
Monte Carlo Tree Search in continuous spaces using Voronoi optimistic
optimization with regret bounds

Beomjoon Kim1, Kyungjae Lee2, Sungbin Lim3, Leslie Pack Kaelbling1, and Tomás Lozano-Pérez1

1MIT Computer Science and Artificial Intelligence Laboratory
2Seoul National University

3KakaoBrain

Abstract

Many important applications, including robotics, data-center
management, and process control, require planning action se-
quences in domains with continuous state and action spaces
and discontinuous objective functions. Monte Carlo tree search
(MCTS) is an effective strategy for planning in discrete action
spaces. We provide a novel MCTS algorithm (VOOT) for deter-
ministic environments with continuous action spaces, which,
in turn, is based on a novel black-box function-optimization
algorithm (VOO) to efficiently sample actions. The VOO al-
gorithm uses Voronoi partitioning to guide sampling, and is
particularly efficient in high-dimensional spaces. The VOOT
algorithm has an instance of VOO at each node in the tree.
We provide regret bounds for both algorithms and demon-
strate their empirical effectiveness in several high-dimensional
problems including two difficult robotics planning problems.

Introduction
We are interested in finite-horizon deterministic planning
problems with high-dimensional continuous action spaces,
with possibly a discontinuous objective function. For ex-
ample, consider the sequential robot mobile-manipulation
planning problem shown in Figure 1 (left). In this domain,
the objective function is defined to be the number of objects
that the robot packs into the storage room while satisfying
feasibility conditions, such as collision-free motions, and
minimizing the total length of its trajectory. Another exam-
ple is shown in Figure 1 (right), where the task is to clear
obstacles from a region, and the objective is a function of the
number of obstacles cleared and trajectory length. In both
cases, the robot’s action space is high dimensional, consisting
of multiple pick or placement configurations of the robot.

More generally, such discontinuous objective functions are
the sum of a finite set of step functions in a high-dimensional
state-action space, where each step corresponds to the oc-
currence of an important event, such as placing an object.
For classes of functions of this kind, standard gradient-based
optimization techniques are not directly applicable, and even
if we smooth the objective function, the solution is prone to
local optima.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Packing domain: the task is to pack as many objects
coming from a conveyor belt into the room (left). Object-
clearing domain: obstacles must be cleared from the swept-
volume of a path to the sink (right). In both domains, the
robot needs to minimize the overall trajectory length.

Recently, several gradient-free approaches to continuous-
space planning problems have been proposed (Buşoniu et
al. 2011; Munos 2014; Weinstein and Littman 2012; Mans-
ley, Weinstein, and Littman 2011), some of which have been
proven to asymptotically find a globally optimal solution.
These approaches either frame the problem as simultaneously
optimizing a whole action sequence (Buşoniu et al. 2011;
Weinstein and Littman 2012) or treat the action space in
each node of a tree search (Mansley, Weinstein, and Littman
2011) as the search space for a budgeted-black-box func-
tion optimization (BBFO) algorithm, and use hierarchical-
partitioning-based optimization algorithms (Munos 2011;
Bubeck et al. 2011) to approximately find the globally opti-
mal solution.

While these hierarchical-partitioning algorithms handle
a richer class of objective functions than traditional meth-
ods (Pintér 1996), their main drawback is poor scalability to
high-dimensional search spaces: to optimize efficiently, these
algorithms sequentially construct partitions of the search
space where, at each iteration, they create a finer-resolution
partition inside the most promising cell of the current parti-
tion. The problem is that constructing a partition requires de-
ciding the optimal dimension to cut, which is a difficult com-
binatorial problem especially in a high-dimensional space.
Figure 2 (left) illustrates this issue with one of the algorithms,
DOO (Munos 2011).

We propose a new BBFO algorithm called Voronoi Op-
timistic Optimization (VOO) which, unlike the previous ap-
proaches, only implicitly constructs partitions, and so scales
to high-dimensional search spaces more effectively. Specifi-
cally, partitions in VOO are Voronoi partitions whose cells are
implicitly defined as the set of all the points that are closer
to the generator than to any other evaluated point. Figure 2
(right) shows an example.

Given as inputs a semi-metric, a bounded search space, and
an exploration probability ω, VOO operates similarly to the
previous partition-based methods: at each iteration, it selects
(implicitly) a Voronoi cell based on a simple exploration-
exploitation scheme, samples a point from the cell, and (im-
plicitly) makes finer-resolution cells inside the selected cell
based on the sampled point. The selection of a Voronoi cell is
based on the given exploration probability: with probability
ω, it explores by selecting a cell with probability proportional
to the volume of the cell; with probability 1− ω, it exploits
by selecting the cell that contains the current best point. Un-
like the previous methods, however, VOO never explicitly
constructs the partitions: by using the definition of Voronoi
partition and the given semi-metric, sampling from the best
cell is implemented simply using rejection sampling. Sam-
pling a point based on the volumes of the cells, which is also
known as the Voronoi bias (Kuffner and LaValle 2000), is
also simply implemented by sampling uniformly at random
from the search space. Figure 1 (right) demonstrates this
point. We prove the regret bound of VOO which shows that
under some mild assumptions, the regret goes to zero.

Using VOO, we propose a novel continuous state-action-
space Monte Carlo tree search (MCTS) algorithm, Voronoi
optimistic optimization applied to trees (VOOT) that uses VOO
at each node of the search tree to select the optimal action, in
a similar fashion to HOOT (Mansley, Weinstein, and Littman
2011). HOOT, however, does not come with performance
guarantees; we are able to prove a performance guarantee
for VOOT, which is derived from a bound on the regret of
VOO. The key challenge in showing this result is that, when
VOO is used to optimize the state-action value function of a
node in the tree, the value function is non-stationary, so that
even when the environment is deterministic, its value changes
as the policy at the sub-tree below the action changes. We
address this problem by using the regret of VOO at the leaf
nodes, whose value function is stationary, and computing how
many re-evaluations at each depth is required to maintain the
same regret at the root node as at the leaf node. We show that
this regret can be made arbitrarily small.

We compare VOO to several algorithms on a set of standard
functions for evaluating black-box function optimization al-
gorithms in which the number of dimensions of the search
space is as high as 20, and show that VOO significantly outper-
forms the benchmarks, especially in high dimensions. To eval-
uate VOOT, we compare it to other continuous-space MCTS
algorithms in the two sequential robot mobile-manipulation
problems shown in Figure 1, and show that VOO computes
significantly better quality plans than the benchmarks, within
a much smaller number of iterations.

Figure 2: Left: Illustrations of a partition made by DOO when
five points are evaluated to optimize a 2D Shekel function.
Each solid line shows the partitions made by the point that is
on it. Numbers indicate the order of evaluations. The dotted
lines indicate the two possible partitions that can be made by
the fifth point, and depending on this choice, the performance
differs. Right: Illustration of the Voronoi partition implicitly
constructed by VOO. We can sample from the best Voronoi
cell (defined by the black point) by random-sampling points,
and rejecting them until we obtain one that is closer to the
black point than the other points. We can sample a point with
Voronoi bias by uniformly sampling from the entire search
space; the cell defined by the white point is most likely to be
selected.

Related work
There are several planning methods that use black-box func-
tion optimization algorithms in continuous-space problems.
We first give an overview of the BBFO algorithms, and then
describe planning algorithms that use them. We then give
an overview of progressive-widening approaches, which are
continuous-space MCTS algorithms that do not use black-box
function optimization methods.
Global optimization of black-box functions with budget

Several partition-based algorithms have been pro-
posed (Munos 2011; Bubeck et al. 2011; Munos 2014). In
(Munos 2011), two algorithms are proposed. The first algo-
rithm is DOO, which requires as inputs a semi-metric and the
Lipschitz constant for the objective function. It sequentially
constructs partitions of the search space, where a cell in the
partition has a representative point, on which the objective
function is evaluated. Using the local-smoothness assump-
tion, it builds an upper-bound on the un-evaluated points in
each cell using the distance from the representative point. It
chooses the cell with the highest-upper bound, and creates
a finer-resolution cell inside of it, and repeats. The second
algorithm proposed in (Munos 2011) is SOO, which does not
require a Lipschitz constant, and evaluates all cells that might
contain the global optimum. In (Bubeck et al. 2011), Hierar-
chical Optimistic Optimization (HOO) is proposed. Unlike
SOO and DOO, HOO can be applied to optimize a noisy func-
tion, and can be seen as the stochastic counterpart of DOO. So
far, these algorithms have been applied to problems with low-
dimensional search spaces, because solving for the optimal
sequence of dimensions to cut at each iteration is difficult.
VOO gets around this problem by not explicitly building the
partitions.

Alternatively, we may use Bayesian optimization (BO) al-
gorithms, such as GP-UCB (Srinivas et al. 2010). A typical

BO algorithm takes as inputs a kernel function, and an ex-
ploration parameter, and assumes that the objective function
is a sample from a Gaussian Process (GP). It builds an ac-
quisition function, such as upper-confidence-bound function
in GP-UCB (Srinivas et al. 2010), and it chooses to evaluate,
at every iteration, the point that has the highest acquisition
function value, updates the parameters of the GP, and repeats.
The trouble with these approaches is that at every iteration,
they require finding the global optimum of the acquisition
function, which is expensive in high dimensions. In contrast,
VOO does not require an auxiliary optimization step.

There have been several attempts to extend BO to high-
dimensional search spaces (Wang et al. 2013; Kandasamy,
Schneider, and Poczos 2015). However, they make a rather
strong assumption on the objective function, such as that
it lies on a low-dimensional manifold, or that it can be
represented by a linear combination of functions of sub-
dimensions, which are unlikely to hold in domains such as
robotics, where all of the action dimensions contribute to
its value. Also, these methods require extra hyperparameters
that define the lower-dimensional search space that are tricky
to tune. VOO requires neither the assumption or the hyperpa-
rameters for defining the low-dimensional search space.

There are also methods that try to combine BO and hi-
erarchical partitioning methods, such as (Wang et al. 2014;
Kawaguchi, Kaelbling, and Lozano-Pérez 2015). The idea is
to use hierarchical partitioning methods to optimize the ac-
quisition function of BO; unfortunately, for the same reason
as hierarchical partitioning methods, they tend to perform
poorly in higher dimensional spaces.

Optimal planning in continuous spaces using BBFO
There are two approaches to continuous-space planning prob-
lems that use black-box function-optimization (BBFO) algo-
rithms. In the first group of approaches, the entire sequence
of actions is treated as a single search space for optimiza-
tion. In (Weinstein and Littman 2012), the authors propose
hierarchical open-loop optimistic planning (HOLOP), which
uses HOO for finding finite-horizon plans in stochastic en-
vironments with continuous action space. In (Buşoniu et al.
2011), the authors propose an algorithm called simultaneous
optimistic optimization for planning (SOOP), that uses SOO
to find a plan when the environment is deterministic. These
methods become very expensive as the length of the action
sequence increases.

The second group of approaches, where our method be-
longs, performs a sample-based tree search with a form of
continuous-space optimizer at each node. Our work most
closely resembles hierarchical optimistic optimization ap-
plied to trees (HOOT) (Mansley, Weinstein, and Littman
2011), which applies hierarchical optimistic optimization
(HOO) at every node in MCTS for the action-optimization
problem, but does not provide any performance guarantees.
These algorithms have been limited to problems with low-
dimensional action space, such as the inverted pendulum.
Our experiments demonstrate VOOT can solve problems with
higher-dimensional action spaces much more efficiently than
these algorithms.

Widening techniques for MCTS in continuous action
spaces There are progressive-widening (PW) algorithms

that extend MCTS to continuous action spaces (Couëtoux et
al. 2011; Auger, Couëtoux, and Teytaud 2013), but unlike the
approaches above, their main concern is deciding when to
sample a new action, instead of which action to sample. The
action-sampler in these PW algorithms is assumed to be an
external function that has a non-zero probability of sampling
a near-optimal action, such as a uniform-random sampler.

Typically, a PW technique (Couëtoux et al. 2011) ensures
that the ratio between the number of sampled actions in a
node to the number of visits to the node is above a given
threshold. In (Auger, Couëtoux, and Teytaud 2013), the au-
thors show that a form of PW can guarantee that each state’s
estimated value approaches the optimal value asymptotically.
However, this analysis does not take into consideration the
regret of the action sampler, and assumes that the probability
of sampling a near-optimal action is the same in every visit
to the node. So, if an efficient action-sampler, whose regret
reduces quickly at each visit, is used, their error bound would
be very loose. Our analysis shows how the regret of VOO
affects the planning performance.

Monte Carlo planning in continuous
state-action spaces

We have a continuous state space S, a continuous action
space U , a deterministic transition model of the environ-
ment, T : S × U → S, a deterministic reward function
R : S × U → R, and a discount factor γ ∈ [0, 1). Our
objective is to find a sequence of actions with planning hori-
zon H that maximizes the sum of the discounted rewards
maxu0,··· ,uH−1

∑H−1
t=0 γtr(st, ut) where st+1 = T (st, ut).

Our approach to this problem is to use MCTS with an action-
optimization agent, which is an instance of a black-box
function-optimization algorithm, at each node in the tree.

We now describe the general MCTS algorithm for con-
tinuous state-action spaces, which is given in Algorithm 1.
The algorithm takes as inputs an initial state s0, an action-
optimization algorithm A, the total number of iterations
Niter, the re-evaluation parameter Nr ∈ [0, Niter], and its
decaying factor κr ∈ [0, 1]. It begins by initializing the nec-
essary data in the root node. U denotes the set of actions that
have been tried at the initial node, Q̂ denotes the estimated
state-action value of the sampled actions, and nr denotes the
number of times we re-evaluated the last-sampled action. It
then performs Niter Monte Carlo simulations, after which it
returns the apparently best action, the one with the highest
estimated state-action value. This action is executed, and we
re-plan in the resulting state.

Algorithm 1 MCTS(s0,A, Niter, Nr, κr, H, γ)
1: global variables: T,R,H, γ,A, Niter, κr, H, γ

2: T (s0) = {U = ∅, Q̂(s0, ·) = −∞, nr = 0}
3: for i = 1→ Niter

4: SIMULATE(s0, 0, Nr)
5: return argmaxu∈T (s0).U

T (s0).Q̂(s0, u)

Procedure SIMULATE is shown in Algorithm 2. It is a
recursive function whose termination condition is either en-

Algorithm 2 SIMULATE(s, h,Nr)
1: global variables: T,R,H, γ,A, Niter, κr, H, γ
2: if s == infeasible or h == H
3: return 0
4: if (|T (s).U | > 0) ∧ (T (s).nr < Nr) ∧ (h 6= H − 1)
5: // re-evaluate the last added action
6: u = T .U.get last added element()
7: T (s).nr = T (s).nr + 1
8: else
9: // Perform action optimization

10: u ∼ A(T (s).Q̂)
11: T (s).U = T (s).U ∪ {u}
12: T (s).nr = 1
13: s′ = T (s, u)
14: r = R(s, u)

15: Q̂new = r + γ · SIMULATE(s′, h+ 1, Nr · κr)

16: if Q̂new > T (s).Q̂(s, u)

17: T (s).Q̂(s, u) = Q̂new

18: return T (s).Q̂(s, u)

countering an infeasible state or reaching a depth limit. At
the current node T (s), it either selects the action that was
most recently sampled, if it has not yet been evaluated Nr
times and we are not in the last layer of the tree, or it samples
a new action. To sample a new action, it calls A with esti-
mated Q-values of the previously sampled actions, T (s).Q̂.
A transition is simulated based on the selected action, and
the process repeats until a leaf is reached; Q-value updates
are performed on a backward pass up the tree if a new so-
lution with higher value has been found (note that, because
the transition model is deterministic, the update only requires
maximization.)

The purpose of the re-evaluations is to mitigate the prob-
lem of non-stationarity: an optimization algorithmA assumes
it is given evaluations of a stationary underlying function, but
it is actually given Q̂(s, at), whose value changes as more
actions are explored in the child sub-tree. This problem is
also noted in (Mansley, Weinstein, and Littman 2011). So, we
make sure that Q̂(s, at) ≈ Q∗(s, at) before adding an action
at+1 in state s by sampling more actions at the sub-tree asso-
ciated with at. Since at the leaf node Q∗(s, at) = R(s, at),
we do not need to re-evaluate actions in leaf nodes. In section
5, we analyze the impact of the estimation error in Q̂ on the
performance at the root node.

One may wonder if it is worth it to evaluate the sampled
actions same number of times, instead of more sophisticated
methods such as Upper Confidence Bound (UCB), for the
purpose of using an action-optimization algorithmA. Typical
continuous-action tree search methods perform progressive
widening (PW) (Couëtoux et al. 2011; Auger, Couëtoux, and
Teytaud 2013), in which they sample new actions from the
action space uniformly at random, but use UCB-like strate-
gies for selecting which of the previously-sampled actions to
explore further. In this case, the objective for allocating trials
is to find the highest-value action among a discrete set, not to
obtain accurate estimates of the values of all the actions.

VOOT operates in continuous action spaces but performs

much more sophisticated value-driven sampling of the contin-
uous actions than PW methods. To do this, it needs accurate
estimates of the values of the actions it has already sampled,
and so we have to allocate trials even to actions that may
currently ”seem” suboptimal. Our empirical results show that
this trade-off is worth making, especially in high-dimensional
action spaces.

Voronoi optimistic optimization
Given a bounded search space X , a deterministic objective
function f : X → R and a numerical function evaluation
budget n, our goal is to devise an exploration strategy over X
that, after n evaluations, minimizes the simple regret defined
as f(x?) −maxt∈[n] f(xt), where f(x?) = maxx∈X f(x),
xt is a point evaluated at iteration t, and [n] is shorthand
for {1, · · ·n}. Since our algorithm is probabilistic, we will
analyze its expected behavior. We define the simple regret of
a probabilistic optimization algorithm A as

Rn = f(x?)− Ex1:t∼A

[
max
t∈[n]

f(xt)

]
Our algorithm, VOO (Algorithm 3), operates by implicitly

constructing a Voronoi partition of the search space X at
each iteration: with probability ω, it samples from the entire
search space, to sample from a Voronoi cell with probability
proportional to its volume; with probability 1−ω, it samples
from the best Voronoi cell, which is the one induced by the
current best point, x∗t = arg maxi∈[t] f(xi).

Algorithm 3 VOO(X , ω, d(·, ·), n)

1: for t = 0→ n− 1
2: Sample ν ∼ Unif [0, 1]
3: if ν ≤ ω or t == 0
4: xt+1 =UNIFSAMPLE(X)
5: else
6: xt+1 =SAMPLEBESTVCELL(d(·, ·))
7: Evaluate ft+1 = f(xt+1)
8: return argmaxt∈{0,...,n−1} ft

It takes as inputs the bounded search space X , the explo-
ration probability ω, a semi-metric d(·, ·), and the budget
n. The algorithm has two sub-procedures. The first one is
UNIFSAMPLE, which samples a point from X uniformly
at random, and SAMPLEBESTVCELL, which samples from
the best Voronoi cell uniformly at random. The former im-
plements exploration using the Voronoi bias, and the latter
implements exploitation of the current knowledge of the func-
tion. Procedure SAMPLEBESTVCELL can be implemented
using a form of rejection sampling, where we sample a point
x at random from X and reject samples until d(x, x∗t) is the
minimum among all the distances to the evaluated points.
Efficiency can be increased by sampling from a Gaussian
centered at x∗t , which we found to be effective in our experi-
ments.

To use VOO as an action optimizer in Algorithm 2, we
simply let U be the search space, and use the semi-metric
d(·, ·). f(·) is now the value function Q∗(s, ·) at each node

of the tree, whose estimation is Q̂(s, ·). The consequence
of having access only to Q̂ instead of the true optimal state-
action value functionQ∗ will be analyzed in the next section.

Analysis of VOO and VOOT

We begin with definitions. We denote the set of all global
optima as X ?, the Voronoi cell generated by a point x as
C(x). We define the diameter of C(x) as supy∈C(x) d(x, y)

where d(·, ·) is the semi-metric on X .
Suppose that we have a Voronoi cell generated by x, C0(x).

When we randomly sample a point z from C0(x), this will cre-
ate two new cells, one generated by x, which we denote with
C1(x), and the other generated by z, denoted C1(z). The diam-
eters of these new cells would be random variables, because
z was sampled randomly. Now suppose that we have sampled
a sequence of n0 points from the sequence of Voronoi cells
generated by x, {C0(x), C1(x), C2(x), · · · , Cn0(x)}. Then,
we define the expected diameter of a Voronoi cell generated
by x as the expected value of the diameter of the last cell,
E[supy∈Cn0 (x) d(x, y)].

We write δmax for the largest distance between two points
in X ,Br(x) to denote a ball with radius r centered at point x,
and µ̄B(r) = µ(Br(·))

µ(X) where µ(·) is a Borel measure defined
on X . We make the following assumptions:

A 1. (Translation-invariant semi-metric) d : X × X → R+

is such that ∀x, y, z ∈ X , d(x, y) = d(y, x), d(x, y) = 0 if
and only if x = y, and d(x+ z, y + z) = d(x, y).

A 2. (Local smoothness of f) There exists at least one global
optimum x? ∈ X of f such that ∀x ∈ X , f(x?) − f(x) ≤
L · d(x, x?) for some L > 0.

A 3. (Shrinkage ratio of the Voronoi cells) Consider any
point y inside the Voronoi cell C generated by the point x0,
and denote d0 = d(y, x0). If we randomly sample a point x1

from C, we have E[min(d0, d(y, x1))] ≤ λd0 for λ ∈ (0, 1).

A 4. (Well-shaped Voronoi cells) There exists η > 0 such that
for any Voronoi cell generated by x with expected diameter
d0 contains a ball of radius ηd0 centered at x.

A 5. (Local symmetry near optimum) X? consists of finite
number of disjoint and connected components {X (`)

? }k`=1,
k < ∞. For each component, there exists an open ball
Bν`(x

(`)
?) for some x

(`)
? ∈ X (`)

? such that d(x, x
(`)
?) ≤

d(y, x
(`)
?) implies f(x) ≥ f(y) for any x, y ∈ Bν`(x

(`)
?).

We now describe the relationship between these assump-
tions and those used in the previous literature. A1 and A2
are assumptions also made in (Munos 2011). These make
the weaker version of the Lipschitz assumption applied only
to the global optima, instead of every pair of points in X .
A3 and A4 are also very similar to the assumptions made
in (Munos 2011). In (Munos 2011), the author assumes that
cells decrease in diameter as more points are evaluated inside
of them and that each shell is well-shaped, in that it always
contains a ball. Our assumption is similar, except that in our
case, A3 and A4 are stated in terms of expectation, because
VOO is a probabilistic algorithm.

A5 is an additional assumption that previous literature
has not made. It assumes the existence of a ball inside of
which, as you get closer to an optimum, the function values
increase. It is possible to drastically relax this assumption to
the existence of a sequence of open sets, instead of a ball,
whose values increase as you get closer to an optimum. In
our proof, we prove the regret of VOO in this general case,
and Theorem 1 holds as the special case when A5 is assumed.
We present this particular version for the purpose of brevity
and comprehensibility, at the expense of generality.

Define νmin = min`∈[k] ν`. We have the following regret
bound for VOO. All the proofs are in the appendix.
Theorem 1. Let n be the total number of evaluations. If

1−λ1/k

µ̄B(νmin)+1−µ̄B(η·λδmax) < ω, we have

Rn ≤LδmaxC1

[
λ1/k + ω(1− µ̄B(η · λnδmax))

]n
+ LδmaxC2[(1− ωkµ̄B(νmin)) · (1 + λ1/k)]n

where C1 and C2 are constants as follows

C1 :=
1

1− ρ(λ1/k + 1− [1− ω + ωµ̄B(η · λδmax)])−1
,

ρ := 1− ωµ̄B(νmin),

and C2 :=
λ−1/k + 1

(λ−1/k + 1)− (1− ωµ̄B(νmin)−1

Some remarks are in order. Define an optimal cell as the
the cell that contains a global optimum. Intuitively speaking,
when our best cell is an optimal cell, the regret should reduce
quickly because when we sample from the best cell with
probability 1− ω, we always sample from the optimal cell,
and we can reduce our expected distance to an optimum by
λ. And because of A5, the best cell is an optimal cell if we
have a sample inside one of Bν`(x?).

Our regret bound verifies this intuition: the first term de-
creases quickly if λ is close to 0, meaning that if we sample
from an optimal cell, then we can get close to the optimum
very quickly. The second term says that, if µ̄B(νmin), the
minimum probability that the best cell is an optimal cell, is
large, then the regret reduces quickly. We now have the fol-
lowing corollary showing that VOO is no-regret under certain
conditions on λ and µ̄B(νmin).

Corollary 1. If λ1/k

(1+λ1/k)kµ̄B(νmin)
< ω < 1 − λ1/k and

λ1/k

1−λ2/k < kµ̄B(νmin), then limn→∞Rn = 0.
The regret bound of VOOT makes use of the regret bound

of VOO. We have the following theorem.
Theorem 2. Define Cmax = max{C1, C2}. Given a de-
creasing sequence η(h) with respect to h, η(h) > 0, h ∈
{0 · · ·H − 1} and the range of ω as in Theorem 1, if
Niter =

∏H−1
h=0 Nr(h) is used, where

Nr(h) ≥ log
(η(h)− γη(h+ 1)

2LδmaxCmax

)
·min(Gλ,ω,Kν,ω,λ)

Gλ,ω = (log
(
λ1/k + ω

)
)−1, and Kν,ω,λ = (log([(1 −

ωµ̄B(νmin))(1 + λ1/k)]))−1 , then for any state s traversed
in the search tree we have
V

(h)
? (s)− V̂ (h)

Nr(h)(s) ≤ η(h) ∀h ∈ {0, · · · , H − 1}

This theorem states that if we wish to guarantee a regret
of η(h) at each height of the search tree, then we should use
Niter number of iterations, with

∏H−1
h′=hNr(h

′) number of
iterations at each node of height h.

To get an intuitive understanding of this, we can view
the action optimization problem at each node as a BBFO
problem that takes account of the regret of the next state. To
see this more concretely, suppose that H = 2. First consider
a leaf node, where the problem reduces to a BBFO problem
because there is no next state, and the regret of the node
is equivalent to the regret of VOO. We can verify that by
substituting Nr(H − 1) to the bound in Theorem 1 the regret
of η(H−1) is guaranteed. Now suppose that we are at the root
node at height H − 2. There are two factors that contribute
to the regret at this node: the regret at the next state in height
H − 1, and the regret that stems from sampling non-optimal
actions in this node, which is the regret of VOO. Because all
nodes at height H − 1 have a regret of η(H − 1), to obtain
the regret of η(H−2), the regret of VOO at the node at height
H−2 must be η(H−2)−γNr(H−1). Again, by substituting
Nr(H − 2) to the bound in Theorem 1, we can verify that
that it would yield the regret of η(H − 2)− γNr(H − 1) as
desired.

Now, we have the following remark that relates the desired
constant regret at each node and the total number of iterations.

Remark 1. If we set η(h) = η, ∀h ∈ {0 · · ·H − 1}, and
Niter = (Nr)

H where

Nr = log
(η(1− γ)

2LδmaxCmax

)
·min(Gλ,ω,Kν,ω,λ)

then, for any state s traversed in the search tree we have

V
(h)
? (s)− V̂ (h)

Nr(h)(s) ≤ η ∀h ∈ {0, · · · , H − 1}

We draw a connection to the case of discrete action space
with b number of actions. In this case, we can guarantee
zero-regret at the root node if we explore all bH number
of possible paths from the root node to leaf nodes. In the
continuous case, with assumptions A1-A5, it would require
sampling infinite number of actions at a leaf node to guaran-
tee zero-regret, rendering achieving zero-regret in problems
with H > 0 impossible. So, this remark considers a posi-
tive expected regret of η. It show that to guarantee this, we
need to explore at least (Nr)

H paths from the root to leaf
nodes, where Nr is determined by the regret-bound of our
action-optimization algorithm VOO. Alternatively, if some
other action-optimization algorithm such as DOO, SOO, or
GP-UCB is used, then its regret bound can be readily used by
computing the respective Nr(h) values in Theorem 1, and its
own Nr value in Remark 1. It is possible to prove a similar
remark in an undiscounted case. Please see Remark 2 in our
appendix.

Experiments
We designed a set of experiments with two goals: (1) test the
performance of VOO on high-dimensional functions in com-
parison to other black-box function optimizers and (2) test

Figure 3: Griewank, Rastrigin, and Shekel functions (top to
bottom) in 3, 10, and 20 dimensions (left to right)

the performance of VOOT on deterministic planning problems
with high-dimensional action spaces in comparison to other
continuous-space MCTS algorithms. All plots show mean
and 95% confidence intervals (CIs) resulting from multiple
executions with different random seeds.

Budgeted-black-box function optimization We evaluate
VOO on three commonly studied objective functions from
the DEAP (Fortin et al. 2012) library: Griewank, Rastrigin,
and Shekel. They are highly non-linear, with many local
optima, and can extend to high-dimensional spaces. The true
optimum of the Shekel function is not known; to gauge the
optimality of our solutions, we attempted to find the optimum
for our instances by using a genetic algorithm (GA) (Qin
and Suganthan 2005) with a very large budget of function
evaluations.

We compare VOO to GP-UCB, DOO, SOO, CMA-ES, an
evolutionary algorithm (Beyer and Schwefel 2002), REMBO,
the BO algorithm for high-dimensional space that works
by projecting the function into a lower-dimensional mani-
fold (Wang et al. 2013), and BAMSOO, which combines BO
and hierarchical partitioning (Wang et al. 2014). All algo-
rithms evaluate the same initial point. We ran each of them
with 20 different random seeds. We omit the comparison to
HOO, which reduces to DOO on deterministic functions. We
also omit testing REMBO in problems with 3-dimensional
search spaces. Detailed descriptions of the implementations
and extensive parameter choice studies are in the appendix.

Results are shown in Figure 3. In the 3-dimensional cases,
most algorithms work fairly well with VOO and DOO perform-
ing similarly. But, as the number of dimensions increases,
VOO is significantly better than all other methods. Purely hier-
archical partitioning methods, DOO and SOO suffers because
it is difficult to make the optimal partition, and SOOsuffers
more than DOO because it does not take advantage of the
semi-metric; the mixed approach of BO and hierarchical par-

Figure 4: (Top-left) max sum of rewards vs. Niter for the
object clearing domain (Bottom-left) that for the packing
domain. (Top-right) minus the number of remaining objects
that need to be moved vs. Niter in the object clearing domain
(Bottom-right) that for the packing domain.

titioning, BAMSOO, tends to do better than SOO, but still is
inefficient in high dimensions for the same reason as SOO.
GP-UCB suffers because in higher dimensions it becomes dif-
ficult to globally optimize the acquisition function. REMBO
assumes that the objective function varies mostly in a lower-
dimensional manifold, and there are negligible changes in
the remaining dimensions, but these assumptions are not sat-
isfied in our test functions, and VOO, which doesn’t make this
assumption, outperforms it. CMA-ES performs a large num-
ber of function evaluations to sustain its population, making
it less suitable for budgeted-optimization problems where
function evaluations are expensive.

This trend is more pronounced in the Shekel function,
which is flat over most of its domain, but does increase near
the optimum (see the 2D version in Figure 2). DOO, SOO, and
BAMSOO perform poorly because they allocate samples to
large flat regions. GP-UCB performs poorly because in addi-
tion to the difficulty of optimizing the acquisition function,
the function is not well modeled by a GP with a typical ker-
nel, and the same goes for REMBO. VOO has neither of these
problems; as soon as VOO gets a sample that has a slightly
better value, it can concentrate its sampling to that region,
which drives it more quickly to the optimum. We do note that
CMA-ES is the only method besides VOO to perform at all
well in high-dimensions.

Sequential mobile manipulation planning problems
We now study two realistic robotic planning problems. We
compare VOOT to DOOT, which respectively use VOO and
DOO and as its action-optimizer in Algorithm 2, and a
single-progressive-widening algorithm that uses UCT (PW-
UCT) (Couëtoux et al. 2011). But to make DOOT work in these
problems, we consider a randomized variant called RAND-
DOOT which samples an action uniformly in the cell to be
evaluated next, instead of always selecting the mid-point,

which could not solve any of these problems.
The objective of comparing to PW-UCT is to verify our

claim that using an efficient action-optimizer, at the expense
of uniform re-evaluations of the sampled actions, is better
evaluating sampled actions with UCB at the expense of sam-
pling new actions uniformly. The objective of comparing to
RAND-DOOT is to verify our claim that VOOT can scale to
higher dimensional problems for which RAND-DOOT does
not.

In addition to the state-of-the-art continuous MCTS meth-
ods, we compare VOO to the representative policy search
methods typically used for continuous-action space prob-
lems, PPO (Schulman et al. 2017) and DDPG (Lillicrap et al.
2016). We train the stochastic policy using the same amount
of simulated experience that the tree-search algorithms use
to find a solution, and report the performance of the best
trajectory obtained.

The action-space dimensions are 6 and 9 in the object-
clearing and packing domains, respectively. The detailed
action-space and reward function definitions, and extensive
hyper-parameter value studies are given in the appendix. The
plots in this section are obtained with 20 and 50 random seeds
for object-clearing and packing problems, respectively.

We first consider the object-clearing problem (s0 is shown
in Figure 1 (right)). Roughly, the reward function penalizes
infeasible actions and actions that move an obstacle but do
not clear it from the path; it rewards actions that clear an
object, but with value inversely proportional to the length of
the clearing motion. The challenging aspect of this problem
is that, to the right of the kitchen area, there are two large
rooms that are unreachable by the robot; object placements
in those rooms will be infeasible. So, the robot must clear
obstacles within the relatively tight space of the kitchen.

Figure 4 (Top-left) shows the results. In this case, PW-UCT
samples from the whole space, concentrating far too many
of them in the unreachable empty rooms. RAND-DOOT also
spends time partitioning the big unreachable regions, due to
its large exploration bonus; however it performs better than
PW-UCT because once the cells it makes in the unreachable
region get small enough, it starts concentrating in the kitchen
region. However, it performs worse than VOOT for similar
reasons as in the Shekel problems: as soon as VOOT finds the
first placement inside the kitchen (i.e. first positive reward),
it immediately focuses its sampling effort near this area with
probability 1−ω. This phenomenon is illustrated in Figure 5,
which shows the values of placements. We can also observe
from Figure 4 (Bottom-left) that VOOT clears obstacles much
faster than the other methods; it clears almost all of them
with 750 simulations, while others require more than 1700,
which is about a factor of 2.3 speed-up.

The reinforcement learning algorithms, PPO and DDPG,
perform poorly compared to the tree-search methods. We can
see that within the first 250 simulations, their rewards grow
just as quickly as for the search algorithms, but they seem to
get stuck at local optima, clearing only one or two obstacles.
This is because the problem has two challenging characteris-
tics: large future delayed rewards and sparse rewards.

The problem has sparse rewards because most of the ac-
tions are unreachable placements, or kinematically infeasible

Figure 5: Q̂(s, a) of PW-UCT, RAND-DOOT, and VOOT (left
to right) after 50 visits to the place node for the first object.
Blue and purple bars indicate values of infeasible and feasible
placements, respectively. Solid robot indicates the current
state of the robot, and the transparent robots indicate the
placements sampled. Notice VOOT has far fewer samples in
infeasible regions.

picks. It has large delayed rewards because the reward func-
tion is inversely proportional to the length of the clearing
motion, but the first few objects need to be moved far away
from their initial locations to make the subsequent objects
accessible. Unfortunately, the RL methods come with an
ineffective exploration strategy for long-horizon planning
problems: Gaussian random actions1. This strategy could
not discover the delayed future rewards, and the policies fell
into a local optima in which they try to clear the first two
objects with the least possible cost, but blocking the way to
the subsequent objects.

We now consider the conveyor belt problem (s0 shown
in Figure 1 (left)). The challenge is the significant interde-
pendence among the actions at different time steps: the first
two boxes are too big to go through the door that leads to
the bigger rooms, so the robot must place them in the small
first room, so that there is still room to move the rest of the
objects into the bigger rooms. Figure 4 (row 5, left) shows
the results. VOOT achieves the reward of a little more than 3
with 1000 simulations, while other methods achieve below
1 ; even with 3000 simulations, their rewards are below 2,
whereas that of VOOT goes up to approximately 4. Figure 4
(row 5, right) shows that VOOT finds a way to place as many
as 15 objects within 1000 simulations, whereas the alternative
methods have only found plans for placing 12 or 13 objects
after 3000 simulations. We view each action-optimization
problem (line 10 of Alg. 2) as a BBFO problem, since we
only have access to the values of the actions that have been
simulated, and the number of simulations is limited to Niter.
The RL approaches suffer in this problem as well, packing
at most 8 boxes, while the worst search-based method packs
13 boxes. Again, the reason is the same as in the previous
domain: sparse and delayed long-term rewards.

Future work and conclusions
We proposed a continuous MCTS algorithm in deterministic
environments that scales to higher-dimensional spaces, which

1 In order to get the RL methods to perform at all well, we had to
tailor the exploration strategy to compensate for the fact that many
of the action choices are completely infeasible. Details are in the
appendix.

is based on a novel and efficient BBFO VOO. We proved a
bound on the regret for VOO, and used it to derive a perfor-
mance guarantee on VOOT. The tree performance guarantee
is the first of its kind for search methods with BBFO-type
algorithms at the nodes. We demonstrated that both VOO and
VOOT significantly outperform previous methods within a
small number of iterations in challenging higher-dimensional
synthetic BBFO and practical robotics problems.

We believe there is a strong potential for combining learn-
ing and VOOT to tackle more challenging tasks in continu-
ous domains, much like combining learning and Polynomial
UCT has done in the game of Go (Silver et al. 2016). We
can learn from previous planning experience a policy πθ,
which assigns high probabilities to promising actions, using
a reinforcement-learning algorithm. We can then use VOO
with πθ, instead of uniform sampling.

Acknowledgement
We gratefully acknowledge support from NSF grants 1523767
and 1723381; from AFOSR grant FA9550-17-1-0165; from
ONR grant N00014-18-1-2847; from Honda Research; and
from the MIT-Sensetime Alliance on AI. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of our sponsors.

References
[Auger, Couëtoux, and Teytaud 2013] Auger, D.; Couëtoux,
A.; and Teytaud, O. 2013. Continuous Upper Confidence
Trees with polynomial exploration - consistency. Joint Eu-
ropean Conference on Machine Learning and Knowledge
Discovery in Databases.

[Beyer and Schwefel 2002] Beyer, H.-G., and Schwefel, H.-P.
2002. Evolution strategies a comprehensive introduction.
Natural Computing.

[Bubeck et al. 2011] Bubeck, S.; Munos, R.; Stoltz, G.; and
Szepesvári, C. 2011. X-armed bandits. Journal of Machine
Learning Research.

[Buşoniu et al. 2011] Buşoniu; Daniels, A.; Munos, R.; and
Babus̆ka, R. 2011. Optimistic planning for continuous-
action deterministic systems. IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning.

[Couëtoux et al. 2011] Couëtoux, A.; Hoock, J.-B.;
Sokolovska, N.; Teytaud, O.; and Bonnard, N. 2011.
Continuous upper confidence trees. International Conference
on Learning and Intelligent Optimization.

[Fortin et al. 2012] Fortin, F.-A.; De Rainville, F.-M.; Gard-
ner, M.-A.; Parizeau, M.; and Gagné, C. 2012. DEAP: Evolu-
tionary algorithms made easy. Journal of Machine Learning
Research.

[Kandasamy, Schneider, and Poczos 2015] Kandasamy, K.;
Schneider, J.; and Poczos, B. 2015. High dimensional
bayesian optimisation and bandits via additive models. Inter-
national Conference on Machine Learning.

[Kawaguchi, Kaelbling, and Lozano-Pérez 2015]
Kawaguchi, K.; Kaelbling, L.; and Lozano-Pérez, T.

2015. Bayesian optimization with exponential convergence.
In Advances in Neural Information Processing Systems.

[Kuffner and LaValle 2000] Kuffner, J., and LaValle, S. 2000.
RRT-connect: An efficient approach to single-query path
planning. In International Conference on Robotics and Au-
tomation.

[Lillicrap et al. 2016] Lillicrap, T. P.; J. J. Hunt, A. P.; Heess,
N.; Erez, T.; Tassa, Y.; Silver, D.; and Wierstra, D. 2016.
Continuous control with deep reinforcement learning. Inter-
national Conference on Learning Representations.

[Mansley, Weinstein, and Littman 2011] Mansley; Wein-
stein, A.; and Littman, M. 2011. Sample-based planning for
continuous action Markov Decision Processes. International
Conference on Automated Planning and Scheduling.

[Munos 2011] Munos, R. 2011. Optimistic optimization of a
deterministic function without the knowledge of its smooth-
ness. Advances in Neural Information Processing Systems.

[Munos 2014] Munos, R. 2014. From bandits to Monte-Carlo
Tree Search: the optimistic principle applied to optimization
and planning. Foundations and Trends in Machine Learning.

[Pintér 1996] Pintér, J. 1996. Global Optimization in Action
(Continuous and Lipschitz Optimization: Algorithms, Imple-
mentations and Applications). Springer US.

[Qin and Suganthan 2005] Qin, A., and Suganthan, P. 2005.
Self-adaptive differential evolution algorithm for numerical
optimization. IEEE Congress on Evolutionary Computation.

[Schulman et al. 2017] Schulman, J.; Wolski, F.; Dhariwal,
P.; Radford, A.; and Klimov, O. 2017. Proximal policy
optimization algorithms. arXiv.

[Silver et al. 2016] Silver, D.; Huang, A.; Maddison, C.;
Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser,
J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Diele-
man, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever,
I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.;
and Hassabis, D. 2016. Mastering the game of Go with deep
neural networks and tree search. Nature.

[Srinivas et al. 2010] Srinivas, N.; Krause, A.; Kakade, S.;
and Seeger, M. 2010. Gaussian Process optimization in the
bandit setting: no regret and experimental design. Interna-
tional Conference on Machine Learning.

[Wang et al. 2013] Wang, Z.; Zoghi, M.; Hutter, F.; Mathe-
son, D.; and Freitas, N. 2013. Bayesian optimization in
high dimensions via random embeddings ziyu. International
Conference on Artificial Intelligence and Statistics.

[Wang et al. 2014] Wang, Z.; Shakibi, B.; Jin, L.; and Freitas,
N. 2014. Bayesian multi-scale optimistic optimization. Inter-
national Conference on Artificial Intelligence and Statistics.

[Weinstein and Littman 2012] Weinstein, A., and Littman, M.
2012. Bandit-based planning and learning in continuous-
action markov decision proceses. International Conference
on Automated Planning and Scheduling.

	Introduction
	Related work
	Monte Carlo planning in continuous state-action spaces
	Voronoi optimistic optimization
	Analysis of voo and voot
	Experiments
	Future work and conclusions
	Acknowledgement

