Fitting the Pieces Together:
A Machine-Checked Model of Safe Composition®

Benjamin Delaware, William R. Cook, Don Batory
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712 U.S.A.
{bendy,wcook,batory}@cs.utexas.edu

ABSTRACT

Programs of a software product line can be synthesized by
composing features which implement a unit of program func-
tionality. In most product lines, only some combination of
features are meaningful; feature models express the high-
level domain constraints that govern feature compatibility.
Product line developers also face the problem of safe compo-
sition — whether every product allowed by a feature model
is type-safe when compiled and run. To study the problem
of safe composition, we present Lightweight Feature Java
(LFJ), an extension of Lightweight Java with support for
features. We define a constraint-based type system for LEJ
and prove its soundness using a full formalization of LFJ
in Coq. In LFJ, soundness means that any composition of
features that satisfies the typing constraints will generate
a well-formed LJ program. If the constraints of a feature
model imply these typing constraints then all programs al-
lowed by the feature model are type-safe.

Categories and Subject Descriptors
F.3.3 [Studies of Program Constructs]: Type structure

General Terms

Design, Languages

Keywords

product lines, type safety, feature models

1. INTRODUCTION

Programs are typically developed over time by the accu-
mulation of new features. However, many programs break
away from this linear view of software development: remov-
ing a feature from a program when it is no longer useful, for
example. It is also common to create and maintain multiple

*This material is based upon work supported by the Na-
tional Science Foundation under Grant CCF-0724979.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ESEC-FSE'09, August 23-28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08 ...$5.00.

feature Sync {
refines class Account
extends Object{
static Lock lock

feature Bank {
class Account
extends Object{
int balance = 0;

. . = new Lock();
vc;:]dt L:;\c/jvaBt:I(m_t <) refines void update(int x) {
N lock.lock();

balance + x;)
balance = newBal; Super.update();
lock.unlock();

33 0
(a) Bank Feature

(b) Synchronized Feature

class Account extends Object {
int balance = 0;
[static Lock lock = new Lock(); |
void update(int x) {
lock.lock();
int newBal = balance + x;
balance = newBal;

5

(¢) A composed program: SynceBank

Figure 1: Account with synchronization feature

versions of a product with different sets of features. The
result is a product line, a family of related products.

The inclusion, exclusion, and composition of features in a
product line is easier if each feature is defined as a modular
unit. A given feature may involve configuration settings,
user interface changes, and control logic. As such, features
typically cut across the normal class boundaries of programs.
Modularizing a program into features, or feature modularity,
is quite difficult as a result.

There are many systems for feature modularity based on
Java, such as the AHEAD tool suite [5] and Classbox/J [7].
In these systems, a feature is a collection of Java class defini-
tions and refinements. A class refinement is a modification
to an existing class, adding new fields, new methods, and
wrapping existing methods. When a feature is applied to a
program, it introduces new classes to the program and its
refinements are applied to the existing classes.

Figure 1 is a simple example of a product line containing
two features, Bank and Sync. The Bank feature in Figure la
implements an elementary Account class with a balance field
and update method. Feature Sync in Figure 1b implements
a synchronization feature so that accounts can be used in a
multi-threaded environment. Sync has a refinement of class
Account that modifies update to use a lock, which is intro-

duced as a static variable. Method refinement is accom-
plished by inheritance; Super.update() indicates a substitu-
tion of the prior definition of method update(x). Composing
the refinement of Figure 1b with the class of Figure la pro-
duces a class that is equivalent to that in Figure 1c. The
Bank feature can also be used on its own. While this ex-
ample is simple, it exemplifies a feature-oriented approach
to program synthesis: adding a feature means adding new
members to existing classes and modifying existing methods.
The following section presents a more complex example and
more details on feature composition.

Not all features are compatible, and there may be complex
dependencies among features. A feature model defines the
legal combinations of features in a product line. A feature
model can also represent user-level domain constraints that
define which combinations of features are useful[9].

In addition to domain constraints, there are low-level im-
plementation constraints that must also be satisfied. For
example, a feature can reference a class, variable, or method
that is defined in another feature. Safe composition guar-
antees that a program synthesized from a composition of
features is type-safe. While it is possible to check individ-
ual programs by building and then compiling them, this is
impractical. In a product line, there can be thousands of
programs; it is more desirable to ensure that all legal pro-
grams are type-safe without enumerating the entire product
line and compiling each program. This requires a novel ap-
proach to type checking.

We formalize feature-based product lines using an object-
oriented kernel language extended with features, called
Lightweight Feature Java (LFJ). LFJ is based on Lightweight
Java [15], a subset of Java that includes a formalization in
the Coq proof assistant [8], using the Ott tool [14]. A pro-
gram in LFJ is a sequence of features containing classes and
class refinements. Multiple products can be constructed by
selecting and composing appropriate features according to a
product specification - a composition of features.

Feature modules are separated by implicit interfaces that
govern their composition. One solution to type checking
these modules is to require explicit feature interfaces. We
instead infer the necessary feature interfaces from the con-
straints generated by a constraint-based type system for
LFJ. Regardless of whether we use feature interfaces or not,
we would have to employ the same analysis to ensure safe
composition. The type system and its safety are formal-
ized in Coq. We then show how to relate the constraints
produced by the type system to the constraints imposed by
a feature model, using a reduction to propositional logic.
This reduction allows us to statically verify that a feature
model will only allow type-safe programs without having to
generate and check each product individually.

2. SAFECOMPOSITION

Features can make significant changes to classes. Features
can introduce new methods and fields to a class and alter
the class hierarchy by changing a the parent of a class. They
can also refine existing methods by adding new statements
before and after a method body or by replacing it altogether.

The features in Figure 2 illustrate how the Account class
in the feature Bank can be modified. The RetirementAccount
feature refines the Account class by updating its parent to
Lehman, introducing a new field for a 401k account balance
with an initial balance of 10000, and rewriting the defini-

feature InvestmentAccount {
refines class Account extends WaMu {
int 401kbalance = 0;
refines void update (int x) {
x = x/2; Super.update(); 401kbalance += x;
1}

feature RetirementAccount {
refines class Account extends Lehman {
int 401kbalance = 10000;
int update (int x) {
401kbalance += x;

H}

feature Investor {
class AccountHolder extends Object {
Account a = new Account();
void payday (int x; int bonus) {
a.401kbalance += bonus;
return a.update(x);

1}

Figure 2: Definitions of InvestmentAccount, Investor, and
RetirementAccount features.

class Account extends Lehman{
int balance = 0;
int 401kbalance = 10000;
void update(int x) {
401kbalance += x;

H

Figure 3: RetirementAccounteBank

tion for the update method to add x to the 401k balance.
InvestmentAccount refines Account differently, updating its
parent to WaMu, introducing a 401k field, and refining the
update method to put half of x into a 401k before adding
the rest to the original account balance.

A software product line can be modelled as an algebra
that consists of a set of features and a composition oper-
ator . We write M = {Bank, Investor, RetirementAccount,
InvestmentAccount} to mean the product line M has the fea-
tures declared above. One or more features of a product line
build base programs through a set of class introductions:

Bank a program with only the generic Account class
Investor a program with only the AccountHolder class
The remaining features contain program refinements and

extensions:
InvestmentAccounteBank builds an investment account

RetirementAccounteBank builds a retirement account
where Be A is read as “feature B refines program A” or equiv-
alently “feature B is added to program A”. A refinement can
extend the program with new definitions or modify existing
definitions. The design of a program is a composition of
features called a product specification.

P1 = RetirementAccounteBank Fig. 3

P> = InvestmentAccounteBank Fig. 4

P3; = RetirementAccountelnvestoreBank Fig. 5

This model of software product lines is based on step-
wise development: one begins with a simple program (e.g.,
constant feature Bank) and builds more complex programs
by progressively adding features (e.g., adding feature Invest-
mentAccount to Bank).

A set of n features can be composed in an exponential
number of ways to build a set of order n! programs. A

class Account extends WaMu{

int balance = 0;

int 401kbalance = 0;

void update(int x) {
X = x/2;
int newBal = balance + x;
balance = newBal;
401kbalance += x;

1

Figure 4: InvestmentAccounteBank

class Account extends Lehman{
int balance = 0;
int 401kbalance = 10000;
void update(int x) {
401kbalance += x;

1

class AccountHolder extends Object {
Account a = new Account();
void payday (int x; int bonus) {
a.401kbalance += bonus;
return a.update(x);

H

Figure 5: RetirementAccountelnvestoreBank

composition might fail to meet the dependencies of its con-
stituent features, so only a subset of the programs built from
this set of features is well-typed. The feature model defines
the set of programs which belong to a product line by con-
straining the ways in which features can be composed. The
goal of safe composition is to ensure that the product line
described by a feature model is contained in the set of well-
typed programs, i.e. that all of its programs are well-typed.

The combinatorial nature of product lines presents a num-
ber of problems to determining safe composition. The mem-
bers and methods of a class referenced in a feature might be
introduced in several different features. Consider the Ac-
countHolder class introduced in the Investor feature: this
account holder is the employee of a company which gives a
small bonus with each paycheck which the employee adds
directly into the 401k balance in his account. In order for
a composition including the Investor feature to build a well-
typed Java program, it must be composed with a feature
that introduces this field to the Account class, in this case ei-
ther InvestmentAccount or RetirementAccount. This require-
ment could also be met by a feature which sets the parent
of Account to a different class from which it inherits the
401kbalance field. Since a parent of a class can change
through refinement, the inherited fields and methods of the
classes in a feature are dependent on a specific product spec-
ification. Each feature has a set of type-safety constraints
which can be met by the combination of a number of dif-
ferent features, each with their own set of constraints. To
study the interaction of feature composition and type safety,
we first develop a model of Java with features.

3. LIGHTWEIGHT FEATURE JAVA

Lightweight Feature Java (LFJ) is a kernel language that
captures the key concepts of feature-based product lines of
Java programs. LFJ is based on Lightweight Java (LJ), a
minimal imperative subset of Java [15]. LJ supports classes,
mutable fields, constructors, single inheritance, methods and

dynamic method dispatch. LJ does not include local vari-
ables, field hiding, interfaces, inner classes, or generics. This
imperative kernel provides a minimal foundation for study-
ing a type system for feature-oriented programming. LJ
is more appropriate for this work than Featherweight Java
[12] because of its treatment of constructors. When com-
posing features, it is important to be able to add new mem-
ber variables to a class during refinement. Featherweight
Java requires all member variables to be initialized in a sin-
gle constructor call. As a result, adding a new member
variable causes all previous constructor calls to be invalid.
Lightweight Java allows such refinements through its sup-
port of more flexible initialization of member variables. In
addition, Lightweight Java has a full formalization in Coq,
which we have extended to prove the soundness of LFJ me-
chanically. The proof scripts for the system are available at
http://wuw.cs.utexas.edu/ "bendy/featurejava.php.

Feature Table

FT == {FD}
Product specification

PS = F
Feature declarations

FD := feature F {cld; rcld}
Class refinement

rcld = refines class C extending cl {fd; md; rmd}
Method refinement

rmd = refines method ms {rmb}
Body of method refinement

rmb = 3; Super.meth(); S; return y

Figure 6: Modified Syntax of Lightweight Feature Java.

The syntax extensions LFJ adds to LJ in order to sup-
port feature-oriented programming are given in Figure 6.
The syntax of LFJ is modelled after the feature-oriented ex-
tensions to Java used in the AHEAD tool suite. A feature
definition FD maps a feature name F' to a list of class dec-
larations cld and a list of class refinements rcld. A class
refinement 7cld includes a class name C, a set of LJ field
and method introductions, fd and md, a set of method re-
finements rmd, and the name of the updated parent class
cl. A method refinement advises a method with signature
ms with two lists of LJ statements 3 and an updated return
value y. When applied to an existing method, a method re-
finement wraps the existing method body with the advice.
The parameters of the original method are passed implic-
itly because the refinement has the same signature as the
method it refines. The feature table F'T" contains the set of
features used by a product line. A product specification PS
selects a distinct list of feature names from the feature table.

3.1 Feature Composition

In LJ, a program P is a set of class definitions. The o
operator composes a feature FD = feature F' {cld; rcld}
with an LJ program P to build a refined program:

FDeP = {cld}U{rcld-cld | cld € PAid(cld) & ids(cld)} (1)

Composition builds a refined program by first introducing
the class definitions in cld, replacing any classes in P which
share an identifier with a class in cld. The remaining classes
in P are added to this set after applying the refinements
in rcld using the - operator. For all classes cld € P with

an identifier not refined by rcld, - is simply the identity
function. If a class refinement rcld in rcld has the same
identifier as cld, - builds the refined class by first advising
the methods of cld with the method refinements in rcld. The
fields and methods introduced by rcld are then added to this
class and its parent is set to the superclass named in rcld.
Composition fails if P lacks a class refined by rcld or if a
class refined by rcld lacks a method which is refined by rcld.

A product specification builds an LJ program by recur-
sively composing the features it names in this manner, start-
ing with the empty LJ program. Each LFJ feature table can
construct a family of programs through composition, with
the set of class definitions determined by the sequence of
features which produced them. The class hierarchy is also
potentially different in each program: refinements can alter
the parent of a class, and two mutually exclusive features
can define the same class with a different parent.

4. TYPECHECKING FEATURE MODELS

A feature model is safe if it only allows the creation of well-
formed LJ programs. Any particular product specification
can be checked by composing its features and then checking
the type safety of the resulting program in the standard LJ
type system. A naive approach to checking the safety of a
feature model is simply to iterate over all the programs it
describes, type checking each individually. This approach
constructs a potentially exponential number of programs,
making it computationally expensive. Instead, we propose
a type system which allows us to statically verify that all
programs described by a feature model are type-safe without
having to synthesize the entire family of programs.

The key difficulty with this approach is that features are
typically program fragments which make use of class defi-
nitions made in other features; these external dependencies
can only be resolved during composition with other features.
Every LJ construct has two categories of requirements which
must be met in order for it to be well-formed in the LJ type
system. The first category consists of premises which only
depend on the structure of the construct, e.g. the require-
ment that the parameters of a well-formed method be dis-
tinct. The remaining premises access information from the
surrounding program through the path : P x C' — cld func-
tion which maps identifiers to their definitions in P. For
example, when assigning y to x in a method body, the path
function is used to determine that the type of y is a subtype
of the type of variable z. Intuitively, these premises define
the structure of the programs in which LJ constructs are
well-formed. In the standard LJ type system, the structure
of the surrounding program is known. In a software product
line, however, each feature can be included in a number of
programs, and the final makeup of the surrounding program
depends on the other features in a product specification.
Converting these kinds of premises into constraints provides
an explicit interface for an LJ construct with any surround-
ing program. A feature’s interface determines which features
must be included in a product specification in order for its
constructs to be well-formed in the final LJ program.

4.1 LFJ Type System

In this section, we present a constraint-based type sys-
tem for LFJ. In order to relate this to the LJ type system,
we have also developed a constraint-based type system for
LJ. Both these systems retain the premises that depend on

the structure of the construct being typed and convert those
that rely on external information into constraints. By us-
ing constraints, the external typing requirements for each
feature are made explicit, separating derivation of these re-
quirements from consideration of which product specifica-
tions have a combination of features satisfying them.

The constraints used to type LJ and LFJ, listed in Fig-
ure 7, are divided into four categories. The two composition
constraints guarantee successful composition of a feature F'
by requiring that refined classes and methods be introduced
by a feature in a product line before F'. The two uniqueness
constraints ensure that member names are not overloaded
within the same class, a restriction in the LJ formalization.
The structural constraints come from the standard LJ type
system and determine the members of a class and its inheri-
tance hierarchy in the final program. The subtype constraint
is particularly important because the class hierarchy is mal-
leable until composition; if it were static, constraints that
depend on subtyping could be reduced to other constraints
or eliminated entirely. The feature constraint specifies that
if a feature F' is included in a product specification its con-
straints must be satisfied.

Composition Constraints
C' introduces ms before F'
C' introduced before F

Uniqueness Constraints
cl f unique in C
clm (dekk) unique in C

Structural Constraints
cly < cls
cle < ftype(cls, f)
ftype(cli, f) < cl2
mtype(cl,m) < @k —cl
defined(cl)
| ¢ fields(parent(C))
pmtype(C,m) =71

Feature Constraint
Inp = §k

Figure 7: Syntax of Lightweight Feature Java typing con-
straints.

The typing rules for LFJ are found in Figure 8-10 and
rely on judgements of the form + J | £, where J is a typ-
ing judgement from LFJ, and £ is a set of constraints. &
provides an explicit interface which guarantees that J holds
in any product specification that satisfies £. Typing judge-
ments for statements include a context I' mapping variable
names to their types. Typing rules for statements, methods,
and classes are those from LJ augmented with constraints.
Typing rules for class and method refinements in a feature
I are similar to those for the objects they refine, but re-
quire that the refined class or method be introduced in a
feature that comes before the F' in a product specification.
Method refinements do not have to check that the names
of their parameters are distinct and that their parameter
types and return type are well-formed: a method introduc-
tion with these checks must precede the refinement in order
for it to be well-formed. Features wrap the constraints on

their introductions and refinements in a single feature con-
straint. The constraints on a feature table are the union of
the constraints on each of its features.

'k s|C | Statement well-formed in context subject to

constraints

F|—8k|ckk

m (WF-BLOCK)

I'(z) =7
T'kovar =x;| {1 < 12}

T'(var) = 12

(WF-VAR-ASSIGN)

I'(z)=7 T'(var) = 12
I'Fwvar = z.f;| {ftype(r1, f) < T2}

(WF-FIELD-READ)

Pz)=n Ty)=m
I'Fa.f=y| {r < ftype(r, f)}

(WF-FIELD-WRITE)

F(:E):Tl F(y):TQ
FF81|C1 FF82|C2
Cs={m<7m V7 <1}

I'kif x ==y then s; else s2 |C1 UC2 UC3

(WF-IF)

I'(var) =7 type (cl) = 12

I'var =new cl() | {2 < 71}

(WF-NEW)

_—k
D(z)=r71 P(var) == I(yk) = ™k
C = {mtype(r, meth) < T" — 7}
I'F var = z.meth(7i*) | C

(WF-MCALL)

Figure 8: Typing Rules for LJ and LFJ statements.

Once the constraints C for a feature table are generated
according to the rules in Figure 10, we can check whether a
specific product specification PS satisfies C using the rules
in Figure 11. Satisfaction of the structural constraints is
given for LLJ and uses the path function. Satisfaction of the
structural constraints in LFJ replaces path with the CT
function which mimics the behavior of path on a composed
product specification without having to build the product:

path(cld, C) C € ids(cld)

CT((EPS%C):{m.CT(PS,C) C ¢ ids(cld) @

where feature I {cld,rcld} € FT. Compositional con-
straints on a feature F' are satisfied when a feature which
introduces the named class or method precedes F' in PS.
Uniqueness constraints are satisfied when no two features
in PS introduce a member with the same name but differ-
ent signatures to a class C. Feature constraints on a F' are

satisfied when F is not included in PS or PS |= fkk.

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to sat-
isfy typing constraints which could also be overwritten by a

F P | C | Program well-formed subject to constraints

Fddy [Co. P =dd
distinct ids (P)
(WF-PROGRAM)
FP U, Crk
F FD | C | Feature well-formed subject to constraints
Fcldy [Cr' Frordde | Co

 feature F {cldkkrcld/} |Inr =, CkUU,Ce
(WF-FEATURE)

F FT |C | Feature Table well-formed subject to con-

straints

FT = {FD;*} +FDy|Cy"
= ET | Uk C

(WF-FEATURE-TABLE)

Figure 10: Typing Rules for LFJ Programs and Features.

subsequent feature. For this reason, our type system only
considers final product specifications, making no guarantees
about the behavior of intermediate programs.

4.2 Soundness of the LFJ Type System

The soundness proof is based on successive refinements of
the type systems of LJ and LFJ, ultimately reducing it to the
proofs of progress and preservation of the original LJ type
system given in [15]. We first show that the constraint-based
LJ type system is equivalent to the original LJ type system,
in that a program with unique class names and an acyclic
class hierarchy satisfies its constraints if and only if it is
well-formed according to the original typing rules. We then
show that any LFJ product specifications will build a well-
formed LJ program if it satisfies the feature table constraints
generated by the constraint-based LFJ type system. We
have formalized in the Coq proof assistant the syntax and
semantics of LLJ and LFJ presented in the previous section,
as well as all of the soundness proofs that follow. For this
reason, the following sections elide many of the bookkeeping
details, instead presenting sketches of the major pieces of
the soundness proofs.

Theorem 4.1 (Soundness of constraint-based LJ Type Sys-
tem). Let P be an L.J program with distinct class names and
an acyclic, well-founded class hierarchy. Let C be the set of
constraints generated by a class cld in P: + cld | C. cld is
well-formed if and only if P satisfies C: P+ cld — P = C.

Proof. The two key pieces of this proof are: showing that
satisfaction of each of the constraints guarantees that the
corresponding judgement holds, and that there is a one-to-
one correspondence between the constraints generated by
the typing rules in Figure 9 and the external premises used
in the declarative LJ type system. The former is straightfor-
ward except for the subtyping constraint, which relies on the
path function to check for satisfaction. We can prove their
equivalence by induction on the derivation of the subtyping

- md|C | Method well-formed in class subject to constraints

distinct(var;,")

I' = [var, = 7" |[this — 7]

—_——k
type(cly) = 7%

type(cl) = 7’

-
I'kse|Ce L(y)=71" (WF-METHOD)

Fr cl meth (cly varkk) {5' return y;} | {7 < 7/, defined clkk} ul,Ce

Fcld | C | Class well-formed subject to constraints

distinct(f;) distinct (%) C#d
¢ = U,{J; ¢ fields(parent(C))}

7 < type(Object)

type(C) =71
v =J;{cl; f; unique in C}

1

Fr cly methy (clek varg’kz) mby, | Ci

v =, {clk methy (cle vaw’kl) unique in C'}

¢ = U, {pmtype(C, meth;) = cle,;f — cli}

F class C extends cl {cl; fjj; cli, methy (cle vaw’kl’k) mby } | U, Cr U {defined cl, defined Cljj} Ueug uvuy

(WF-CLass)

F-.r rmd | C |Refined method well-formed in class of feature subject to constraints

type(cl) = 7’

I' = [vary = 75" |[this — 7]

I(y)=7"

I'+ Sj | CjJ
C ={r" < 7,7 introduces cl meth (clj varkk) before F}UUJ;C; U, Ce

F}—Se|CgL

(WF-REFINES-METHOD)

k

k. r refines method ¢l meth (cly, vary) {5;°; Super.meth(); 5*; return y;} | C

Fr rcld | C | Class refinement well-formed in feature subject to constraints

1

C #dl type(C) =71
€ =U,1f; ¢ fields(parent(C))}

Fr el methy (Clg,k varg,kl) mby | Ck
v =J;{cl; f; unique in C}

k

Frp rmdm | C'm

v =, {clk methy (cles vaw’kl) unique in C'}

¢ = U, {pmtype(C,methy) = cle,kl — cl}

k

Fr refines class C extending cl {cl; fjj; Fr el meth, (clo,k varwf’k) mby ; rmdwf’k} |U.CUU,,C'mU
{defined cl, defined cl;’, C introduced before F,} U£UE Uv U’

(WF-REFINES-CLASS)

Figure 9: Typing Rules for LFJ method and class refinements.

judgement in one direction and induction on the length of
the path in the other. We can then show that the two type
systems are equivalent by examination of the structure of
P. At each level of the typing rules, the structural premises
are identical and each of the external premises of the rules is
represented in the set of constraints. As a result of the pre-
vious argument, satisfaction of the constraints guarantees
that premises of the typing rules hold for each structure in
P. Having shown the two type systems are equivalent, the
proofs of progress and preservation for the constraint-based
type system follow immediately. O

Theorem 4.2 (Soundness of LFJ Type System). Let PS
be an LFJ product specification for feature table F'T and C
be a set of constraints such that = FT | C. If PS = C,
then the composition of the features in PS produces a valid,
well-formed LJ program.

Proof. This proof is decomposed into three key lemmas, cor-
responding to the three kinds of typing constraints.

(i) Let PS be a product specification for feature table F'T
and C be a set of constraints such that - FT | C. If
PS E C, composition of the features in PS produces
a valid LJ program, P.

For each class or method refinement of a feature F' in PS,
a composition constraint is generated by the LFJ typing
rules. Each of these are satisfied according to the definition
in Figure 11, allowing us to conclude that a feature with
appropriate declarations appears before F' in PS. Each of
these declarations will appear in the program generated by
the features preceding F', allowing us to conclude that the
composition succeeds for each feature in PS.

(i1) Given (i), P is typeable in the constraint-based LJ type
system with constraints C’.

In essence, we must show that the premises of the constraint-
based LJ typing judgements hold. Our assumption that each
class in PS is a descendant of Object ensures that P has
an acyclic, well-founded class hierarchy. The premises for

ftype(P, 11, f) = 13 T2 € path(P, 73)
P = 12 < ftype(r1, f)
ftype(P, 11, f) = 73 73 € path(P, 12)
P = ftype(ri, f) < 12
mtype(P, 7,m) = ﬂ'_;ck — 7' € path(P,)

P = mtype(r,m) < 7" — 7

type(cl) € path(P,type(cl))
P |= defined(cl)
m € path(P,7;) ftype(P,parent(C),f) = L
PEn <7 P |= f ¢ fields(parent(C))

mtype(P, parent(C),m) =1 V
mtype(P, parent(C),m) =1

P |= pmtype(C,m) =T

T.ms € H TE introductions(El)
PS = A" FB;'HC}
PS = 7 introduces ms before I’

PS =4, FB,/HC; CecH
PS = C introduced before F
type(C) =71
VA, B € PS,t.cli f€ ANT.cly f € B —cli =cla
PS = ¢l f unique in C'

type(C) =71 ms1 =clm (dekk)

, ——k
msa = cl' m (vd) ")
VA,B € PS,7.ms1 € AT.msz € B — ms1 = msa

PS Ecdm (dekk) unique in C
F¢PS FePS PSE&G
PSETnp =& PS EInp = &

Figure 11: Satisfaction of typing constraints.

the LJ methods and statements are identical, leaving class
typing rules for us to consider. The LJ typing rules require
that the method and field names for a class be distinct.
These premises are removed by the LFJ typing rules, as the
members of a class are not finalized until after composition.
This requirement is instead enforced by the uniqueness con-
straints, which are satisfied when a method or field name is
only introduced by a single feature. Since PS |= C, it follows
that the premises of the LJ typing rules hold for P and that
there exists a set of constraints C’ such that = P | C'.

(iii) Given (ii), P satisfies the constraints in C’ and is thus
a well-formed LJ program.

We break this proof into two pieces:
(a) C' CC.

The key observation for this proof is that every class, method,
and statement in P originated from some feature in PS.
Thus, for any constraint on a construct in P, there is a
corresponding constraint on the feature in PS that gener-
ated that construct. The most interesting case is for the

constraints generated by method bodies: a statement con-
tained in a method body can come from either the initial
introduction of that method or advice added by a method
refinement. In either case, the statement was included in
some feature in PS and thus generated some set of con-
straints in C. Because method signatures are fixed across
refinement, the context used in typing both kinds of state-
ments is the same as that used for the method in the final
composition. This does not entail that C = C’, however, as
there could be some construct in PS that is overwritten by
an introduction in a subsequent feature.

(b) For any structural constraint i, if PS |= I, then P =
K.

This reduces to showing that class declaration returned by
CT(PS,C) is the same that returned by path(P,C). This
follows from tracing the definition of the C'T" function down
to the final introduction of C' in the product line. From
here, we know that this class appears in the program syn-
thesized from the product specification starting with this
feature. Further refinements of this class are reflected in the
- operator used recursively to build C'T’; each refinement suc-
ceeds by (i) above. Since the two functions are the same, the
helper functions which call path in P (i.e. ftype, mtype)
and those that use C'T" in PS return the same values. Thus,
the satisfaction judgements for PS and P are equivalent.
All constraints in C’ appear in C, so PS = C'. By (b)
above, it follows that P = C’. A type(C) < type(Object)
is generated for each class in P, so P has a well-founded,
acyclic class hierarchy. Futhermore, the definition of com-
position ensures that all classes in P have distinct names.
By Theorem 4.1, P must be a well-formed LJ program. [

5. TYPE-CHECKING PRODUCT LINES

The LFJ type system checks whether a given product
specification falls into the subset of type-safe specifications
described by a feature table’s constraints. These constraints
remain static regardless of the product specification being
checked, as does the feature model used to describe mem-
bers of a product line. We now show how to relate the
product specifications described by the two by expressing
both as propositional formulas. Checking safe composition
of a product line amounts to showing that the programs al-
lowed by the feature model are contained within the set of
type-safe products.

Feature models are compact representations of proposi-
tional formulas [6], making propositional logic a natural for-
malism in which to relate feature models to the constraints
generated by the LFJ type system. The variables used
in the propositional representation of feature models have
the form of the first two entries in Figure 12. A prod-
uct line is described by the satisfying assignments to its
feature model. The designer of the product line from the
introduction might want it to only include a specialized ac-
count class, which they could express with the feature model:

InAccount - (InlnvestmentAccount \% InRetirementAccount)-

Ing : Feature A is included.
Preca, p : Feature A precedes Feature B.
Sty., ., @71 is asubtype of 72.

Figure 12: Description of propositional variables.

5.1 Safety of Feature Models

‘We now consider how to use the constraints generated by
the LFJ type system to describe type-safe product specifica-
tions in propositional logic. A product specification satisfies
an included feature’s constraints by satisfying each of the
constraints on its constructs. We can leverage this by trans-
lating each constraint into a propositional description of the
product specifications which satisfy it. The set of product
specifications which satisfy the constraints on a feature F' is
one that satsifies the conjuction of those formulas, Cr. Thus,
the set of well-typed product specifications is described by
/\F IIIF — CF

The rules for translating constraints are given in Fig-
ure 13. The translation of the compositional, uniquess and
feature constraints is straightforward. Structural constraints
enforce two important properties: inclusion of classes and
class members and subtyping. A product specification sat-
isfies the former if some included feature introduces that
construct and it is not overwritten by the reintroduction of
a class. This is enforced by the Final. r predicate which
holds when F' is not followed by a feature G which rein-
troduces cl and the Finalln., r predicate which further re-
quires that F' does not overwrite cl if it refines it. Subtyping
constraints are represented by the Sty __, variables. Truth
assignments to these variables are forced to respect the class
hierachy of a product specification by the final four rules in
Figure 14. In effect, the STY_TOTAL rule builds the tran-
sitive closure of the subtyping relation, starting with the
parent/child relationships established by the last definition
of a class in a product specification.

Our formulas include the Prec variables to capture fea-
ture ordering in product specifications because it affects
composition. A truth assignment must respect the prop-
erties of the precedence relation in order for it to repre-
sent valid product specifications. The first four formulas in
Figure 14 impose these properties: the precedence relation
must be transitive, irreflexive, antisymmetric, and total on
all features included in a product specification. A satisfy-
ing assignment to the conjunction of all the constraints in
Figure 14, WFspe., obeys the properties of the precedence
and subtyping relations, and thus corresponds to a unique
product specification.

In order to type-check a product line, we first generate
the constraints on a feature table using the LFJ typesys-
tem. We then translate these constraints according to the
rules in Figure 13, building a formula £ describing the set
of type-safe programs. With this in hand, checking that a
product line is contained in the set of type-safe programs
is reduced to checking the validity of WFgpee AN FM — &.
The left side of the implication restricts truth assignments
to valid product specifications which are allowed by the fea-
ture model F'M, while the right side ensures that a product
specification is in the set of type-safe programs. A falsi-
fying assignment corresponds to a member of the product
line which isn’t type-safe; this assignment can be used to
determine the exact source of a typing problem.

5.2 Feasbility of Our Approach

While checking the validity of FM A WFspee — ¢safe is
co-NP-complete, the SAT instances generated by our ap-
proach are highly structured, making them amenable to fast
analysis by modern SAT solvers. We have previously im-
plemented a system based on our approach for checking safe

composition of AHEAD software product lines [16]. The size
statistics for the four product lines analyzed are presented
in Table 1. The tools identified several errors in the existing
feature models of these product lines. It took less than 30
seconds to analyze the code, generate the SAT formula, and
run the SAT solver for JPL, the largest product line. This
is less than the time it took to generate and compile a single
program in the product line. The term Jak in Table 1 refers
to the Jakarta language (the basis for LFJ).

Product # of # of | Code Base | Program
Line Features | Prog. | Jak/Java | Jak/Java
LOC LOC
PPL 7 20 2000,/2000 1K/1K
BPL 17 8 | 12K/I6K | SK/12K
GPL 18 80 1800/1800 | 700,/700
JPL 70 56 34K /48K | 22K /35K

Table 1: Product Line Statistics from [12].

6. RELATED WORK

An earlier draft of this paper was presented at FOAL [11].
Our strategy of representing feature models as propositional
formulas in order to verify their consistency was first pro-
posed in [6]. The authors checked the feature models against
a set, of user-provided feature dependences of the form F —
AV B for features F'; A, and B. This approach was adopted
by Czarnecki and Pietroszek [10] to verify software prod-
uct lines modelled as feature-based model templates. The
product line is represented as an UML specification whose
elements are tagged with boolean expressions representing
their presence in an instantiation. These boolean expres-
sions correspond to the inclusion of a feature in a product
specification. These templates typically have a set of well-
formedness constraints which each instantiation should sat-
isfy. In the spirit of [6], these constraints are converted to
a propositional formula; feature models are then checked
against this formula to make sure that they do not allow
ill-formed template instantiations.

The previous two approaches relied on user-provided con-
straints when validating feature models. The genesis of our
current approach was a system developed by Thaker et al.
[16] which generated the implementation constraints of an
AHEAD product line of Java programs by examining field,
method, and class references in feature definitions. Analysis
of existing product lines using this system detected previ-
ously unknown errors in their feature models. The authors
identified five properties that are necessary for a composi-
tion to be well-typed, and gave constraints which a product
specification must satisfy for the properties to hold. The
constraints used by the LFJ type system are the "proper-
ties” in our approach and the translation from our type sys-
tem’s constraints to propositional formulas builds the prod-
uct specification ”constraints” used by Thaker et al. Be-
cause we use the type system to generate these constraints,
we are able to leverage the proofs of soundness to guarantee
safe composition by using constraints that are necessary and
sufficient for type-safety.

If features are thought of as modules, the feature model
used to describe a product line is a module interconnection
language [13]. Normally, the typing requirements for a mod-

T1 < T2
T2 < ftype(ri, f)

= Sty .,

= V{Sty., a A Sty., type(cia) N Finallnig(cay, r | 3cld € elds(F), 3el, cl f € fds(cld)}v

VA{Sty., o ASty., type(reia) A Finaliacrea),r | Ireld € relds(F), 3el, cl f € fds(rcld)}

ftype(ri, f) < 72

= V{Sty. -, A Sty., type(ciay N Finallnig(cay,r | 3cld € clds(F)3el, cl f € fds(cld)}v

VA{Sty i -, A Sty., type(reia) A Finaliagrea),r | Ireld € relds(F), 3el, cl f € fds(rcld)}

mtype(r,m) < 7" — T

= V{Sty. . AN Sty o, A Finallng g, F | Ield € clds(F),

Elcl,?kk,v_kkcl m(clkvkk) € mds(cld)}Vv
VA{Sty. - ANy Sty a1, AFinaliagrca), r | Ireld € relds(F),

Hcl7ak7ﬁkcl m(clkvkk) € mds(rcld)}

defined(cl)

= V{Inr | 3eld € clds(F),id(cld) = cl}

7 introduces ms before = \/{Ing A Precg,rA A{Ing — Precr n V Precy,¢ | 3cld’ € clds(H)), type(id(cld’)) = 7}
| 3eld € clds(G), type(id(cld)) = 7 A ms € methods(mds(cld))}Vv
V{Ing A Prece,r A AN{Ing — Precr,n V Precn,c¢ | 3cld’ € clds(H)), type(id(cld’)) = 7}
| Ircld € relds(G), type(id(rcld)) = 7 A ms € methods(mds(rcld))}
C' introduced before F' = \/{Ing A Precg,r | 3cld € clds(F),id(cld) = C}

cl f unique in C

= A{-Inr | 3cld € clds(F),id(cld) = C A 3cl’, cl' f € fds(cld) A cl # cl' }A

N{~Inp | Ircld € rclds(F),id(rcld) = C A3’ ' f € fds(reld) A el # '}
el m (vdy") unique in C = A{-Ing | 3cld € clds(F),id(cld) = C A 3cl’, v}, cl'm (vd,") € mds(cld) A cl # cl'V

(Vi vdi # vdi) }A

A{~Inp|3rcld € relds(F),id(reld) = C A 3l vd," ,cl'm (vd,") € mds(reld) A cl # cl'V

(Vy vdx # vdy)}
f ¢ fields(parent(C))

= /\{InF A FinalInid(Cld)yF — ﬁStytype(c)’cl |

Jeld € clds(F),id(cld) = cd AC # cl A3, el f € fds(cld) I
/\{InF A Finalid(mld)yF s “Stytype(c),cl |
Jreld € relds(F),id(rcld) = cd AC # el A3’ el f € fds(rcld)}

pmtype(C,m) =71

= A{Inp A Finallnig(ca),r — =Styiype(c),q | 3cld € clds(F),id(cld) = cl

AC # cl A m € methods(cld) A mtype(cld,m) # T
A{Inr A Finalig(cia),r — =St¥ype(cy,a | Ireld € relds(F),id(reld) = cl
AC # cl A m € methods(rcld) A mtype(rcld, m) # 7

—k
Inp = §k
where

= Inp — A, &"

Finalln, r < Inr A A{Ing — Precg r | ¢l € ids(clds(G)) NG # F}

Final.;

— Inp A A{Ing — Precg.r | c € ids(clds(G))}

Figure 13: Translation of constraints to propositional formulas.

ule would be explicitly listed by a “requires-and-provides
interface” for each module. We instead infer a module’s “re-
quires” interface automatically by considering the minimum
structural requirements imposed by the the type system.
We verify that these interface constraints are satisfied by
the implicit “provides” interface for each feature module in
a product specification. If composition is a linking process,
we are guaranteeing that there will be no linking errors. The
difference with normal linking is that we check all combina-
tions of linkings allowed by the feature model.

A similar type system was proposed by Anacona et al.
to type check, compile, and link source code fragments [1].
Like features, the source code fragments they considered
could reference external class definitions, requiring other
fragments to be included in order to build a well-typed pro-
gram. These code fragments were compiled into bytecode
fragments augmented with typing constraints that ranged
over type variables, similar to the constraints used in the
LFJ typing rules. The two approaches use these constraints
for different purposes, however. Anacona et al. solve these
constraints during a linking phase which combines individu-
ally compiled bytecode fragments. If all the constraints are
resolved during linking, the resulting code is the same as if
all the pieces had been globally compiled. Our system uses

these constraints to type check a family of programs which
can be built from a known set of features.

Apel et al. [3] propose a type system for Feature Feather-
weight Java (FFJ), a model of feature-oriented programming
based on Featherweight Java [12] and prove soundness for it
and some further extensions of the model. This type system
is designed to check a single product specification, instead of
the entire product line. Recently, the authors have extended
this work to type check product lines built from FFJ [4]. A
key difference between LFJ and FFJ is the use of product
specifications: instead of composing a product specification
to synthesize a LJ program, the FFJ semantics uses it as the
final program. ¢gDEEP [2] is a language-independent calcu-
lus designed to capture the core ideas of feature refinement.
The type system for gDEEP transfers information across fea-
ture boundaries and is combined with the type system of an
underlying language to type feature compositions. gDEEP
uses a new type system which is hard to relate to existing
languages, while the LFJ type system exploits the existing
type system of a language to guarantee safe composition.

7. CONCLUSION

A feature model is a set of constraints describing how a set
of features may be composed to build the family of programs

PREC_TOTAL:

PREC_ASYM:
PREC_IRREFL:
PREC_TRANS:

VA, B,Preca,g — —Precp,a
VA,-Precy,a

VA, B,C, (Preca,g A Precg,c) — Preca,c

VA,B,A # B,Ina ANInp < (Preca,g V Precp,a)

Sty REFL: V7,Sty, . < \/{InF | cld € clds(F) A type(id(cld)) = T}
STY_OBJ: Sty()bjcct,objcct
STY-ASYM: Vr11,72,Sty,, . — =Sty .
STY_TOTAL: V71,72,73,Sty, . < ((Sty, . ASty_)V

V{Inp | 3cld € élifls(FLtype(id(cld)) = 71 A type(parent(cld)) = T2}/

A{Ing — Precg,r | G # F A 3cld € clds(G), type(id(cld)) = 71 }A

N{Ing — Prece,r | G # F A 3rcld € relds(G), type(id(reld)) = 11}V

V{Ing | Ircld € rclds(F), type(id(rcld)) = 11 A type(parent(cld)) = 72 Aid(rcld) ¢

ids(clds(F))}IA

A{Ing — Precg,r | G # F A 3cld € clds(G), type(id(cld)) = 71 }A
N{Ing — Preca.r | G # F A 3rcld € relds(G), type(id(reld)) = 11})

Figure 14: Constraints on the precedence and subtyping relations.

in a product line. This feature model is safe if it only allows
the construction of well-formed programs. Simply enumer-
ating all the programs (feature combinations) described by
the feature model is computationally expensive and imprac-
tical for large product lines. In order to statically verify that
a product line is safe, we have developed a calculus for study-
ing feature composition in Java and a constraint-based type
system for this language. The constraints generated by the
typing rules provide an interface for each feature. We have
shown that the set of constraints generated by our type sys-
tem is sound with respect to LJ’s type system. We verify the
type safety of a product line by constructing SAT-instances
from the interfaces of each feature. The satisfaction of the
formula built from these SAT-instances ensures the product
specification corresponding to the satisfying assignment will
generate a well-typed LJ program. Using the feature model
to guide the SAT solver, we are able to type check all the
members of a product line, guaranteeing safe composition
for all programs described by that feature model.

8. REFERENCES

[1] D. Ancona and S. Drossopoulou. Polymorphic
bytecode: Compositional compilation for java-like
languages. In In ACM Symp. on Principles of
Programming Languages 2005. ACM Press, 2005.

[2] S. Apel and D. Hutchins. An overview of the gDEEP
calculus. Technical Report MIP-0712, Department of
Informatics and Mathematics, University of Passau,
November 2007.

[3] S. Apel, C. Késtner, and C. Lengauer. Feature
Featherweight Java: A calculus for feature-oriented
programming and stepwise refinement. In GPCE ’08:
Proceedings of the 7th International Conference on
Generative Programming and Component Engineering.
ACM Press, Oct. 2008.

[4] S. Apel, C. Késtner, A. GroSSlinger, and C. Lengauer.
Type-safe feature-oriented product lines. Technical
Report MIP-0909, Department of Informatics and
Mathematics, University of Passau, June 2009.

[5] D. Batory. Feature-oriented programming and the
AHEAD tool suite. Software Engineering, 2004. ICSE
2004. Proceedings. 26th International Conference on,
pages 702-703, May 2004.

(6]

(7]

D. Batory. Feature models, grammars, and
propositional formulas. In In Software Product Lines
Conference, LNCS 3714, pages 7-20. Springer, 2005.
A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/j:
controlling the scope of change in java. In Proc. of
ACM Conf. on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA),
pages 177-189, New York, NY, USA, 2005. ACM.

Y. Bertot and P. Castéran. Interactive Theorem
Proving and Program Development. Springer-Verlag,
Berlin, 2004.

K. Czarnecki and U. W. Eisenecker. Components and
generative programming (invited paper). SIGSOFT
Softw. Eng. Notes, 24(6):2-19, 1999.

K. Czarnecki and K. Pietroszek. Verifying
feature-based model templates against well-formedness
ocl constraints. In GPCE ’06: Proceedings of the 5th
international conference on Generative programming
and component engineering. ACM Press, 2006.

B. Delaware, W. Cook, and D. Batory. A
machine-checked model of safe composition. In
Foundations of Aspected-Oriented Languages, 2009.

B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

R. Prieto-Diaz and J. Neighbors. Module
interconnection languages: A survey. Technical report,
University of California at Irvine, August 1982. ICS
Technical Report 189.

P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine,

T. Ridge, S. Sarkar, and R. Strnisa. Ott: effective tool
support for the working semanticist. In ICFP ’07:
Proceedings of the 12th ACM SIGPLAN international
conference on Functional programming, pages 1-12,
New York, NY, USA, 2007. ACM.

R. Strnisa, P. Sewell, and M. J. Parkinson. The Java
module system: core design and semantic definition. In
R. P. Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S.
Jr., editors, OOPSLA, pages 499-514. ACM, 2007.

S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In GPCE 07:
Proceedings of the 6th international conference on
Generative programming and component engineering,
pages 95-104, New York, NY, USA, 2007. ACM.

