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1 Learning curve comparing Bellman-error and Large margin loss

Figure 1: Learning curve of success rates for packing 1 box given 300s time limit in the box-moving
domain

2 Details of GNN architecture

For all f(·, θi), we use two fully-connected layers, each of which has 32 nodes. We use ReLU
activation function for all nodes, except at the nodes of the last layer in f(·, θ4) and thatof f(·; θ5),
which have the linear activation function. All layers have bias terms. We used Keras and tensorflow
to implement the GNN. We perform two rounds of message passing in all of our experiments.

3 Predicate Evaluation and Caching

3.1 Predicate Implementations

The set of predicates we propose can apply to a wide range of geometric problem domains and oper-
ator classes. However, the manner of computing each predicate will vary between operator classes.
We briefly describe the implementation details for each predicate in each domain we evaluated. We
use the OpenRave inverse kinematics (IK) solver for the PR2 arms (given a sampled (x, y, θ) base
pose for the robot). We also use a hand-built Probabilistic RoadMap (PRM) for motion planning
between specified (x, y, θ) base poses, with fixed arm configurations.
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3.1.1 Box-Moving Domain: Two-Arm Pick-and-Place

• PREFREE(b): Sample feasible robot base poses and inverse kinematic solutions for picking b,
then call the motion planner to find a collision-free path to any sampled base pose. This predicate
is true if a collision-free path can be found.

• MANIPFREE(b, r): Sample feasible placements for b in region r, as well as robot base poses and
inverse kinematic solutions, then call the motion planner to find a collision-free path from any
pick base pose to any sampled place base pose. This predicate is true if a collision-free path can
be found.

• OCCLUDESPRE(b1, b2): Sample feasible robot base poses and inverse kinematic solutions for
picking b2, then call the motion planner to find a collision-free path to any sampled base pose. If
no such path can be found, instead find a path that ignores collisions. Then this predicate is true
if the selected path collides with b1.

• OCCLUDESMANIP(b1, b2, r): Sample feasible placements for b2 in region r, as well as robot base
poses and inverse kinematic solutions, then call the motion planner to find a collision-free path
from any pick base pose to any sampled place base pose. If no such path can be found, instead
find a path that ignores collisions. Then this predicate is true if the selected path collides with b1.

3.1.2 Cupboard Domain: One-Arm Pick-and-Place

• PREFREE(b): Sample feasiblerobot base poses and inverse kinematic solutions for picking b. This
predicate is true if a collision-free arm solution can be found.

• MANIPFREE(b, r): Sample feasible placements for b in region r, as well as robot base poses and
inverse kinematic solutions. This predicate is true if a collision-free solution can be found.

• OCCLUDESPRE(b1, b2): Sample feasible robot base poses and inverse kinematic solutions for
picking b2. If no collision-free solution can be found, instead find a solution that ignores colli-
sions. Then this predicate is true if the selected arm configuration collides with b1.

• OCCLUDESMANIP(b1, b2, r): Sample feasible placements for b2 in region r, as well as robot
base poses and inverse kinematic solutions. If no collision-free solution can be found, instead
find a solution that ignores collisions. Then this predicate is true if the selected arm configuration
collides with b1.

3.2 Caching

Evaluating each predicate is usually a very expensive operation, but there is a lot of information that
can be retained across different calls, or across different iterations within the same call, to the pred-
icate evaluation function. Therefore, we use caching extensively to make the repeated computation
of the predicates efficient. Although these techniques are tied to our specific implementation, the
approach is quite general.

3.2.1 Probabilistic Roadmap for Motion Planning

A motion planner is called to sample the continuous operator parameters in the box-moving domain.
It is also used to evaluate the predicates PREFREE, MANIPFREE, OCCLUDESPRE, and OCCLUDES-
MANIP. In our environment, the walls and other fixed objects remain constant across all problem
instances, as only the movable objects have varying initial poses. Therefore, we pre-compute a
finely-sampled probabilistic roadmap (PRM) that ignores movable objects but respects fixed ob-
jects. Later, when doing the graph search for a path, we check for collisions for motions on the
edges of the PRM against the movable objects in the state. This leads to more efficient and less
variable motion planning calls.

3.2.2 Cached Collisions and Paths

In a single state we make many motion planning calls. Performing collision checks between mov-
able objects and robot configurations for each motion planning call can be quite expensive. So we
cache which configurations in the PRM collide with each object in the current state, then reuse that
information in future graph searches. We also retain collision-free paths that are reused in multiple
predicate evaluations.
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3.2.3 Inverse Kinematics Solutions

Unlike in the box-moving domain, in which collisions mostly constrain the space of feasible trajec-
tories of the robot base, collisions in the cupboard domain heavily constrain the space of feasible arm
configurations instead. Therefore, many inverse kinematic solutions are in collision, and so we must
sample many configurations in order to find a feasible operator. Because inverse kinematic solving
is a relatively expensive operation, this severely impacts the efficiency of planning and evaluating
predicates. The workaround we use is to pre-compute a large number of inverse kinematic solutions
for objects at a wide variety of poses relative to the robot base. Then at planning time we adapt
the cached configuration by using relative transformations to make it fit with the actual object pose
(for a pick operation) or the desired object placement (for a place operation). Many of these cached
solutions will still be in collision, but avoiding the cost of finding the kinematic solution leads to
significant speedups.

3.2.4 Predicate Evaluations

Finally, when an action is applied to a state, resulting in a new state, a lot of information can be
passed down to improve the efficiency of evaluating the predicates for the new state. First, for
any given action, many predicates will not change because moving a single object will leave most
relationships between other objects the same, so we reuse the predicate value without recomputing
it. Additionally, the set of PRM configurations in collision with each object only changes for the
object that was moved, and so all other sets of collisions can be reused. In both domains, inverse
kinematics solutions that are known to not collide with fixed objects can be retained for all objects
except for the one that was moved. These configurations might still collide with movable objects,
though.
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4 Solving Nonmonotonic Problem Instances
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Figure 2: An example of a problem instance that is nonmonotonic, in that the robot cannot move
the goal object (white) to the goal region (the upper region) by only touching each object at most
once. In this particular instance, the black box is blocking the corridor to the goal region, so the
robot cannot move the white box directly to the goal region. However, the white box is blocking the
robot from reaching the black box. Therefore, the robot must move the white box out of the way
in order for it to move the black box, then it must touch the white box again to move it to the goal.
Nonmonotonic problem instances such as this cannot be solved by Stillman’s algorithm by design,
but the greedy search planner with our learned Q function finds a plan in 30.4 seconds, averaged
across 6 training and 20 planning seeds. This is interesting because it is able to learn to solve
nonmonotonic problems even though it was trained on planning experience only from monotonic
problems.
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