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Abstract A key skill for mobile robots is the ability
to navigate e�ciently through their environment. In the
case of social or assistive robots, this involves navigating
through human crowds. Typical performance criteria,
such as reaching the goal using the shortest path, are
not appropriate in such environments, where it is more
important for the robot to move in a socially adaptive
manner such as respecting comfort zones of the pedes-
trians. We propose a framework for socially adaptive
path planning in dynamic environments, by generat-
ing human-like path trajectory. Our framework consists
of three modules: a feature extraction module, Inverse
Reinforcement Learning module, and a path planning
module. The feature extraction module extracts fea-
tures necessary to characterize the state information,
such as density and velocity of surrounding obstacles,
from a RGB-Depth sensor. The Inverse Reinforcement
Learning module uses a set of demonstration trajecto-
ries generated by an expert to learn the expert’s be-
haviour when faced with di↵erent state features, and
represent it as a cost function that respects social vari-
ables. Finally, the planning module integrates a three-
layer architecture, where a global path is optimized ac-
cording to a classical shortest-path objective using a
global map known a priori, a local path is planned over
a shorter distance using the features extracted from a
RGB-D sensor and the cost function inferred from In-
verse Reinforcement Learning module, and a low-level
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system handles avoidance of immediate obstacles. We
evaluate our approach by deploying it on a real robotic
wheelchair platform in various scenarios, and compar-
ing the robot trajectories to human trajectories.
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1 Introduction

The ability to navigate in a crowded and dynamic en-
vironment is crucial for robots employed in indoor en-
vironments such as shopping malls, airports or schools.
When navigating in such environments, it is important
for a robot to not only avoid obstacles and move to-
wards its goal, but also to do so in a socially adaptive
manner. Such behaviour is essential in assistive robots,
as they interact with humans on a daily basis. The goal
of this research is to propose a local path planner that
generates such socially adaptive navigation behaviour,
integrated with a feature extraction method and a plan-
ning architecture that combines global, local, and low
level behaviours.

A major limitation of the some of standard meth-
ods on local path planners such as [14,36] is that they
treat the pedestrians merely as obstacles to be avoided,
and do not take account of social variables for naviga-
tion behaviours. As such, the main technical challenge
for developing a socially adaptive path planner is the
fact that the notion of what is socially acceptable is
not easily defined as an optimization criteria, thus we
cannot apply standard search techniques using conven-
tional cost functions (e.g. shortest path) to find a good
path.
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In light of such challenge, we propose a local path
planner that navigates through pedestrians by learning
a socially adaptive cost function from human navigation
demonstrations. Our intuition is that while manually
defining a socially adaptive cost function is very chal-
lenging, inferring such a cost function from a human,
who is instinctively aware of socially adaptive naviga-
tion behaviours, is an easier task. To learn the cost
function, we employ the Inverse Reinforcement Learn-
ing (IRL) technique [27], which has proven e↵ective in
inferring cost functions from human demonstrations to
accomplish tasks such as car parking [1], helicopter pi-
loting [2], and driving [44]. We also introduce the use
of a regularization method in IRL to eliminate unnec-
essary features.

Our proposed framework consists of three modules:
the feature extraction module, the IRL module, and
the planning module. The feature extraction module
extracts the local state features such as densities and
velocities of pedestrians observed via RGB-D sensor
during a navigation. The IRL module uses demonstra-
tions from a human operator to learn the socially adap-
tive navigation behaviours as a function of these ob-
served state features. The behaviour is represented as
weights (i.e. parameters) for the cost function, which
are combined with the features extracted from the fea-
ture extraction module to compute a socially adaptive
cost function that defines costs at local grid cells. In
the planning module, a global path is planned using a
global map given a priori and a local path is planned
using the local grid cells associated with the costs. It
then chooses which of these two plans to use, depending
on the situation.

We evaluate our approach by considering di↵erent
navigation scenarios arising from the deployment of a
smart robotic wheelchair. We consider evaluation met-
rics pertinent to socially adaptive navigation such as
distance to nearest pedestrian, overall path length, etc.
We compare values of these metrics under three control
modes: our IRL approach using RGB-D sensing, con-
ventional control mode with a human-controlled joy-
stick, and more traditional path planning via the Dy-
namic Window Approach (DWA) [14] using laser
rangefinder sensing. Our results show that the IRL ap-
proach is able to generate trajectories that are closer
to the human driver, compared to the DWA planner,
even when the training data was acquired under di↵er-
ent conditions than those observed during the evalua-
tion. This is a particularly attractive property of our
approach, and is achieved because the cost function
is based on dynamic features of the environment (e.g.
speed, direction of surrounding pedestrians), rather than
on static features of the map.

2 Problem Statement

We state the problem addressed in our paper as fol-
lows.Given a global path plan from the current position
of the robot to the global goal, determine the socially
adaptive local path plan from the current position of
the robot to the sub-goal. A sub-goal is defined as the
intersection of a global path plan and a local grid cell at
the maximum viewing distance and field of view of the
RGB-D sensor. This is described in detailed in Figure
1.

Fig. 1 An example of a typical planning scenario. The circle
represents the robot, and the grid cells represents the local
grid cells defined by the viewing distance and field of view of
the RGB-D sensor. Black boxes represent the obstacles, and
the star represents the global goal. The red line represents the
global path. X denotes the sub-goal. Given the global path,
our local path plans a socially adaptive path when the local
grid cells are filled with people and their flows.

Addressing this problem involves challenges such as
developing a feature extraction method, learning a so-
cially adaptive cost function, and integrating the local
path planner with a three-layer planning architecture
similar to that of [15].

As it is di�cult to objectively define a socially adap-
tive path plan, we consider a path plan to be socially
adaptive if it resembles the one that is planned by a
human under similar navigation conditions. Our work
is motivated by the goal of deploying our intelligent
wheelchair in a large indoor shopping centre, where au-
tonomous navigation capabilities can be used to navi-
gate between stores and other points of interest with-
out requiring substantial human intervention, even in
crowded situations.

2.1 Related Work

There is a number of work on navigation in human
environment [13,45,39,34,35,21,20,43,16]. These are
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largely divided into four sub-groups: those that involve
training a motion predictor [13,45], those that focus on
path-planning while assuming motions of dynamic ob-
stacles are given [39,34], those that focus on human-
aware navigation using social variables [20,35,21,24,
28] with hand-designed cost function, those that uses
pedestrian models [4,18] and lastly, one work on learn-
ing the cost function [16] for global path planning.

In [13], a path planner based on Polynomial Neu-
ral Network for human motion prediction is proposed.
They trained the motion predictor using human mo-
tion data, which is used with the Robot Navigation-
Hierarchical Partially Observable Markov Decision Pro-
cess (RN-HPOMDP) to plan a path. Another work that
uses training data to predict the motions of pedestri-
ans is [45], where maximum entropy inverse optimal
control is used to train the motion predictor. Clearly,
the drawback of such motion learning approaches is
that if people move in a significantly di↵erent manner
than the training data, then the motion predictor can-
not generalize to such situations. More formally, this
is due to the fact that the training data and test data
are non-identically and independently distributed (non-
iid), whereas the iid is standard assumption in super-
vised learning approaches. Unfortunately, for the hu-
man motion prediction, di↵erent environments will in-
duce non-iid data.

In [39], a path planner based on Rapidly-exploring
Random Trees (RRT) algorithm is proposed. The key
insight here is to rapidly plan a new path so as to avoid
unforeseen pedestrians, by executing only a small seg-
ment of initially-planned trajectory while planning a
new trajectory. While in simulation, where noise-free
pedestrian velocity is given, it worked well, the authors
did not attempt to extend their work to real-life scenar-
ios where velocity estimation is required. Similarly in
[34], a modification of Dynamic Window Approach [14]
that accommodates for dynamic obstacles is proposed.
However, there is an additional di�culty of estimating
angular velocities of dynamic obstacles, which alone is
a di�cult computer vision problem.

In [20], the authors rightly points out that a path
planner should not simply guarantee a collision-free path,
but should also generate behaviour adhering to social
rules for human comforts. In support of this, they present
a modification of human-aware navigation planner [35],
that considers humans as static obstacles, for dynamic
environments. Similarly in [24,28], authors propose mod-
els that induces socially aware navigation behaviors us-
ing pedestrian model and social force model, respec-
tively. For a comprehensive survey on human-aware nav-
igation, refer to [21]. An important distinction between
these works and ours is that our framework learns the

socially-adaptive cost function, while these works care-
fully hand-design it.

In [4,18], they specifically focus on social compo-
nents such as pedestrian body pose and face orienta-
tion for navigation. They manually design pedestrian
models that incorporate such components, and consider
them during navigation. In contrast, our work attempts
to learn social models in the form of a cost function, and
incorporate them into path planning.

The closest works are [16]. In [16], human-like path
planning in crowded situations is learned from an ex-
pert. However, their work is also limited to a simulated
setting and they focused on a global path planner that
plans based on the modelling of density and velocity of
people using Gaussian Processes. In contrast, our work
focuses on a local path planner integrated with a feature
extraction module that extracts pedestrian movement,
as well as the full planning architecture that provides
interactions with a global planner.

2.2 Challenges

There are a few challenges in developing a socially adap-
tive local path planner. The first challenge is in local
feature extraction, where the objective is to extract
densities and velocities of crowds around the robot. Pre-
viously, there has been a number of attempts at track-
ing and predicting motions of dynamic objects using
filtering methods [26], Hidden Markov Models [33,6] or
Polynomial Neural Network [13]. In our work, rather
than tracking individuals in the crowd, we propose to
extract summary features using a RGB-D sensor. We
represent the future positions of crowds using the ve-
locity features, which consists of pedestrian speed and
direction, and the current position of crowds using the
density feature. Our feature extraction module is fully
online and does not require any training. Note that in
some of the earlier work on navigation in dynamic en-
vironments, feature extraction was not dealt with as
these works limited their experiments to simulations
where the features are assumed to be given [16,39]. In-
corporating accurate feature extraction proved to be
one of the major challenges of this work. The details of
feature extraction and its representation are discussed
in section 3.

The second challenge lies in learning the socially
adaptive cost function for local path planner with IRL
technique. We show how to design a real-world navi-
gation problem as a Markov Decision Process, how to
represent navigation features, and how to define the fea-
ture function and cost function for di↵erent sections of
local area. These are discussed in detail in sections 4.
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The third challenge lies in developing the planning
architecture. We had to address issues such as integra-
tion of local path planner with a global path planner,
determining when to use the local or global planner,
when to re-plan and when to emergency stop. To ad-
dress these issues, we develop a three-layer planning
architecture similar to that of [15] in which all layers
run in parallel to resolve the issues mentioned. The ar-
chitecture design is discussed in detail in section 5.

Last but not least, there is a challenge in the evalu-
ation of our framework. To assess our approach, it is es-
sential that we compare executed trajectories of human
driver and the robot under the same or similar condi-
tions, otherwise the trajectories will di↵er. The prob-
lem is that in an uncontrolled environment, it is almost
impossible to create the same navigation situation be-
cause pedestrians often move in an unpredictable man-
ner. To address this issue and reduce variance in our
real-world evaluations, we first consider scenario-based
experiments, in which the robot and the human driver
both execute trajectories under similar initial condi-
tions. We consider a variety of initial conditions and
scenarios. We then present results of deploying our so-
cially adaptive path planning approach in natural nav-
igation conditions, collected by running the robot in
the busy hallways of a building during normal business
hours.

2.3 Robot platform

We developed the hardware and software infrastructure
to assess our framework in real-world assistive naviga-
tion scenarios. The hardware platform used is a robotic
wheelchair [29], shown in Fig. 2(left), which is a modi-
fied power wheelchair mounted with an RGB-D (Kinect)
sensor at the front, three Hokoyu laser range finders (2
at the front, 1 in the back), and a laptop. For the work
described here, we use only the RGB-D sensor to ob-
serve the surroundings in an attempt to investigate our
ability to generate e↵ective navigation with low-cost
sensing. As shown in Figure 2, the Kinect RGB-D sen-
sor is placed on one of the handles on the wheelchair,
marked with white on the virtual representation. The
sensor provides both RGB and depth images at a reso-
lution of 640 ⇥ 480. It has a horizontal field of view of
57� and approximately 5m in depth. Conveniently, the
Kinect combines RGB and depth information, and rep-
resents them as a point cloud in 3D coordinates (x,y,z),
in which horizontal, vertical, and depth locations are
respectively represented.

Our framework was implemented as packages in the
popular robot software platform, ROS [31]. When we
plan a local path, we represent it as a set of points to

Fig. 2 The Smartwheeler robotic wheelchair (left), and its
virtual representation (right)

be traversed, and send them to a navigation package in
ROS, which then calculates the velocity to be executed
by the robot to reach each waypoint. All our results
and experiments are performed using the wheelchair
robot and ROS. It is worth noting that our framework
is particularly useful in wheelchair robots because hu-
man control trajectories for this platform are easy to
gather (using the conventional joystick) and abundant
(assuming regular use of the platform by a mobility-
impaired individual).

2.4 Outline of Our Approach

Our approach goes through three stages, consisting of
two o↵-line stages and the on-line execution stage. These
stages are summarized in Figure 3. In the data gather-
ing stage, a human shows demonstrations by navigating
in an environment. Throughout the demonstrations, we
collect the state features occurring in the trajectories of
the demonstrator, as well as the demonstrator’s action
choices as a function of these state features. The collec-
tion of these pairs of state and action forms a demon-
stration dataset. During the learning stage, we pass this
demonstration dataset to the IRL module to learn the
navigation behaviour of the demonstrator, which is suc-
cinctly represented as weights for the cost function. Fi-
nally in the on-line execution stage, the weights are
passed to the planning module. The feature extraction
module extracts features at the local area using the
RGB-D sensor. The features are represented as a set of
feature vectors, where each feature vector describes the
feature values in di↵erent parts of the local area. The
event-driven planning module waits for these feature
vectors from the feature extraction module. Once the
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Fig. 3 Di↵erent stages of our approach and module interaction during the execution stage. Square blue boxes indicate the
three modules. The human demonstrator is denoted with the stick figure. Arrows indicate the information flow.

feature vectors arrive, the planning module combines
the learned weights and feature vectors to compute the
costs. Using these costs, the planning module outputs a
path plan such that the cost is minimized, and the robot
executes this plan in the environment. As the robot exe-
cutes the plan, the feature extraction module continues
to receive new sensor data, and new feature vectors are
again passed to the planning module that is waiting for
them. The cycle continues until the robot reaches the
goal, or is manually stopped by the operator.

As in traditional grid-cell based local path plan-
ners [22], our approach associates a numerical cost to
each grid cell. However, unlike these planners that use
occupancy grids to calculate costs, our planner uses en-
vironmental features that all contribute to the cost of
a cell. During runtime, the feature extraction module
takes RGB-D inputs and extracts environmental fea-
tures at each of the cells, thus producing a set of feature
vectors where each feature vector contains the feature
values of a cell.

We would like to note that the demonstration data
gathered o↵-line can be collected in a di↵erent envi-
ronment than the environment in the execution stage,
unlike . Due to the nature of the IRL framework, the
cost function is expected to generalize well to di↵erent
environments with similar pedestrian patterns. This is
explained in depth in section 4.2.5.

3 Feature Extraction

The RGB-D sensor uses a 3D point cloud to represent
the observed scene. We use this information to extract
the features. In the current work, we consider four dis-
tinct features to characterize dynamic aspects of the
scene: crowd density, speed, velocity (i.e. speed and di-
rection of a crowd), and distance to the goal. The den-
sity feature estimates where the crowds currently are by
counting the number of points in each cell. The speed

and direction features estimate where the objects will
be in the future, by estimating the velocity of each point
in a point cloud. The velocity of each cell is calculated
by averaging the velocities of points in the cell. The
distance to the goal is calculated based on the distance
between each cell and the global goal. An example of
feature extraction in a crowded environment is shown
in Figure 4.

Fig. 4 Example of feature extraction and its corresponding
RGB image (bottom-right corner).

While estimating the density and distance features
is trivial, calculating velocities using 3D point clouds
is more complicated. In the field of computer vision,
this problem is known as optical flow [17], in which the
problem is limited to calculating the movement of pixels
among RGB image sequences. We now introduce an
algorithm that extends an RGB optical flow algorithm
to the RGB-D setting.
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3.1 RGB-D Optical Flow

In essence, the problem of determining the flow using
3D point clouds is finding the correspondence between
each point at frame t to a point at frame t+1. Once this
problem is solved, the velocity can be simply inferred
by subtracting the coordinates of corresponding points.
While it is di�cult to determine the correspondence
using only the point cloud coordinate information, the
problem of finding the correspondence, or an optical
flow, is a well studied area in RGB images. Thus we
first estimate RGB optical flow, and then use the flow
information to infer the RGB-D optical flow.

3.2 Farneback Optical Flow

Various RGB optical flow algorithms have been exam-
ined in the last three decades[17,7,37]. In robot naviga-
tion, however, the computational cost for flow estima-
tion is crucial as it determines how quickly a robot can
respond to changes in the environment. Hence we em-
ploy an RGB optical flow algorithm known as Farneback
optical flow, which entails a fast flow estimation algo-
rithm [12].

The Farneback optical flow algorithm is a tensor
based algorithm in which an estimated orientation ten-
sor is used to infer a velocity [19]. Imagine several image
frames stacked together. What we obtain is a 3D image
volume in which we have two spatial dimensions, and a
third describing the temporal dimension. Intuitively, a
movement (i.e. translation of a pixel) in the sequences
of images would give a vector with a particular orien-
tation in this 3D image volume, describing the velocity
direction. Such orientation can be represented using the
orientation tensor [19], which is a 3⇥3 symmetric pos-
itive semidefinite matrix T for the case of 3D image
volume. The quadratic form of the orientation tensor,
ûTTû, is a measure of how much the image varies in
the direction given by the vector û.

In [11], a method for estimating the orientation ten-
sor T is proposed. The idea is to project the image
signal into a second degree polynomial, whose parame-
ters are estimated using least-squares estimation. Using
these parameters, the orientation tensor matrix can be
approximated. The details of orientation tensor estima-
tion are in [11]. Clearly, once the orientation tensor is
estimated, then we can treat the vector û as a velocity
vector. Hence we estimate the velocity by solving the
following equation, where we denote v̂ for our velocity

vector:

v̂TTv̂ = 0 (1)

v =

0

@
vx
vy
1

1

A , v̂ =
v

||v|| . (2)

The intuition in Eqn. (1) is that the image intensity in
the direction of v̂ should remain the same, as it is the
same pixel moving according to the direction given by
v̂. In practice, we cannot require v̂TTv̂ to be zero, due
to the aperture problem that only allows us to detect
the velocity that is normal to the surface, and subse-
quently causesT to have two zero eigenvalues. However,
it is su�cient to minimize the expression[12].

Instead of estimating the velocity of each pixel, we
assume the velocity field occurs across a region in an
image according to an a�ne model[12]:

vx(x, y) = ax+ by + c (3)

vy(x, y) = dx+ ey + f (4)

where x and y are image coordinates. Now Eqn. (2) can
be represented as:

v̂ = Sp (5)

S =

0

@
x y 1 0 0 0 0
0 0 0 x y 1 0
0 0 0 0 0 0 1

1

A (6)

p =
�
a b c d e f 1

�T
(7)

To estimate p, a cost function is minimized:

d(v̂, T̂) = v̂TTv̂ (8)

= dtot =
X

i

d(v̂i, T̂i) (9)

where the summation is over all points of the region.
Combining Eqn. (9) with Eqn (5), we have

dtot(p) =
X

i

d(v̂i, T̂i) =
X

i

pTST
i TiSip (10)

= pT (
X

i

Qi)p = pTQtotp (11)

where Qi = ST
i TiSi. We require that Eqn. (11) be

minimized with the constraint that the last element of
p is 1. We partition the matrices and vectors to achieve
a closed form solution:

p =

✓
p̄

1

◆
,Qtot =

✓
Q̄ q

qT ↵

◆
(12)

dtot(p) = p̄T Q̄p̄+ p̄Tq+ qT p̄+ ↵. (13)

Eqn. (13) is minimized when

p̄ = �Q̄�1q, (14)

which gives us the velocity vector v if substituted to
Eqn (5).
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3.3 RGB-D Optical Flow Algorithm

As mentioned above, we solve the correspondence prob-
lem by RGB optical flow algorithm using sequences of
RGB images, then map the pixels in these images to
the point clouds. Conveniently, ROS provides an API
in which the index of a particular pixel in the pixel vec-
tor for an image frame corresponds to the point with
the same index in the point-cloud vector. This is rep-
resented as MapPixelToPtCloud function. Since the ve-
locity information is extracted on a per-point basis, we
average the velocities of points in each cell to calcu-
late the velocity of that cell. The procedure is given in
Algorithm 1.

Algorithm 1 RGB-D optical flow algorithm
Input: RGBImgt1, RGBImgt2, PtCloudt1, PtCloudt2

//Get correspondence information at each pixel in
//RGBImgt1
2Dflow = FranebackOpticalFlow(RGBImgt1 , RGBImgt2)

//Loop through all the pixels in the RGBImgt1
for it1 = 1 to 640 do

for jt1 = 1 to 480 do
//Get the index of corresponding pixel in frame t2
it2 = it1 + 2Dflow[it1, jt1].x
jt2 = jt1 + 2Dflow[it1, jt1].y

//Map the pixels to the 3D points
[x1, y1, z1] = MapPixelToPtCloud(RGBImgt1[it1, jt1])
[x2, y2, z2] = MapPixelToPtCloud(RGBImgt2[it2, jt2])

//Infer RGB-D optical flow at the point (x1, y1, z1)
[vx, vy, vz] = [x2, y2, z2]� [x1, y1, z1]
save vx, vy, and vz in vectors Vx,Vy,Vz

end for
end for

Return Vx,Vy,Vz

Note that the algorithm is provided for the case of
a static sensor. When the sensor is moving with the
robot, such as is the case with our robotic wheelchair,
it is necessary to adjust for the camera’s velocity by sub-
tracting the camera’s (estimated) velocity vector from
the extracted velocities.

3.4 Feature Vector

We represent our features in binary feature vectors.
This representation is common in IRL [44,3,16] for its
simplicity, but also produced robust results as shown in
these papers.

In each grid cell, there is an associated binary fea-
ture vector that describes pedestrian velocities, which

consists of pedestrian speed and direction, density, and
distance to the goal in that cell. Speed, density, and dis-
tance features are represented using high, medium and
low bins depending on some thresholds. For instance,
if the number of points in a grid cell falls into a range
that is specified as “high”, then the binary value for
high density bin is set to one. Same for speed and dis-
tance features.

Pedestrian direction feature describes whether there
are points (i.e. pedestrians) moving into or out of a cell.
We also represent these situations with three bins, each
indicating high, medium, or low risk of a cell. A high
risk cell is a cell with points flowing in from direct neigh-
bouring cells, a medium risk cell is a cell with points
flowing in from second-degree neighbouring cells (i.e.
neighbour of neighbours), and a low risk cell is a cell
with points in the cell moving out of it. If a cell has
points moving out and points moving in from its direct
neighbours, then it is considered to be a high risk cell.
Note that these are absolute orientations indicating the
future positions of the points.

For a given cell, we consider a 12 dimensional fea-
ture vector (4 environmental features, density, speed,
direction and distance to the goal, represented in high,
medium and low binary values = 3⇤4). The motivation
behind employing the binary feature representation is
to mitigate the noise in feature measurements. This is
described in detail in section 7.

4 Inverse Reinforcement Learning

To learn a socially adaptive cost function, we consider
Inverse Reinforcement Learning (IRL), a sub-field of
Reinforcement learning (RL). The traditional problem
of RL is to infer an optimal plan from a sequence of
trajectories [38]. The IRL problem, on the other hand,
is to infer the cost function from demonstrations of an
expert [27], assuming that the expert is unconsciously
minimizing this (unknown) cost function for planning
its action sequence. The inferred cost function is then
used by an AI agent, such as a robot, to plan in new sit-
uations in such a way as to achieve performance similar
to that of the expert.

The framework is particularly appealing for domains
where it is di�cult to specify a cost function analyt-
ically, and easier to provide demonstrations from an
expert. In our case, it is di�cult to specify a socially
adaptive cost function, so we resort to learning it from
demonstration data. Variations on the IRL concept have
been examined in the last decade [27,3,32]. We focus on
the Maximum-A-Posteriori Bayesian inverse reinforce-
ment learning (MAP-BIRL), which was shown to per-
form well in navigation-type scenarios [8].
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We now formally define Markov Decision Processes
and IRL, and explain how these are used in our navi-
gation framework.

4.1 Markov Decision Processes

A Markov Decision Process (MDP) [5] is defined as a
tuple < S,A, T, C, � >, where S represents the finite set
of states, A represents the finite set of actions, T (s, a, s0)
represents the state-to-state transition function, C(s, a)
represents the cost received when action a is taken in
state s, and � 2 [0, 1) represents the discount factor.
The objective is usually to find an optimal plan ⇡⇤ :
S ! A that minimizes the expected sum of future costs,
or the value function:

Q⇡(s0, a0) = E

"
C(s0, a0) +

1X

t=1

�tC(st,⇡(st))|⇡
#

(15)

The above function defines a expected sum of future
costs executing a plan ⇡ after executing a0 at the cur-
rent state, s0. We denote the value function obtained
by the optimal plan ⇡⇤ as Q⇤. The typical approach to
solving for Q⇤ is to use dynamic programming[30].

4.2 MDP formulation for Navigation

4.2.1 State and Action Sets

The state set, S, is defined as the local grid cells in front
of the robot. This gives the cardinality of S to be equal
to the number of local grid cells. Thus, each cell defines
a state, and a cell is reachable if the cell is one cell away
from the current cell. The action set, A, for our naviga-
tion system includes a discrete action for moving into
each cell that is adjacent to the current cell, according
to the state space defined above. So for example if we
assume a 3⇥5 local grid cells, there are 3 possible mo-
tion actions for the robot (directly in front, diagonally
to the left, diagonally to the right). This action space
is somewhat specific to our wheelchair robot that uses
di↵erential drive. However, a larger action set can eas-
ily be accommodated for other types of robots, such as
holonomic robots. The transition function, T (s, a, s0),
between each state is deterministic.

4.2.2 Cost function

We define the feature function that maps a state and an
action to a twelve-dimensional binary feature vector:

� : S ⇥A ! {0, 1}12 (16)

This feature function �(s, a) tells us what is the feature
of the state that the robot will transition into by using
action a in state s. The cost function for an action a in
state s cell is calculated using a linear combination of
associated features in the next state:

C(s, a) =
dX

i=1

wi�i(s, a) (17)

= w · �(s, a), (18)

where d represents the dimension of the feature vector,
wi represents the weight on the ith feature, and �i(s, a)
represents the value of the ith feature at state s. Upon
the transition, the robot will su↵er the cost C(s, a).
Intuitively, the weight wi determines if a particular fea-
ture value is preferred over another feature value. For
instance, if the high density feature has higher weight
than low speed feature, then the robot su↵ers a lower
cost when moving into a cell that has low speed fea-
ture than moving into a cell that has high density fea-
ture. Manually setting these weights to come up with
a socially adaptive path planner is clearly not trivial.
Hence the benefit of the IRL algorithm, which allows
us to learn these weights from human demonstrations.

4.2.3 MAP-BIRL for Robot Navigation

Generally, in IRL the expert’s mth demonstration is
provided to the agent in the form of H-step state and
action sequences, Xm ={(sm1 , am1 ), ..., (smH , amH)}. The ex-
pected cumulative cost of executing action a in state s

and following a policy ⇡ afterwards is given by the func-
tion Q⇡(s, a), as in a standard MDP. The goal in the
MAP-BIRL framework is to determine the cost func-
tion by computing the weight vector w that maximizes
the probability of the given demonstration data X . We
model the probability of a particular action â using the
soft-max function:

P (â|s, C) =
exp(Q⇤(s, â))P

a2A exp(Q⇤(s, a))
(19)

We assume that each action is independent of another,
and model the probability of the given M trajectories
as follows:

P (X|C) =
MY

m=1

HY

h=1

exp(Q⇤(smh , amh ))P
a2A exp(Q⇤(smh , a))

(20)

In this traditional IRL setting, the features associ-
ated with each state are be fixed. Under this assump-
tion, we can solve for M di↵erent MDPs using dynamic
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programming, get M di↵erent Q⇤, and define our like-
lihood as:

P (X|C) =
MY

m=1

HY

h=1

exp(Q⇤
m(smh , amh ))P

a2A exp(Q⇤
m(smh , a))

(21)

where Q⇤
m denotes the optimal value function for mth

MDP. This is similar to the assumption made in [16].
To find the weight vector w, maximum-a-posteriori

(MAP) inference is used on the log-likelihood of this
model.

L(w) =
MX

m=1

HX

h=1

log


exp(Q⇤

m(smh , amh ))P
a2A exp(Q⇤

m(smh , a))

�
(22)

The optimization target is then:

w⇤ = argmax
w

{L(w)} (23)

Any optimization package can be used to solve this as
the target is convex [9].

4.2.4 Regularization

When trying to imitate the behaviour of the expert, it
may not be necessary to utilize all the features of the
environment. For instance, in our experiments, we ob-
served that the speed feature surprisingly had almost
no e↵ect in navigation behaviour, and only density, flux
direction, and distance features mattered (it is possible
that in the case of navigation in a crowd, people walk
at very similar speeds, so the information is not useful).
In such cases, using all features may lead to over-fitting
the cost function, especially when we do not have a
lot of training data. Moreover, this reduces the number
of features needed to be estimated. To mitigate this,
we employ a regularization technique within our IRL
method. This model selection technique prevents over-
fitting by eliminating those features that are unneces-
sary given the dataset using a penalty term. The popu-
lar choice for the penalty term for model selection is the
L1 norm [41]. The optimization target then becomes:

w⇤ = argmax
w

{L(w) + �||w||1} (24)

Here, � is the regularization parameter; higher �

means fewer features are considered, and vice versa.
Any optimization package for L1 regularization can be
used to estimate the weights under this new objective,
with a slight modification to incorporate to solve for M
number of MDPs. We used the modification of Newton-
Raphson method as shown in [10], where at each iter-
ation we solve the MDPs to get Q⇤

m,m = 1 . . .M with
the cost function estimated for that iteration.

4.2.5 Understanding the Cost Function

In our feature design, we associate a binary feature vec-
tor to each grid cell which succinctly represents the flow
and density information for that cell. For instance, a cell
could have a binary feature vector that indicates high
density and speed moving towards the robot. During
human demonstrations, we compute the feature vector
from the observable quantities (Kinect readings, human
controller choice). The collection of such feature vectors
defines our demonstration data.

Now consider the Eqn. (18) and Eqn. (21). The like-
lihood in Eqn. (21) is the likelihood of the demonstra-
tion data defined using the value function based on the
cost function in Eqn. (18). As such, maximizing the
likelihood via Eqn. (23) will find the weights of cost
function such that it will make the likelihood of fea-
ture vectors seen in the demonstration data higher in
the optimal plan obtained via Q⇤. In other words, our
feature design allows the IRL module to learn to prefer
particular features, rather than learning every possible
mapping from Kinect sensor reading to an action. As
a consequence, our framework only needs to learn the
preferences from demonstrations, instead of all possible
appropriate actions under all possible navigation sce-
narios and environments. We indeed show this capabil-
ity in the experiment section, by testing our framework
under scenarios that were not explicitly included in the
demonstration data.

As a consequence of learning from demonstrations,
the weights determined by the IRL module specify the
priority among features in determining a path. As noted
in Section 4.2.3, we calculate the cost of a cell s using
Eqn. (18). Table 1 shows an example of typical weights
as found during our experiments.

Table 1 Inferred weights for the cost function

Den Speed Dir DistGoal
High 1.0 0.0 1.7 0.3

Medium -0.5 0.0 1.2 -0.1
Low -1.2 0.0 -2.3 -0.4

Since we use binary feature vectors, we can asso-
ciate an intuitive meaning to each weight. Consider a
case where the robot has two reachable cells, one cell
having high density, low risk direction, and high dis-
tance to the goal, and another cell having low density,
high risk direction, and high distance to the goal. Us-
ing (1), weights from the table 1, and the fact that our
features are binary, the first cell would have a cost of
1� 2.3 + 0.3 = �1.0, and the second cell would have a
cost of �1.2+ 1.7+ 0.3 = 0.8. These costs suggest that
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from human demonstrations, we learned that it is safer
to move into a cell that has high density at the moment
but the obstacle in that cell will move away, than into
a cell that might be unoccupied at the moment but an
obstacle is moving into that cell, given that these cells
have the same distance to the goal.

5 PLANNING

5.1 Planning Architecture

Since the RGB-D sensor has a limited range of view, two
cost maps are considered simultaneously to achieve a
full planning architecture: a global one and a local one.
The global cost map, given a priori, is in an absolute
reference frame where the goal is specified. The local
cost map is in a local reference frame where features and
costs are constantly updated based on the features as
defined above. We define a path planning architecture
that handles these two maps simultaneously, as shown
in Figure 5.

Fig. 5 Planner architecture

The architecture consists in fact of three layers: the
global and local path planners, and a low-level collision
detector. This is similar to the idea of a three-layer
architecture suggested in [15], where you have several
layers running in parallel, each responsible for di↵erent
tasks simultaneously. Like the architecture suggested
in [15], we have a fast-running collision detector that
checks for obstacles in front of the robot several times
a second based on simple hand-coded rules. The higher
layers are responsible for the actual automatic path
planning.

The specific role of each layer is as follows. Once the
global goal is specified by the wheelchair robot user, the

global path planner plans a path from the initial posi-
tion to the goal using the map known a priori. Then,
the local path planner, Algorithm 2, is executed to plan
a path from the current position to the sub-goal (Re-
call Figure 1). The local path planned is represented
as a set of points, which we call waypoints, that needs
to be followed in order for the robot to get to the sub-
goal. The next destination for the robot therefore is
the closest waypoint from the current robot position.
The robot either reaches for this waypoint or executes
the global path if the situation permits. While all of
this is happening, the low level collision detector runs
in parallel and can stop the robot if an obstacle is too
close to the robot (e.g. < 1m). This prevents collisions
caused by unforeseen risks, such as sudden appearance
of obstacles or planning failure.

5.2 Local Path Planner

The local path planner, Algorithm 2, is an event-driven
algorithm that returns the next destination to be reached.
It proceeds as follows. It first waits for the set of fea-
ture vectors associated with each cell to be passed in by
the feature extraction module. Once the feature vectors
are received, it calculates the cost at each cell using the
feature vector, weight vector, and Eqn. (18). The algo-
rithm then first checks if a safe zone is reached. The safe
zone is defined as a small (e.g. 0.25m) radius around the
current waypoint, and the test returns true if the robot
reaches this circle. If the safe zone test returns true, it
then checks if an obstacle is detected. If the safe zone
test returns false, the local planner continues to work
towards the current waypoint. Note that the safe zone
test automatically returns true if the current waypoint
corresponds to the global goal. The second test (for ob-
stacle detection) is true if one of the cells within the
local action radius (e.g. 4m) has high density. This is
a check to see if we need to use our learned IRL cost
function. Obviously this is not necessary if there are
no dynamic obstacles in the vicinity of the robot, in
which case a simple shortest path cost function (as op-
timized by the global planner) is quite su�cient. If the
safe zone test and the obstacle detection test are both
true, then the local planner optimizes a local path us-
ing Djkistra’s algorithm over the learned feature-based
IRL cost function. Figure 6 shows an example of local
path planning.

6 EXPERIMENTS

We assess our socially adaptive navigation framework
by comparing the trajectories it produces with trajecto-
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Algorithm 2 Local Path Planning Algorithm
Input:FeatureVectors, WeightVector, GlobalPath,
CurrentWayPt
while RobotRunning do

// Waiting for feature vectors
WaitOn(FeatureVectors)

// Calculate cost at each cell using Eqn. (1)
GetCostAtEachCell(FeatureVectors, WeightVector)

if SafeZone Reached then
if Obstacle Not Detected then

// Reach for the global goal
return GlobalPath

else
// Plan a local path to the sub-goal
LocalPath = DjkistraGraphSearch()
NextDestination = ExtractWaypoint(LocalPath)
return NextDestination

end if
else

return CurrentWayPt
end if

end while

ries of human drivers, and trajectories obtained by the
Dynamic Window Approach (DWA) [14], a shortest-
path type planning method that uses laser data. We
use scenario-based experiments, where the robot and
human driver execute a similar scenario (using the same
initial conditions) and repeat it many times, to objec-
tively compare di↵erent measures of social adaptivity.
We consider three metrics to measure the social adap-
tivity: closest distance to the pedestrian, avoidance dis-
tance to the pedestrian, and average time to reach the
goal. Closest distance is calculated by measuring the
distance from the center of the robot to the center of
the closest pedestrian, when they are closest through-
out the execution of a trajectory. Avoidance distance
is measured by calculating the distance from the cen-
ter of the robot to the center of the pedestrian when
the angular velocity of robot is increased to a partic-
ular threshold, in an attempt to avoid the pedestrian.
Closest distance to the pedestrian is a good measure
of social adaptiveness because humans prefer to keep
a particular distance to unknown individuals during
a navigation. Avoidance distance is an important fac-
tor of social adaptivity because pedestrians expect the
wheelchair to start avoiding them from a certain dis-
tance. Besides these two metrics, we also measure the
average length of time to complete the trajectory. We
first describe the experimental setup, and then the tar-
get scenarios. The rationale for selecting each scenario
is also provided in the corresponding section.

Fig. 6 Example of planning and its corresponding black and
white image (bottom-right corner). The sub-goal is marked
with a red cube, and a waypoint marked with a white cube. In
an attempt to avoid the approaching pedestrians, the robot
plans a path to join the pedestrians on the right, who are
moving in the direction of the goal.

6.1 Setup and Navigation Scenarios

We deployed our algorithm on the Smartwheeler robotic
wheelchair [29]. To acquire the initial training data nec-
essary to estimate the weights, we asked an expert to
manually drive the Smartwheeler within our university
building to gather human trajectories for the IRL mod-
ule. Specifically, we recorded log files while driving,
which included features extracted and actions taken
(i.e. choosing to moving into a particular cell) during
the drive. We collected 17 log files, each of 1-3 min-
utes. The log files were collected in conditions where
there were multiple pedestrians approaching or mov-
ing away from the wheelchair, from various directions.
These were collected mostly in a lab, which is an open
space filled with people, and never in a hallway or through
doors. These were sent to the IRL module as state and
action sequences; the weights were then calculated of-
fline. Note that the conditions in which the data were
collected are not identical to the conditions for the ex-
periments below. This is intentional, to show robust-
ness of the approach to a variety of conditions. The
same training set is used for the three test scenarios
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listed below. For each of the scenarios, we also used the
same initial conditions (start positions and goals). For
each path planning approach (IRL, human driver, and
DWA), we repeated each scenario 10 times and then
calculated the average executed trajectory length, and
the mean and 95% confidence interval for the two met-
rics of social adaptivity. The robot was operating at a
constant speed, for both training and testing.

6.2 Scenario 1: Pedestrian Walking Towards the Robot

In this scenario, a pedestrian and the robot start ten
meters apart, facing each other. Their respective goals
are seven meters directly forward of their initial posi-
tion. We consider this scenario because this passing be-
haviour is a common one in everyday situations. Also,
it is the type of scenario where the robot can learn
socially adaptive behaviours by observing how human
drivers use the pedestrian’s pose to determine in which
direction to turn, and by how much. For instance, we
noticed that when a pedestrian notices our robot ap-
proaching, s/he often decides which direction to turn
before the robot turns. Consequently, the robot learns
to turn in the opposite direction to avoid the pedes-
trian. However, the robot needs to turn enough so that
there is a comfortable distance between the pedestrian
and the robot. Moreover, the robot needs to turn from
a good enough distance so that the pedestrian can feel
comfortable with the robot’s navigation behaviour, by
confirming the robot is indeed trying to avoid him.

Such behaviours are well illustrated in the average
trajectory execution shown in Figure 7. Note that in
this scenario, the pedestrian randomly decides to turn
left or right to avoid the robot. We separated these two
cases for the average trajectory. As can be observed
from the average trajectory, the trajectory of the DWA
planner is far from that of the human driver, while the
trajectory of the IRL planner is very close to that of
the human driver.

The metrics for navigation performance are shown
in Table 2. The average value of closest distance mea-
sured in the IRL planner pedestrian is very similar to
that of the human driver, and much more conservative
than the DWA planner. The avoidance distance is a bit
further than the human. The time to reach the goal is
a bit more than that of the human driver.

6.3 Scenario 2: Pedestrian Walking Horizontally to the
Robot

In this scenario, the pedestrian approaches the robot
from the right side and moves towards the left, with

Fig. 7 Average trajectories executed by IRL (solid), human
driver (dashed) and DWA (circle-dashed). Left figure depicts
the case in which the pedestrian approached the robot and
turned right(w.r.t to the robot) to avoid the robot, and the
right figure is when the pedestrian approached the robot and
turned left to avoid the robot. Yellow cube represents the goal
that is approximately 7m away.

Table 2 Metrics and their 95% confidence interval for social
adaptiveness for scenario 1

Average Vals Human DWA IRL
ClosestDistance(m) 1.64±0.12 1.16±0.13 1.62±0.15
AvoidDistance(m) 3.04±0.33 2.64±0.22 3.21±0.17
TimetoGoal(s) 10.53±0.38 11.01±1.05 11.57±0.78

respect to the robot. The robot is moving perpendicu-
larly to the pedestrian’s motion, trying to get to a goal
that is seven meters from the current position. This sce-
nario illustrates well how a human driver will trade-o↵
the density feature of the pedestrian (represented in his
current position), with the direction feature (represent-
ing the pedestrian’s future position). Unlike traditional
path planners that try to simply avoid obstacles, our
planner can select a path to move to the pedestrian’s
current position, such as to avoid the pedestrian’s fu-
ture position, similar to what a human driver would
do.

Figure 8 shows the comparison of average trajec-
tory executed by the human and the robot. In the DWA
planner’s trajectory, the robot tried to avoid the incom-
ing pedestrian by trying to avoid him at his current po-
sition. However, as the avoidance trajectory interfered
with the pedestrian’s trajectory, the robot often had
to repeatedly stop to wait until the pedestrian passed.
In contrast, the trajectories of the human driver and
IRL planner took into account the pedestrian’s direc-



Socially Adaptive Path Planning in Human Environments Using Inverse Reinforcement Learning 13

tion and avoided his future position. Such trajectories
are possible because the weights learned from the IRL
module prioritize the direction feature (future position)
over the density feature (current position).

Table 3 shows the results for the objective measures.
These suggest that the DWA planner again gets very
close, within 0.75m to the pedestrian, while the IRL
and human driver trajectories maintained a 1.5m dis-
tance to the pedestrian. Also in terms of avoidance dis-
tance, DWA started avoiding the pedestrian relatively
later than the human driver and the IRL planner. The
avoidance distance of the IRL planner was a bit closer
than that of the human driver. This is likely due to the
limited field of view of the Kinect, compared to that
of human vision, which makes horizontally approach-
ing obstacles harder to detect. The time to reach the
goal was almost the same for the IRL planner and hu-
man driver. The DWA planner required more time, due
to its repeated stop-and-go behavior.

Fig. 8 Average trajectories executed by IRL (solid), human
driver (dashed) and DWA (circle-dashed). when a pedestrian
approached the robot from the right side. The IRL and human
driver moves towards where the pedestrian is, while DWA
moves away from him.

Table 3 Metrics and their 95% confidence interval for social
adaptiveness for scenario 2

Average Vals Human DWA IRL
ClosestDistance(m) 1.49±0.17 0.75±0.05 1.50±0.15
AvoidDistance(m) 1.77±0.15 1.15±0.14 1.54±0.10
TimetoGoal(s) 11.60±0.25 13.24±0.38 11.63±0.30

6.4 Scenario 3: Multiple Pedestrians

In this scenario, we have multiple pedestrians approach-
ing the robot from the front at a distance of 3-4m, and
a pedestrian that is moving parallel to robot to its left
(and in the direction of the goal). The goal is set 6m
away from the front of the robot. This scenario shows
the robot’s ability to join a flow direction that is in the
direction of the goal, while simultaneously avoiding an
opposing flow direction. As argued in [16], this is one of
the essential abilities of socially adaptive path planners.

The average trajectories are shown in Figure 9. We
observe that the trajectories of the human and IRL
planner initially avoid the incoming crowd and join the
pedestrian moving towards the goal, following him for
a while until the crowd is avoided. After the avoid-
ance, both trajectories approach the goal. The DWA
planner’s trajectory also initially avoids the incoming
crowd, but it abruptly stops when the lateral pedes-
trian appears in front of the robot. As the pedestrian
approaches the goal, the DWA planner tries to avoid
him by making an unnecessary turn right before reach-
ing the goal. The IRL planner shows a trajectory that is
a bit di↵erent from the human driver, in that it reaches
the goal sooner than the human driver does. This is be-
cause once the crowd is avoided, the high density fea-
ture in the corresponding cells are set to low, and the
distance feature (which is more important than the low
density feature) contributes more to the cost function.
As a result, the robot immediately tries to approach
cells that are closer to the goal.

The objective metrics are shown in Table 4. We ob-
serve that despite the disparity in the average trajectory
shown in Figure 9, the measured closest distance and
avoidance distance of the IRL planner are very close
to that of the human driver. Moreover, the IRL plan-
ner actually reaches the goal faster than the human
driver, by reaching for cells that are closer to the goal
cell. The DWA planner in this scenario performed worse
than the other two planners. It got closer to the pedes-
trian, sometimes within 0.6m, and avoided the incoming
crowd relatively later than the human driver. Its aver-
age time to reach the goal is also significantly longer
than the IRL planner.

Table 4 Metrics and their 95% confidence interval for social
adaptiveness for scenario 3

Average Vals Human DWA IRL
ClosestDistance(m) 1.00±0.06 0.86±0.13 1.13±0.15
AvoidDistance(m) 3.46±0.07 3.05±0.14 3.55±0.12
TimetoGoal(s) 9.54±0.50 12.10±1.70 8.60±0.30
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Fig. 9 Average trajectories executed by IRL (solid), human
driver (dashed) and DWA (circle-dashed). It initially turns
left to avoid the incoming crowds that moves towards the
robot, and to join the pedestrian that is moving away from
the robot. After the incoming crowds are avoided, it moves
towards the goal

6.5 Crowded Hallway

We place the robot in a busy hallways of a university
building during normal school hours, as shown in Fig-
ure 10. Note that the robot has never seen this envi-
ronment before (i.e. no expert demonstrations are per-
formed in this setting.) The goal for the robot is to get
from one end of the hallways to the other while avoid-
ing pedestrians as well as a few static obstacles such
as stairs and garbage cans along the way. The purpose
of this experiment is to show that the method is su�-
ciently robust for non-controlled environments, and in
particular that the cost function learned can be used in
previously unseen settings.

For this scenario, we do not provide trajectory com-
parisons. Since the pedestrians were not moving in a
predefined manner as they did in our previous scenar-
ios, crowd situations from one run to another varied sig-
nificantly, making direct trajectory comparisons mean-
ingless.

We repeated the experiment ten times using each
of the three methods (IRL controller, DWA planner,
and a human controller). These repetitions were used
only for evaluating each approach, not for re-training
the system (we used the IRL system that was trained
in the lab without any modification). In all cases, the
robot was required to travel from one end of the hall-
way to the other and back. The results are shown in

Table 5. For this scenario, we allowed a human, sit-
ting on the wheelchair, to intervene when deemed nec-
essary during the navigations. We measured the human
intervention percentage during the autonomous navi-
gations computed by counting the number of velocity
commands that human sent via remote controller, and
divide it by the total number of velocity commands ex-
ecuted by the robot.

As the results show, IRL was very similar to the
human driver in terms of closest distance to a pedes-
trian. However, IRL showed several conservative mo-
tions when making avoidance motion; compared to hu-
man, the avoid distance was higher on average. Most
of human interventions for IRL was due to the limited
sensing. In other words, because of limited field of view
of Kinect, it could not see the people behind or right be-
tween the robot. However, we believe this problem can
be resolved by fusing multiple sensor inputs (i.e. hav-
ing Kinect at the back and sides, not just at the front).
For DWA, the human often had to intervene when the
robot was stuck in a human crowd, as it does not have
the ability to join and follow the crowd. As for time to
goal, DWA was able to get to the goal faster than IRL
as the human operator was in control most of the time.

In addition to the social adaptiveness metric, we
provide the video recorded from the on-board Kinect
on the robot during a sample of this experiment1.

Fig. 10 A picture of the hallway

7 DISCUSSIONS

In this paper, we proposed a socially adaptive path
planning framework that closely resembles the naviga-

1 http://www.youtube.com/watch?v=T9p-prVXr0M
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Table 5 Metrics and their 95% confidence interval for social
adaptiveness for the Crowded Hallway scenario

Average Vals Human DWA IRL
ClosestDistance(m) 0.97±0.06 0.73±0.02 1.06±0.08
AvgAvoidDistance(m) 1.06±0.14 1.01±0.07 1.32±0.11
TimetoGoal(s) 41.25±2.15 45.33±2.61 49.40±3.56
HumanIntervention(%) 100±0 68.22±0.68 18.18±1.58

tion behaviour of a human operator. Our work was mo-
tivated by the realization that for assistive robots that
interact with humans on a daily basis, it is crucial to
take into account the social variables to provide seam-
less navigation in environments filled with humans.

There were several challenges involved in this work.
The main challenge was in defining the cost function
over social variables. Our intuition was that while it
is hard to manually define a cost function based on
such social variables, it is easier to learn the cost func-
tion from a human demonstrator, who is instinctively
aware of such variables. We employed an IRL frame-
work to resolve this challenge. The other challenge was
the integration of the IRL framework with a real robot
navigation system. This involved developing an optical
flow algorithm based on the RGB-D sensor, designing
an MDP and an appropriate navigation architecture,
and proposing a new local path planning algorithm that
works in accordance with the designed architecture.

Unlike previous works [16,39], our framework was
submitted to a thorough empirical evaluation with a
robot platform. Using scenario-based experiments, we
showed that the behaviour achieved by our framework
closely resembles trajectories produced by a human op-
erator, as illustrated by the social adaptivity metrics
and average trajectories presented in the experiment
section. Specifically, in the first scenario we observed
that trajectories of DWA, which employs a standard
cost function based on occupancy of grid cells, are not
socially adaptive as it drives too closely to the pedes-
trian and avoids the pedestrian too late. The IRL tra-
jectory, in contrast, closely resembled the human driver’s
trajectory which likely made both pedestrian and the
person on the robot feel more comfortable and safe. In
the second scenario, our method successfully avoided
the future position of the pedestrian, whereas the DWA
planner tried to avoid the current position of the pedes-
trian and had to repeatedly stop and restart. This again
shows that our navigation algorithm is socially adaptive
as it learned from the human demonstrations that the
future positions of moving pedestrians is more impor-
tant than their current position. In the third scenario,
we showed the essential ability of socially adaptive path
planner - joining the flow of the crowd moving in the
direction of the goal. We hypothesize that the pedestri-

ans will also feel more comfortable with this behaviour,
compared to the DWA behiavor which tried to actively
avoid the crowd. It is noteworthy that our IRL approach
used a low-cost RGB-D sensor, compared to the expen-
sive laser range-finder used for the DWA strategy.

There are a few limitations in the work we described.
First, the estimated RGB-D optical flow is inherently
noisy and does not account for occlusions. This com-
plicates the well-known correspondence problem (i.e.
identifying which points from two di↵erent RGB scans
correspond to the same physical item). Another limita-
tion is the fact that the IRL framework performs best
when given precise feature measurements. As the cost
function is linear in the features, if these features are
not measured precisely, the cost estimates can be noisy,
which can lead to poor planning. We employed a bi-
nary feature vector representation with regularization
to alleviate this problem; however, the choice of base
features remains an open problem.

We performed experiments in three well-defined con-
trolled scenarios, as well as in an uncontrolled dynamic
human environment. The controlled experiments allowed
us to perform an objective comparison of the perfor-
mance of the three navigation planning approaches, while
the uncontrolled experiment allowed us to demonstrate
the ability of our navigation framework in a real-world
human environment. However, the noteworthy caveat
is that due to the limitations of our RGB-D optical
flow mentioned in the previous paragraph, our approach
could not be fully autonomous. For instance, occlu-
sions make our framework to avoid a person right in
front, but not the person occluded by the person that
is behind the person that the robot just avoided. How-
ever, we believe that by employing more sophisticated
approaches for pedestrian movement tracking, such as
[23], that our approach can be fully autonomous.

In our experiments, we primarily compared our method
with a DWA planner. The original DWA has mostly
proven successful in static environments, and thus did
not perform very well in our domain. And although
there are extensions of the original DWA proposed for
dynamical environment, such as [34], these typically as-
sume full observability of the linear and angular veloc-
ities of all the dynamic obstacles in the environment,
which is infeasible in most human environments, such
as those used in our evaluations. As mentioned in sec-
tion 2.1, computing the velocity flow is already a dif-
ficult computer vision problem. One of the advantages
of our approach is that it can use any available fea-
ture, including noisy, partially observable ones. While
we consider a limited set of features in the current im-
plementation, extending the learning framework to a
richer feature vector is trivial.
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In future work, we also hope to combine natural
language commands to make the navigation easier for
wheelchair robot users. Currently, the wheelchair uses
a tactile interface to allow users to specify the global
goal; this poses limitations for severely disabled indi-
viduals that cannot use the touch interface [42]. In the
short term, we should be able to facilitate navigation
via voice commands, by specifying the global goal, or
using commands such as “follow the right wall” in a
very crowded environment where the robot cannot find
a valid path. There has been significant work in the
area of language grounding, where the goal is to map
the meaning of semantics of natural language sentences
with physical systems [25,40], which suggests promising
opportunities in this direction.
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