility of Our Approach
While checking the validity of FM ∧ WFSpec → φsafe is

co-NP-complete, the SAT instances generated by our ap-
proach are highly structured, making them amenable to fast
analysis by modern SAT solvers. We have previously im-
plemented a system based on our approach for checking safe

composition of AHEAD software product lines [16]. The size
statistics for the four product lines analyzed are presented
in Table 1. The tools identified several errors in the existing
feature models of these product lines. It took less than 30
seconds to analyze the code, generate the SAT formula, and
run the SAT solver for JPL, the largest product line. This
is less than the time it took to generate and compile a single
program in the product line. The term Jak in Table 1 refers
to the Jakarta language (the basis for LFJ).

Product # of # of Code Base Program
Line Features Prog. Jak/Java Jak/Java

LOC LOC

PPL 7 20 2000/2000 1K/1K
BPL 17 8 12K/16K 8K/12K
GPL 18 80 1800/1800 700/700
JPL 70 56 34K/48K 22K/35K

Table 1: Product Line Statistics from [12].

6. RELATED WORK
An earlier draft of this paper was presented at FOAL [11].

Our strategy of representing feature models as propositional
formulas in order to verify their consistency was first pro-
posed in [6]. The authors checked the feature models against
a set of user-provided feature dependences of the form F →
A∨B for features F , A, and B. This approach was adopted
by Czarnecki and Pietroszek [10] to verify software prod-
uct lines modelled as feature-based model templates. The
product line is represented as an UML specification whose
elements are tagged with boolean expressions representing
their presence in an instantiation. These boolean expres-
sions correspond to the inclusion of a feature in a product
specification. These templates typically have a set of well-
formedness constraints which each instantiation should sat-
isfy. In the spirit of [6], these constraints are converted to
a propositional formula; feature models are then checked
against this formula to make sure that they do not allow
ill-formed template instantiations.

The previous two approaches relied on user-provided con-
straints when validating feature models. The genesis of our
current approach was a system developed by Thaker et al.
[16] which generated the implementation constraints of an
AHEAD product line of Java programs by examining field,
method, and class references in feature definitions. Analysis
of existing product lines using this system detected previ-
ously unknown errors in their feature models. The authors
identified five properties that are necessary for a composi-
tion to be well-typed, and gave constraints which a product
specification must satisfy for the properties to hold. The
constraints used by the LFJ type system are the ”proper-
ties” in our approach and the translation from our type sys-
tem’s constraints to propositional formulas builds the prod-
uct specification ”constraints” used by Thaker et al. Be-
cause we use the type system to generate these constraints,
we are able to leverage the proofs of soundness to guarantee
safe composition by using constraints that are necessary and
sufficient for type-safety.

If features are thought of as modules, the feature model
used to describe a product line is a module interconnection
language [13]. Normally, the typing requirements for a mod-

τ1 ≺ τ2 ⇒ Styτ1,τ2

τ2 ≺ ftype(τ1, f) ⇒
W

{Styτ2,cl ∧ Styτ1,type(cld) ∧ FinalInid(cld),F | ∃cld ∈ clds(F),∃cl, cl f ∈ fds(cld)}∨
W

{Styτ2,cl ∧ Styτ1,type(rcld) ∧ Finalid(rcld),F | ∃rcld ∈ rclds(F),∃cl, cl f ∈ fds(rcld)}
ftype(τ1, f) ≺ τ2 ⇒

W

{Stycl,τ2
∧ Styτ1,type(cld) ∧ FinalInid(cld),F | ∃cld ∈ clds(F)∃cl, cl f ∈ fds(cld)}∨

W

{Stycl,τ2
∧ Styτ1,type(rcld) ∧ Finalid(rcld),F | ∃rcld ∈ rclds(F),∃cl, cl f ∈ fds(rcld)}

mtype(τ, m) ≺ πk
k → π ⇒

W

{Stycl,π ∧
V

k Styπk,clk
∧ FinalInid(cld),F | ∃cld ∈ clds(F),

∃cl, clk
k
, vk

kcl m(clkvk
k
) ∈ mds(cld)}∨

W

{Stycl,π ∧
V

k Styπk,clk
∧ Finalid(rcld),F | ∃rcld ∈ rclds(F),

∃cl, clk
k
, vk

kcl m(clkvk
k
) ∈ mds(rcld)}

defined(cl) ⇒
W

{InF | ∃cld ∈ clds(F), id(cld) = cl}
τ introduces ms before F⇒

W

{InG ∧ PrecG,F∧
V

{InH → PrecF,H ∨ PrecH,G | ∃cld′ ∈ clds(H)), type(id(cld′)) = τ}
| ∃cld ∈ clds(G), type(id(cld)) = τ ∧ ms ∈ methods(mds(cld))}∨

W

{InG ∧ PrecG,F ∧
V

{InH → PrecF,H ∨ PrecH,G | ∃cld′ ∈ clds(H)), type(id(cld′)) = τ}
| ∃rcld ∈ rclds(G), type(id(rcld)) = τ ∧ ms ∈ methods(mds(rcld))}

C introduced before F ⇒
W

{InG ∧ PrecG,F | ∃cld ∈ clds(F), id(cld) = C}
cl f unique in C ⇒

V

{¬InF | ∃cld ∈ clds(F), id(cld) = C ∧ ∃cl′, cl′f ∈ fds(cld) ∧ cl %= cl′}∧
V

{¬InF | ∃rcld ∈ rclds(F), id(rcld) = C ∧ ∃cl′, cl′f ∈ fds(rcld) ∧ cl %= cl′}

cl m (vdk
k
) unique in C ⇒

V

{¬InF | ∃cld ∈ clds(F), id(cld) = C ∧ ∃cl′, vd′

k

k
, cl′m (vd′

k

k
) ∈ mds(cld) ∧ cl %= cl′∨

(
W

k vdk %= vd′

k)}∧
V

{¬InF |∃rcld ∈ rclds(F), id(rcld) = C ∧ ∃cl′, vd′

k

k
, cl′m (vd′

k

k
) ∈ mds(rcld) ∧ cl %= cl′∨

(
W

k vdk %= vd′

k)}
f %∈ fields(parent(C)) ⇒

V

{InF ∧ FinalInid(cld),F → ¬Stytype(C),cl |
∃cld ∈ clds(F), id(cld) = cl ∧ C %= cl ∧ ∃cl′, cl′f ∈ fds(cld)}∧

V

{InF ∧ Finalid(rcld),F → ¬Stytype(C),cl |
∃rcld ∈ rclds(F), id(rcld) = cl ∧ C %= cl ∧ ∃cl′, cl′f ∈ fds(rcld)}

pmtype(C, m) = τ ⇒
V

{InF ∧ FinalInid(cld),F → ¬Stytype(C),cl | ∃cld ∈ clds(F), id(cld) = cl
∧C %= cl ∧ m ∈ methods(cld) ∧ mtype(cld, m) %= τ

V

{InF ∧ Finalid(cld),F → ¬Stytype(C),cl | ∃rcld ∈ rclds(F), id(rcld) = cl
∧C %= cl ∧ m ∈ methods(rcld) ∧ mtype(rcld, m) %= τ

InF ⇒ ξk
k

⇒ InF →
V

k ξk
k

where
FinalIncl,F ↔ InF ∧

V

{InG → PrecG,F | cl ∈ ids(clds(G)) ∧ G %= F}
Finalcl,F ↔ InF ∧

V

{InG → PrecG,F | cl ∈ ids(clds(G))}

Figure 13: Translation of constraints to propositional formulas.

ule would be explicitly listed by a “requires-and-provides
interface” for each module. We instead infer a module’s “re-
quires” interface automatically by considering the minimum
structural requirements imposed by the the type system.
We verify that these interface constraints are satisfied by
the implicit “provides” interface for each feature module in
a product specification. If composition is a linking process,
we are guaranteeing that there will be no linking errors. The
difference with normal linking is that we check all combina-
tions of linkings allowed by the feature model.

A similar type system was proposed by Anacona et al.
to type check, compile, and link source code fragments [1].
Like features, the source code fragments they considered
could reference external class definitions, requiring other
fragments to be included in order to build a well-typed pro-
gram. These code fragments were compiled into bytecode
fragments augmented with typing constraints that ranged
over type variables, similar to the constraints used in the
LFJ typing rules. The two approaches use these constraints
for different purposes, however. Anacona et al. solve these
constraints during a linking phase which combines individu-
ally compiled bytecode fragments. If all the constraints are
resolved during linking, the resulting code is the same as if
all the pieces had been globally compiled. Our system uses

these constraints to type check a family of programs which
can be built from a known set of features.

Apel et al. [3] propose a type system for Feature Feather-
weight Java (FFJ), a model of feature-oriented programming
based on Featherweight Java [12] and prove soundness for it
and some further extensions of the model. This type system
is designed to check a single product specification, instead of
the entire product line. Recently, the authors have extended
this work to type check product lines built from FFJ [4]. A
key difference between LFJ and FFJ is the use of product
specifications: instead of composing a product specification
to synthesize a LJ program, the FFJ semantics uses it as the
final program. gdeep [2] is a language-independent calcu-
lus designed to capture the core ideas of feature refinement.
The type system for gdeep transfers information across fea-
ture boundaries and is combined with the type system of an
underlying language to type feature compositions. gdeep

uses a new type system which is hard to relate to existing
languages, while the LFJ type system exploits the existing
type system of a language to guarantee safe composition.

7. CONCLUSION
A feature model is a set of constraints describing how a set

of features may be composed to build the family of programs

Prec Total: ∀A,B, A %= B, InA ∧ InB ↔ (PrecA,B ∨ PrecB,A)
Prec ASym: ∀A,B,PrecA,B → ¬PrecB,A

Prec Irrefl: ∀A,¬PrecA,A

Prec Trans: ∀A,B, C, (PrecA,B ∧ PrecB,C) → PrecA,C

Sty Refl: ∀τ,Styτ,τ ↔
W

{InF | cld ∈ clds(F) ∧ type(id(cld)) = τ}
Sty Obj: StyObject,Object

Sty ASym: ∀τ1, τ2, Styτ1,τ2
→ ¬Styτ2,τ1

Sty Total: ∀τ1, τ2, τ3,Styτ1,τ2
↔((Styτ1,τ3

∧ Styτ3,τ2
)∨

W

{InF | ∃cld ∈ clds(F), type(id(cld)) = τ1 ∧ type(parent(cld)) = τ2}∧
V

{InG → PrecG,F | G %= F ∧ ∃cld ∈ clds(G), type(id(cld)) = τ1}∧
V

{InG → PrecG,F | G %= F ∧ ∃rcld ∈ rclds(G), type(id(rcld)) = τ1}∨
W

{InF | ∃rcld ∈ rclds(F), type(id(rcld)) = τ1 ∧ type(parent(cld)) = τ2 ∧ id(rcld) %∈
ids(clds(F))}∧
V

{InG → PrecG,F | G %= F ∧ ∃cld ∈ clds(G), type(id(cld)) = τ1}∧
V

{InG → PrecG,F | G %= F ∧ ∃rcld ∈ rclds(G), type(id(rcld)) = τ1})

Figure 14: Constraints on the precedence and subtyping relations.

in a product line. This feature model is safe if it only allows
the construction of well-formed programs. Simply enumer-
ating all the programs (feature combinations) described by
the feature model is computationally expensive and imprac-
tical for large product lines. In order to statically verify that
a product line is safe, we have developed a calculus for study-
ing feature composition in Java and a constraint-based type
system for this language. The constraints generated by the
typing rules provide an interface for each feature. We have
shown that the set of constraints generated by our type sys-
tem is sound with respect to LJ’s type system. We verify the
type safety of a product line by constructing SAT-instances
from the interfaces of each feature. The satisfaction of the
formula built from these SAT-instances ensures the product
specification corresponding to the satisfying assignment will
generate a well-typed LJ program. Using the feature model
to guide the SAT solver, we are able to type check all the
members of a product line, guaranteeing safe composition
for all programs described by that feature model.

8. REFERENCES
[1] D. Ancona and S. Drossopoulou. Polymorphic

bytecode: Compositional compilation for java-like
languages. In In ACM Symp. on Principles of
Programming Languages 2005. ACM Press, 2005.

[2] S. Apel and D. Hutchins. An overview of the gDEEP
calculus. Technical Report MIP-0712, Department of
Informatics and Mathematics, University of Passau,
November 2007.

[3] S. Apel, C. Kästner, and C. Lengauer. Feature
Featherweight Java: A calculus for feature-oriented
programming and stepwise refinement. In GPCE ’08:
Proceedings of the 7th International Conference on
Generative Programming and Component Engineering.
ACM Press, Oct. 2008.

[4] S. Apel, C. Kästner, A. GröSSlinger, and C. Lengauer.
Type-safe feature-oriented product lines. Technical
Report MIP-0909, Department of Informatics and
Mathematics, University of Passau, June 2009.

[5] D. Batory. Feature-oriented programming and the
AHEAD tool suite. Software Engineering, 2004. ICSE
2004. Proceedings. 26th International Conference on,
pages 702–703, May 2004.

[6] D. Batory. Feature models, grammars, and
propositional formulas. In In Software Product Lines
Conference, LNCS 3714, pages 7–20. Springer, 2005.

[7] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/j:
controlling the scope of change in java. In Proc. of
ACM Conf. on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA),
pages 177–189, New York, NY, USA, 2005. ACM.

[8] Y. Bertot and P. Castéran. Interactive Theorem
Proving and Program Development. Springer-Verlag,
Berlin, 2004.

[9] K. Czarnecki and U. W. Eisenecker. Components and
generative programming (invited paper). SIGSOFT
Softw. Eng. Notes, 24(6):2–19, 1999.

[10] K. Czarnecki and K. Pietroszek. Verifying
feature-based model templates against well-formedness
ocl constraints. In GPCE ’06: Proceedings of the 5th
international conference on Generative programming
and component engineering. ACM Press, 2006.

[11] B. Delaware, W. Cook, and D. Batory. A
machine-checked model of safe composition. In
Foundations of Aspected-Oriented Languages, 2009.

[12] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[13] R. Prieto-Diaz and J. Neighbors. Module
interconnection languages: A survey. Technical report,
University of California at Irvine, August 1982. ICS
Technical Report 189.

[14] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine,
T. Ridge, S. Sarkar, and R. Strnǐsa. Ott: effective tool
support for the working semanticist. In ICFP ’07:
Proceedings of the 12th ACM SIGPLAN international
conference on Functional programming, pages 1–12,
New York, NY, USA, 2007. ACM.

[15] R. Strnisa, P. Sewell, and M. J. Parkinson. The Java
module system: core design and semantic definition. In
R. P. Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S.
Jr., editors, OOPSLA, pages 499–514. ACM, 2007.

[16] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In GPCE ’07:
Proceedings of the 6th international conference on
Generative programming and component engineering,
pages 95–104, New York, NY, USA, 2007. ACM.

