
Learning to guide task and motion planning using score-space
representation

Beomjoon Kim, Leslie Pack Kaelbling and Tomás Lozano-Pérez

Abstract— In this paper, we propose a learning algorithm that
speeds up the search in task and motion planning problems.
Our algorithm proposes solutions to three different challenges
that arise in learning to improve planning efficiency: what
to predict, how to represent a planning problem instance,
and how to transfer knowledge from one problem instance
to another. We propose a method that predicts constraints
on the search space based on a generic representation of
a planning problem instance, called score space, where we
represent a problem instance in terms of performance of a
set of solutions attempted so far. Using this representation, we
transfer knowledge, in the form of constraints, from previous
problems based on the similarity in score space. We design a
sequential algorithm that efficiently predicts these constraints,
and evaluate it in three different challenging task and motion
planning problems. Results indicate that our approach perform
orders of magnitudes faster than an unguided planner.

I. INTRODUCTION

Task and motion planning (TAMP) problems require a
robot to decide how to manipulate objects in cluttered scenes
to achieve a high-level goal such as setting the table. A
variety of planners have been developed for TAMP prob-
lems ([1], [2], [3]). However, their worst-case computation
time generally scales exponentially with problem size, and
each new problem instance must be solved from scratch,
making them inefficient for real world tasks. In contrast,
humans are able to short-cut their planning process by
learning to adapt previous planning experience to reduce the
search space intelligently for new problem instances. This
observation motivates the design of an algorithm that learns
from experience to make predictions that guide the search
of a planner. We face three important questions in designing
the algorithm: (1) what to predict, (2) how to represent a
problem instance, and (3) how to transfer knowledge from
past experience to the current problem instance.

The first challenge is what to predict. Previous approaches
to using learning to speed up planning have tried predicting a
complete solution, or a subgoal that fully specifies robot con-
figuration and world state, including object poses. However,
because of the intricate relationship between object poses and
the robot free-space, a small change in the environment may
completely alter the space of feasible solutions. This non-
smoothness in the relationship between a problem instance

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139
USA beomjoon@mit.edu, lpk@mit.edu, tlp@mit.edu.
We gratefully acknowledge support from NSF grants 1420927 and
1523767, from ONR grant N00014-14-1-0486, and from ARO
grant W911NF1410433. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of our sponsors.

Fig. 1: Top: Obstacle poses differing by 0.02m require entirely
different choice of grasp for picking the blue object. Bottom: Object
placement pose choices differing by 0.05m make the difference
between feasibility and infeasibility.

and its solution makes it difficult to predict a complete
solution or a subgoal based on experience. This difficulty
is illustrated in Figure 1 in a pick-and-place domain.

Building on these observations, we instead learn to predict
constraints on the solution by finding a subset of decision
variables that can be predicted reliably, while leaving the rest
of the decision variables to be filled in by the planner. This
decomposition is based on the intuition that constraints can
generalize more effectively across problem instances than a
complete solution or a subgoal. For instance, consider a robot
trying to pick an object from a shelf, as shown in Figure 2
(right). A constraint that forces the robot to approach the
object either from the side or the top, depending on whether
the object is on the table or the shelf, can be used more
reliably across different arrangements of obstacles and object
poses than a detailed path plan and a pre-grasp configuration.

We will refer to the subset of decision variables that
we predict as solution constraints. Solution constraints,
when intelligently chosen, will effectively reduce the search
space while preserving the robustness of the planner against
changes in problem instances.

The second challenge is representing problem instances.
In the TAMP problems that we are contemplating, problem
instances may have different numbers of objects with differ-
ent shapes and poses, making it difficult to design a generic

Fig. 2: Two instances of the grasp selection domain. The arrange-
ment and number of obstacles vary randomly across different plan-
ning problem instances. The objective is to find an arm trajectory
to a pre-grasp pose for the blue box, marked with a circle, whose
pose is randomly determined in each problem instance

feature representation for learning.
In light of this, we propose a new type of representation

for problem instances, called score space. We represent a
problem instance in terms of a vector of the scores for a set
of plans on that instance, where each of the plans is computed
based on one of a fixed set of solution constraints.

The main advantage of the score space representation
is that it gives direct information about similarity between
problem instances and solution constraints, without any
explicit state representation. For instance, consider the task
in Figure 2. By computing a plan associated with the solution
constraint that forces the robot to approach the object from
the top and observing that it has a low score, we can learn
that it is occluded from above, e.g. by a shelf, and can predict
other more appropriate action choices. This information is
not biased by the designer’s choice of representation: having
learned that approaching the object from the side did not
work, a learning algorithm may try to approach the object
from the top. Such reasoning is much more difficult when
the learning algorithm is forced to reason in terms of a
state-space representation of the problem, such as poses of
obstacles or 2D or 3D images of the scene. The main disad-
vantage is that the score space information is computationally
expensive to obtain, since it requires computing the plans
associated with solution constraints.

This observation brings us to the third challenge of learn-
ing to plan, which is how to transfer knowledge from past
experience to the current problem instance efficiently. We
propose to solve this challenge by using the expectation and
correlation of the scores of solution constraints from past
problem instances to determine which solution constraint to
try next. Our intuition is that the solution constraints that
performed well or poorly together are more likely to do so in
a new problem instance; for instance, in the previous example
for picking an object from a shelf, grasps from the sides
would have worked well in most of the problem instances,
while grasps from the top or bottom would have worked
poorly.

Our algorithm, BOX, is an upper-confidence-bound (UCB)
type, experience-based, black-box function-optimization

technique [4], [5] that learns to suggest appropriate solution
constraints based on the scores of previously attempted
plans. We evaluate BOX in three different TAMP domains
of increasing complexity, to demonstrate its flexibility and
reliability. In all these tasks, we show that BOX can accelerate
planning by orders of magnitude over a basic planner that
does not use solution constraints. We also provide a com-
parison to a sampler that picks solution constraints at ran-
dom, and to a state-of-the-art black-box function optimiza-
tion technique called deterministic optimistic optimization
(DOO) [6] that does not use the score space representation.
We find that BOX outperforms these other methods.

II. RELATED WORK

There is a substantial body of work aimed at improv-
ing motion planning performance on new problem in-
stances based on previous experience on similar problem
instances [7], [8], [9], [10], [11], [12]. The approach is to
store a large set of solutions to earlier instances so that, when
presented with a new problem instance, one can (a) retrieve
the most relevant previous solution and (b) adapt it to the new
situation. These methods differ in the way that they find the
most relevant previous solution and how it is adapted.

Several of these approaches define a similarity metric
between problem instances and retrieve solutions based on
this metric. For example, Hondál et al. [8] use the distance
between the start and goal pairs as the metric, whereas,
Hutchinson et al. [9] based their metric on descriptions of
quickly generated low-quality solutions for the current and
previous instance. Jetchev et al. [10] use a mapping into a
task-relevant space and measure similarity in that space, via
a learned metric.

Instead of defining solution similarity, Berenson et al. [7]
define relevance of earlier solutions by measuring the degree
of constraint violation, for example collision, in the current
situation. A related idea is developed by Phillips et al. [12],
where the search graph of past solutions is saved and the
search for the current problem instance is biased towards the
part of this past graph that is still feasible.

For more complex robotic planning, such as for mobile
manipulation in cluttered environments, complete solutions
are more difficult to adapt to new problem instances. In
particular, the length of the plans is highly variable and they
contain both discrete and continuous parameters.

Some earlier approaches [13], [14] have also focused on
predicting partial solutions, in the form of a goal state or
subgoals, instead of a complete solution. For instance, in the
work of Dragan et al. [13], the objective is to learn from
previous examples a classifier (or regressor) that, given a
hand-designed feature representation of a planning problem
instance, enables choosing a goal that leads to a good locally
optimal trajectory. In the approach of Finney et al. [14], the
goal is to learn a model that predicts partial paths or subgoals,
from a given parametric representation of a planning problem
instance, aimed at enabling a randomized motion planner to
navigate through narrow passages.

Our approach can be seen as a method for choosing
actions from a library; several methods have been proposed
for this problem [15], [16], [6]. Dey et al. [15] propose
a method that finds a fixed ordering of the actions in a
library that optimizes a user-defined submodular function,
for example, the probability that a sequence of candidate
grasps will contain a successful one. Unlike our work,
this method produces a static list, which does not change
across different problem instances. Later, Dey et al. [16],
generalized the approach by producing an ordered list of
classifiers (operating over environment features) that select
actions for a given problem instance. This approach again
requires hand-designed features for the problem instances.

BOX is motivated by the principle of optimism in the face
of uncertainty which is well surveyed by Munos et al. [6].
The main idea is to select the most “optimistic” item from
the given set of items, by constructing an upper bound on
the values of un-evaluated items. We build the upper bound
using the statistics of the past planning problem instances,
combined with the results of a subset of the available solution
constraints so far on the current problem instance.

III. PROBLEM FORMULATION

Our premise is that calling the planner with a solution
constraint, although much more efficient than the completely
unconstrained problem, takes a significant amount of time
and may generate significantly suboptimal plans if the so-
lution constraint used is not a good match for the problem
instance. Given a new instance we will call the planner with
a fixed number of solution constraints and return the best
plan obtained. So, our problem is which solution constraints
should be tried, and in what order.

We formulate the problem as a black-box function op-
timization problem over a discrete space of candidate so-
lution constraints, and use upper bounds constructed from
experience on previous problem instances as well as the
accumulated experience on this instance to determine which
constraint to try next.

Formally, we have a sample space for problem instances,
Ω, whose elements ω are distributed according to P(ω); a
space of possible planning solutions, X ; and a space of
solution constraints, Θ. The plan solution space includes
all possible assignments to all of the decision variables,
and the solution constraint space includes all possible as-
signments to a subset of decision variables for the given
planning problem. The function J(ω,x) specifies the score
of a solution x∈X on problem instance ω ∈Ω. We assume
a planner π : Ω → X that, given a problem instance ω

can return a solution π(ω) ∈X that is either feasible or
locally optimal depending on the nature of the problem. In
addition, we assume that, given a solution constraint θ , the
planner π will return π(ω,θ) ∈X ,which is a plan subject
with the solution constraint θ ; in general this solution will
not be optimal (so in general J(ω,π(ω)) > J(ω,π(ω,θ))),
unless θ was perfectly suited to the problem instance ω , but
constraining the plan to satisfy θ will make it significantly
more efficient to compute. With a slight abuse of notation,

we will denote J(ω,θ) = J(ω,π(ω,θ)), the evaluation of
the solution constraint.

Let Θ̂ = {θ1, . . . ,θm} ⊆ Θ be a set of samples from Θ.
Now, we formulate our problem as follows: given a “train-
ing set” of example problem instances ω1, . . . ,ωn sampled
identically and independently from P(ω), a discrete set of
solution constraints Θ̂, and the score function J(·, ·), generate
a high-scoring solution to the “test” problem instance wn+1.

Interesting problems that we do not explicitly address in
this paper are: how to select the subset of decision variables
for specifying constraints θ , and how to select Θ̂ from Θ.
In this paper, we take the simple approach of solving the
training problem instances and then extracting the θ values
corresponding to a set of hand-chosen decision variables
as solution constraints. The details of constructing Θ̂ are
provided in Algorithm 2.

IV. ALGORITHM

Instead of designing a problem-dependent representation
for problem instances, we represent a problem instance with
as a vector of scores of solution constraints Θ̂, where

Φ(ω) = [J(ω,θ1), · · · ,J(ω,θm)]

Φ(ω) here is a random vector that maps a sample from
the sample space of problem instances to Rm. Using this
representation, our training data constructed from n problem
instances can be represented with a n×m matrix

D =


Φ(ω1)
Φ(ω2)

...
Φ(ωn)


that we call the score matrix. Now, given a new problem
instance, ω , our goal is to take advantage of one or more
solution constraints in Θ̂ to find a high scoring plan without
evaluating all of solution constraints in Θ̂. To do this, we will
develop a procedure that evaluates J(ω,θ) by computing a
plan π(ω,θ) for k << m values of θ .

We begin by making use of the intuition that some solution
constraints (via the plans they generate) are inherently more
useful than others, independent of the problem instance. This
leads to a naive score-space approach, STATIC, that tries
solution constraints in Θ̂ in a static order according to the
empirical mean scores in the 1×m vector computed by

µ̂ :=
1
n

n

∑
i=1

Di (1)

where i indicates the row of the score matrix, and then
returns the highest scoring plan obtained from trying the top
k solution constraints.

This simple approach does not take advantage of the
fact that there are correlations among the scores of solution
constraints across problem instances; that is, the score of a
solution constraint that has been already tried on this problem
instance can inform us about the scores of other untried but
correlated solution constraints. In order to exploit correlation,

we assume that the random vector Φ is distributed according
to a multivariate Gaussian distribution, N (µ,Σ).

Now the score matrix is used to estimate the parameters
for the prior distribution of Φ, µ̂ and Σ̂, where µ̂ is defined
in equation 1 and

Σ̂ =
1

n−1

n

∑
i=1

(Di− µ̂)T (Di− µ̂)

is a m× m covariance matrix. This prior distribution is
updated given evidence about a new problem instance, in
the form of score values.

Algorithm 1 contains detailed pseudo-code for an algo-
rithm based on these ideas, called BOX, which stands for
Blackbox Optimization with eXperience. It takes as input:
wn+1, the “test” planning problem instance; C, a constant
governing the magnitude of the bounds; k, the number
of solution constraints to evaluate; Θ̂, the set of solution
constraints in the training set; µ̂ and Σ̂, the parameters for
prior distribution of Φ(wn+1); J, the scoring function; and
π , the planner.

The algorithm iterates over solution constraints: first it
selects a solution constraint, then it uses it to construct
a new plan, then the score of that plan combined with
the prior computed from D is used to determine the next
solution constraint to evaluate. We use It to denote the indices
of solution constraints that have been tried up to time t,
Īt = I \ It to denote the ones not tried, i(t) to denote the index
of the solution constraint chosen at time t, x(t) to denote
the associated plan, J(t) to denote the score of that plan
on the given problem instance, J1:t and J1:t to denote the
scores of tried and untried solution constraints up to time
t, respectively. At time t, we can rearrange the covariance
matrix Σ̂ as [

Σ̂Īt ,Īt Σ̂Īt ,It
Σ̂It ,Īt Σ̂It ,It

]
where the subscript represents a set of rows and columns
of the matrix Σ̂. This way, the top-left block matrix is
the covariance among tried solution constraints, the top-
right and bottom-left represent covariance among tried and
untried solution constraints, and the bottom-right represents
the covariance among the untried solution constraints.

Line 2 of Algorithm 1 selects the next solution constraint
to try based on the principle of optimism in the face of
uncertainty, by selecting the one for which the upper bound
of the α-percent confidence interval is highest. The next three
lines generate a plan using the chosen solution constraint, and
then evaluate it. At iteration t, given the experience of trying
θ (1), · · · ,θ (t−1) and getting scores J1:t := [J(1), · · · ,J(t)], our
posterior on the scores of of the untried solution constraints,
denoted J1:t , is

J1:t |J1:t ∼N (µ̂(t+1), Σ̂
(t+1))

where

µ̂
(t+1) = µ̂Īt + Σ̂Īt ,It (Σ̂It ,It)

−1(J1:t − µ̂It)

Σ̂
(t+1) = Σ̂Īt ,Īt − Σ̂Īt ,It (Σ̂It ,It)

−1
Σ̂It ,Īt

(2)

Algorithm 1 BOX(wn+1,C,k,Θ̂, µ̂, Σ̂,J,π)
for t = 1 to k do

i(t) = argmaxi∈I1,··· ,t µ̂
(t)
i +C ·

√
Σ̂
(t)
ii // ith entry and ith diagonal

entry
θ (t) = Θ̂i(t)

x(t) = π(wn+1,θ
(t))

J(t) = J(wn+1,x(t))
Compute µ̂(t+1) and Σ̂(t+1) using eqn. 2

end for
t∗ = argmaxt∈{1,··· ,k} J(t)

return x(t
∗)

Algorithm 2 GenerateTrainingData(n,π,J, [ω1, · · · ,ωn])

for ω in [ω1, · · · ,ωn] do
xi = π(ω) // repeat to get multiple solutions if desired
θi = extractConstraint(xi) / / elements of Θ̂

end for
for ω in [ω1, · · · ,ωn] do

for θ in Θ̂ do
J(ω,θ) = J(ω,π(ω,θ)) // elements of D

end for
end for
return D,Θ̂

The constant C governs the size of the confidence interval
on the scores. We arbitrarily choose C = 1.96 to ensure 95%
confidence interval in our experiments, but it could be tuned
via cross validation for better performance. The number of
evaluations k should be chosen based on the desired trade-off
between computation time and solution quality.

In order to create the score matrix D and solution con-
straints Θ̂, we run Algorithm 2. This algorithm takes as input
n, the number of training problem instances, π a planning
algorithm that can solve problem instances wn+1 without
additional constraints, J, the scoring function for a plan,
and [ω1, · · · ,ωn], a set of training sample problem instances
drawn iid from P(ω). For each problem instance, a solution
is generated using π , and a constraint is extracted from the
solution and added to set Θ̂. The process of extracting con-
straints is domain-dependent; several examples are illustrated
in section V. Each new solution constraint is used to generate
a solution π(wn+1,θ) whose score J(wn+1,θ) is stored in the
D matrix.

V. EXPERIMENTS

We demonstrate the effectiveness of score-space algo-
rithms STATIC and BOX in three robotic planning domains,
each of which has several decision variables and different
types of solution constraints. The first domain requires the
robot to move to a pre-grasp configuration for an object,
which involves choosing the configuration as well as a
collision-free path in a domain in which the number and
poses of obstacles vary. The second domain requires the
robot to pick an object that is randomly placed on one of
the tables in a large room, which requires choosing a base
and a pre-grasp configuration, and collision-free path from
the initial configuration to the pre-grasp configuration. The

problem instances in this domain again vary with respect to
obstacle and object poses. The last domain requires the robot
to pick an object, move to another room by going through a
narrow passage, and then place the object on a table in that
room. Solving this problem requires choosing a pre-grasp
configuration, a placement pose for the object on the table,
a pre-place configuration, and paths that connects all these
configurations. The problem instances vary in terms of size
of the object being manipulated, and the poses of obstacles.

In each of these domains, once the solution constraints
have been specified, only paths need to be planned, and so
π(·,θ) is a path planner. To implement the RAWPLANNER,
π(ω), we simply randomly sample the solution constraints
from their original spaces, such as R2 for object pose on
a table instead of from Θ̂, and then use π(ω,θ) with the
sampled solution constraint.

We are interested in both running time and solution
quality. We compare score-space algorithms, STATIC and
BOX, with RAWPLANNER as well as two other methods
that generate plans by selecting a subset of size k of the
solution constraints from Θ̂ and return the highest scoring
one. RAND selects k of the θi values at random from Θ̂ DOO
is an adaptation of DOO [6] to optimization of a black-box
function over a discrete set, which is Θ̂ in our case. Like
BOX, it alternates between evaluating θ j and constructing
upper bounds on the unevaluated θi for k rounds. It assumes
that the function is Lipschitz continuous with constant λ ,
and uses the bound Jω(θi)≤ Jω(θ j)+λ · l(θi,θ j) for some
semi-metric l, λ ∈R. We use the Euclidean metric for l, and
λ = 1.

To show that score-space algorithms can work with differ-
ent planners, we show results using two different planners:
bidirectional RRT implemented in OpenRAVE [17], seeded
with a fixed randomization seed value, and Trajopt [18].
In the last domain, where there is a narrow-passage path
planning problem, Trajopt could not find a feasible path
without being given a good initial solution, so we omit it.

In each domain, we report the results using two plots,
the first showing the time to find the first feasible solution
and the second showing how the solution quality improves
as the algorithms are given more time. Each data point on
each plot is produced using leave-one-out cross-validation.
That is, given a total data set of n problem instances and
associated solutions, we report the average of n experiments,
in which n−1 of the instances are used as training data and
the remaining one is used as a test problem instance. In
all cases, we seek short paths, and so use a score function
that measures the trajectory length, assigning a large cost if
the plan is infeasible in the problem instance. Given a plan
x = (c1, · · · ,cl) where ci denotes a configuration of the robot,

Jω(x) =

{
−∑

l−1
i=1 ||ci+1− ci|| if x feasible in ω

d, otherwise
(3)

where || · || denote a suitable distance metric between config-
urations and d = min(D)−mean(D). This is our strategy for

finding an artificial scale-sensitive minimum score for failing
to solve a problem.

A. Picking an object in a cluttered scene

Our first problem domain is to find an arm motion to
grasp an object that lies randomly either on a desk or
bookshelf, where there also are randomly placed obstacles.
Neither the grasp of the object nor the final configuration
of the robot is specified, so the complete planning problem
includes choosing a grasp, performing inverse kinematics to
find a pre-grasp configuration for the chosen grasp, and then
solving a motion planning problem to the computed pre-
grasp configuration.

A planning problem instance for this domain is defined by
an arrangement of several objects on a table. Figure 2 shows
two instances of this problem, which are also part of the
training data. There are up to 20 obstacles in each problem
instance. The robot’s active degrees of freedom (DOF) are
its left and right arms, each of which has 7 DOFs, and torso
height with 1 DOF, for a total of 15 DOF. Θ̂ consists of 81
different grasps per each arm, computed using OpenRAVE’s
grasp model function. Notice that since our search space for
solution constraints is discrete, RAWPLANNER is equivalent
to RAND.

Given a solution constraint θ , which is a grasp (pose of
robot hand with respect to the object) and an arm to pick
the object with, it remains for π(ω,θ) to find an IK solution
and motion plan, which can be expensive, but predicting a
good grasp makes the overall process much more efficient.
The trajectory of the arm to the pre-grasp configuration, with
the base fixed, is scored according to eqn. 3, with a score of
d assigned to problem instances and constraints for which
no solution is found within a fixed amount of computation.

The experiments were run on a data set of 1800 problem
instances. Figure 3a compares the time required by each
method to find the first feasible plan with RRT as the path
planner, and Figure 3d compares the time with TrajOpt as
the path planner. In both of the plots, we can observe that
the score-space algorithms STATIC and BOX outperform all
other algorithms in terms of finding a good solution with a
given amount of time. BOX performs about three times faster
than STATIC, showing the advantage of using the correlation
information. Compared to DOO and RAND, BOX is more than
nine times faster. DOO does only slightly better than RAND,
which illustrates that in the space of grasps, the Euclidean
metric is not effective.

Figure 4a compares the solution quality vs time when RRT
is used; figure 4d compares the same quantities when TrajOpt
is used. Here, the score-space algorithms again outperform
the other algorithms, with BOX outperforming STATIC.

B. Picking randomly placed object in a cluttered scene

In this experiment, we evaluate how the score-space algo-
rithms perform when we construct the matrix Θ̂ by sampling
from a continuous space. Here, the robot needs to search for
a base configuration, a left arm pre-grasp configuration, and a
feasible path between these configurations to pick an object.

(a) Grasp and arm selection (RRT) (b) Grasp and base selection (RRT) (c) Pick-and-place (RRT)

(d) Grasp and arm selection (TrajOpt) (e) Grasp and base selection (TrajOpt)

Fig. 3: LOOCV estimate of time to find first feasible solution, for each method in different domains. Bars indicate 95% confidence interval
on mean. The top row uses RRT and the bottom row uses TrajOpt

(a) Grasp selection (RRT) (b) Grasp and base selection (RRT) (c) Pick-and-place (RRT)

(d) Grasp selection (TrajOpt) (e) Grasp and base (TrajOpt)

Fig. 4: Solution score versus run time for different algorithms in various domains. The time axis goes until the first algorithm reaches
95% of the optimal score, marked with magenta. This optimal line is obtained by taking the θ from Θ̂ that achieved maximum score for
each problem instance. The top row uses RRT and the bottom row uses TrajOpt

A planning problem instance is again defined by the
arrangement of objects. Figure 5 shows three different train-
ing problem instances. We have 20 rectangular boxes as
obstacles, all resting on the two tables both of which remain
fixed in all instances. For each of the red obstacles and
the blue target object, the (x,y) location and orientation in
the plane of the table are randomly chosen subject to the
constraint that they are not in collision. It is possible that
the problem instances will be infeasible (the target object is
too occluded or kinematically unreachable by the robot). The
robot always starts at the same initial configuration.

The robot’s active DOFs include its base configuration,
torso height, and left arm configuration, for a total of 11
DOF. A solution constraint for this domain consists of the
robot base configuration to pick the target object, (x,y,ψ),
where ψ is an orientation of the robot, as well as one of 81
grasps from the previous section.

The solution constraints in this case are the grasp g,
and the base configuration k. Given a planning problem
instance with no constraints, the RAWPLANNER for this
domain performs three sampling procedures, backtracking
among them as needed to find a feasible solution.

1) Sample a base configuration, k = (x,y,ψ), from a
circular region of free configuration space, with radius
equal to the length of the robot’s arm, centered at the
location of the object.

2) Sample, without replacement, from the 81 grasps until
a legal one is found, i.e. one for which there is an IK
solution in which the robot is holding the target object
using that grasp in a collision-free configuration.

3) Use bidirectional RRT or TrajOpt to find a path for
the arm and torso between the configurations found in
steps 1 and 2.

We assume that the configuration from step 1 is reachable
from the initial configuration. To extract a solution constraint
from the resulting plan, we simply return the base configu-
ration from step 1 and the grasp from step 2.

Unlike RAWPLANNER which has to search for k and g,
π(ω,θ) simply solves the inverse kinematics and motion
planning problems as in the previous example. The trajectory
of the arm to the pre-grasp configuration, with the base fixed
according to the constraint, is scored according to equation
3, with a score of d assigned to problem instances and
constraints for which no feasible solution is found within
a fixed number of iterations of the RRT. The experiments
were run on a data set of 1000 problem instances. The set Θ̂

contained 1000 pairs of grasp and robot base configuration,
each extracted from a different problem instance.

Figures 3b and 3e show the time required by each method
to find the first feasible plan, using RRT and TrajOpt as
the planner. The score-space algorithms perform orders of
magnitude better than the other algorithms, with BOX again
outperforming better than STATIC. DOO and RAND do pro-
vide some advantage by using previously stored solution
constraints compared to RAWPLANNER. RAWPLANNER has
to sample in the continuous space of base configurations
and check whether an IK solution and feasible path exist

by running IK and path planning. This causes a significant
increase in time to find a solution.

Figure 4b compares the solution quality vs time when
RRT is used and Figure 4e compares the same quantities
when TrajOpt is used. Again, the score-space approaches
outperform all other methods, with BOX performing better
than STATIC, by using the correlation information from
the score space. DOO and RAND perform similarly, mainly
because that simple Euclidean distance is not effective for
the hybrid space of base configuration and grasps.

C. Moving object to a different room

In this last experiment, with problem instances are shown
in figure 6, we introduce solution constraints involving the
placements of objects. Here, the robot needs to pick a large
object (shown in black) up off of a table in one room, carry
it through a narrow door, and place the object on a table.
The initial poses of the target object and the robot are fixed,
but problem instances vary in terms of the initial poses of
28 obstacles on both the starting and final tables, which
are chosen uniformly at random on the table-tops subject to
non-collision constraints, and the length of the target object,
which is chosen at random from three fixed sizes.

The robot’s active DOFs are the same as the previous
problem domain. The solution constraints in this domain
consists of grasp g to pick the object, o, the placement pose
of the object on the table in the back room, kb, the pre-
placement base configuration of the robot for placing the
object at pose o, and ksg, the subgoal base configuration for
path planning through the narrow passage to kb from initial
configuration.

Given a problem instance with no constraint, RAWPLAN-
NER performs four sampling procedures, similarly to the
previous domain.

1) Sample a grasp g, without replacement, from the 81
grasps until a legal one is found.

2) Plan a path for the arm and torso to the pre-grasp
configuration found in step 1. If none is found, choose
another grasp.

3) Sample a collision-free object pose o on the table in
the other room.

4) Sample kb, the pre-placement base configuration, from
a circular region of free configuration space around o,
with radius equal to the length of the robot’s arms. If
none is found, go back to the previous step.

5) Plan a path from the initial configuration to kb. If none
is found, go back to the previous step.

6) Plan a path from kb to a place configuration for putting
the object down at o. If none is found, go back to the
previous step.

In contrast, given a solution constraint, π(ω,θ) simply solves
for inverse kinematics and path plans.

The experiments were run on a data set of 1500 prob-
lem instances, with 500 instances per rod size. The set Θ̂

contained 1000 tuples of solution-constraint values, obtained
first by running Algorithm 2 and then randomly subsampling
them to reduce the size to 1000.

Fig. 5: Three instances in which the robot must select base configuration, grasp, and paths, to pick the target object (blue). The poses of
the objects are randomly varied between instances.

Fig. 6: Three problem instances from most complex domain. The robot’s initial configuration and the black object’s initial pose are fixed
across different planning scenes, but other objects’s poses and the black object’s length vary.

Figure 3c shows the time required by each method to
find the first feasible plan. Again, the score-space algorithms
significantly outperform the other algorithms andBOX out-
performs STATIC. One noticeable difference between this
domain and the previous two is that an ineffective solution
constraint takes a long time to evaluate, because computing a
path plan or IK solution for an infeasible . This is evident in
performance of RAND and DOO which perform worse than
RAWPLANNER as they tend to choose solution constraints
that are infeasible and expensive to evaluate.

Figure 4c shows the average solution score as a function
of computation time. The graphs show a similar trend as
in the previous experiments, with score-space algorithms
outperfoming the other algorithms, and BOX performing
better than STATIC. The fact that this domain requires a
significant amount of time to try an ineffective solution
constraint is again evident in DOO’s plot, where consecutive
dots have a large gap between them. BOX and STATIC are able
to avoid this issue by exploiting the score-space information.

These experiments demonstrate that our approach can sig-
nificantly improve the speed of planning in complex TAMP
problems. It is founded on two key ideas: (1) that predicting
a few critical aspects of a solution may simultaneously
generalize better than predicting entire solutions while still
providing substantial computational leverate and (2) that the
degree of success of previously-tried solutions is a good
representation for the similarity of problem instances which
affords useful generalization.

REFERENCES

[1] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” IJRR, vol. 32, no. 9-10, 2013.

[2] T. Lozano-Pérez and L. Kaelbling, “A constraint-based method for
solving sequential manipulation planning problems,” IROS, 2014.

[3] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” ICRA, 2014.

[4] R. Munos, “From bandits to monte-carlo tree search: The optimistic
principle applied to optimization and planning,” Foundations and
Trends in Machine Learning, 2014.

[5] N. Srinivas, A. Krause, S. KaKade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
ICML, 2010.

[6] R. Munos., “Optimization of deterministic functions without the
knowledge of its smoothness.” Advances in Neural Information Pro-
cessing Systems, 2011.

[7] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” ICRA, 2012.

[8] J. Hodál and J. Dvořák, “Using case-based reasoning for mobile robot
path planning,” Journal of Engineering Mechanics, 2008.

[9] S. Pandya and S. Hutchinson, “A case-based approach to robot motion
planning,” IEEE Intl. Conf. on Systems, Man and Cybernetics, 1992.

[10] N. Jetchev and M. Toussaint, “Fast motion planning from experi-
ence: trajectory prediction for speeding up movement generation,”
Autonomous Robots, vol. 34, no. 1-2, pp. 111–127, 2013.

[11] J. Lien and Y. Lu, “Planning motion in environments with similar
obstacles,” RSS, 2009.

[12] M. Phillips, B. Cohen, S. Chita, and M. Likhachev, “E-graphs:
Bootstrapping planning with experience graphs,” RSS, 2012.

[13] A. Dragan, G. Gordon, and S. S. Srinivasa, “Learning from experience
in manipulation planning: Setting the right goals,” ISRR, 2011.

[14] S. Finney, L. P. Kaelbling, and T. Lozano-Pérez, “Predicting partial
paths from planning problem parameters,” RSS, 2007.

[15] D. Dey, T. Y. Liu, B. Sofman, and J. A. Bagnell, “Efficient optimiza-
tion of control libraries,” AAAI, 2012.

[16] D. Dey, T. Y. Liu, B. Sofman, M. Hebert, and J. A. Bagnell, “Contex-
tual sequence prediction via submodular function optimization,” RSS,
2012.

[17] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” Ph.D. dissertation, CMU Robotics Institute, August 2010.

[18] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” IJRR, 2014.

