
Supplementary material for adversarial actor-critic algorithm for task and motion
planning problems using planning experience

Hyperparameter settings
We describe hyperparameters and learning rates used for
different algorithms. For each algorithm, we have a hyperpa-
rameter λ. For PPO and GAIL, this refers to the clipping ratio
limit, for DDPG, this is the soft-update parameter, and for
ADMON this is the adversarial objective control parameter.

Algorithm lrα lrθ λ
PPO 1e-3 1e-4 0.3
ADMON 1e-3 1e-4 2
GAIL 1e-3 1e-4 0.2
DDPG 1e-3 1e-4 0.01

Table 1: Hyperparameter setting for the conveyor belt domain

Algorithm lrα lrθ λ
PPO 1e-4 1e-4 0.3
ADMON 1e-4 1e-4 2
GAIL 1e-4 1e-4 0.3
DDPG 1e-4 1e-4 0.001

Table 2: Hyperparameter setting for the object fetch domain

Architecture descriptions
The architecture for the critic is exactly as described in Figure
2b of the main paper - we describe the number of hidden
layers and neurons, and activation functions here.

Conveyor belt domain
For this domain, we only learn a place operator policy. We
have 982 key configurations. For the architecture in each of
the red boxes of Figure 2b, we use five hidden layers with
each of 64 neurons. The outputs at the end of these five hid-
den layers are the 982 green neurons, each representing the
importance of each key configuration for predicting the value
of the given place base pose. We then max-pool these outputs
with a pool size of two. Lastly, we connect these max-pooled
outputs with two hidden layers each with 64 neurons. For the
actor, we have the exactly the same architecture, except that

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

what gets fed into the red box is only the collision information
φ(i). For each layer, we use rectified linear activation func-
tion, except at the last layer, where we use linear activation
function.

Object fetching domain
For this domain, we learn both pick and place operator poli-
cies. We have 1028 key configurations. For the place operator,
we use exactly the same architecture as the conveyor domain,
except the input vector consists of the current robot configu-
ration in addition to the robot place base pose.

For the pick operator critic, we do additional layers to
convert the relative base pose to a global base pose. We take
the current object pose and the relative pick base pose, and
add them together using a Add layer to get the global robot
pick base pose. We then take this pick base pose and the
current robot base pose, which is also expressed in the global
coordinate frame, and feed it to the red box in Figure 2b
along with the key configuration vector. The architecture in
the red box is the same as the place operator. The green-
neuron output is max-pooled as done in the place operator as
well, and gets fed into a dense layer with 64 hidden units. On
a separate network, we take the object shape and the grasp
and connect it into a single dense layer with 64 hidden units.
The outputs from the green neurons and grasp network are
then concatenated, and gets connected to a single dense layer
with 64 hidden units. This gets connected to an output layer.
For the actor, we have exactly the same network, except that
the input does not have grasp and relative pick base pose;
these are outputs of the actor.

Description of φfetch for the fetching domain
As described in the main article, given a new problem in-
stance, we begin by sampling a pick base configuration and
a grasp for the target object for the target object, and calling
the motion planner to obtain a “fetching path” for the target
object that will make the robot to move to the selected pick
configuration, where collisions with the movable obstacles
are allowed. To encode this fetching path, we re-use the key
configurations to make another binary input vector φ(i)fetch
in addition to φ(i), with φ

(i)
fetch = 1 if key configuration

i is within a fixed distance threshold of the fetching path



and 0 otherwise. This gets passed along with the collision
information to the actor and critic neural networks.


	Hyperparameter settings
	Architecture descriptions
	Conveyor belt domain
	Object fetching domain

	Description of fetch for the fetching domain

