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Abstract

We propose a Learning from Demonstration (LfD) algorithm which leverages ex-
pert data, even if they are very few or inaccurate. We achieve this by using both
expert data, as well as reinforcement signals gathered through trial-and-error inter-
actions with the environment. The key idea of our approach, Approximate Policy
Iteration with Demonstration (APID), is that expert’s suggestions are used to de-
fine linear constraints which guide the optimization performed by Approximate
Policy Iteration. We prove an upper bound on the Bellman error of the estimate
computed by APID at each iteration. Moreover, we show empirically that APID
outperforms pure Approximate Policy Iteration, a state-of-the-art LfD algorithm,
and supervised learning in a variety of scenarios, including when very few and/or
suboptimal demonstrations are available. Our experiments include simulations as
well as a real robot path-finding task.

1 Introduction

Learning from Demonstration (LfD) is a practical framework for learning complex behaviour poli-
cies from demonstration trajectories produced by an expert. In most conventional approaches to
LfD, the agent observes mappings between states and actions in the expert trajectories, and uses su-
pervised learning to estimate a function that can approximately reproduce this mapping. Ideally, the
function (i.e., policy) should also generalize well to regions of the state space that are not observed
in the demonstration data. Many of the recent methods focus on incrementally querying the expert in
appropriate regions of the state space to improve the learned policy, or to reduce uncertainty [1, 2, 3].
Key assumptions of most these works are that (1) the expert exhibits optimal behaviour, (2) the ex-
pert demonstrations are abundant, and (3) the expert stays with the learning agent throughout the
training. In practice, these assumptions significantly reduce the applicability of LfD.

We present a framework that leverages insights and techniques from the reinforcement learning
(RL) literature to overcome these limitations of the conventional LfD methods. RL is a general
framework for learning optimal policies from trial-and-error interactions with the environment [4,
5]. The conventional RL approaches alone, however, might have difficulties in achieving a good
performance from relatively little data. Moreover, they are not particularly cautious to risk involved
in trial-and-error learning, which could lead to catastrophic failures. A combination of both expert
and interaction data (i.e., mixing LfD and RL), however, offers a tantalizing way to effectively
address challenging real-world policy learning problems under realistic assumptions.

Our primary contribution is a new algorithmic framework that integrates LfD, tackled using a large
margin classifier, with a regularized Approximate Policy Iteration (API) method. The method is
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formulated as a coupled constraint convex optimization, in which expert demonstrations define a
set of linear constraints in API. The optimization is formulated in a way that permits mistakes in
the demonstrations provided by the expert, and also accommodates variable availability of demon-
strations (i.e., just an initial batch or continued demonstrations). We provide a theoretical analysis
describing an upper bound on the Bellman error achievable by our approach.

We evaluate our algorithm in a simulated environment under various scenarios, such as varying the
quality and quantity of expert demonstrations. In all cases, we compare our algorithm with Least-
Square Policy Iteration (LSPI) [6], a popular API method, as well as with a state-of-the-art LfD
method, Dataset Aggregation (DAgger) [1]. We also evaluate the algorithm’s practicality in a real
robot path finding task, where there are few demonstrations, and exploration data is expensive due
to limited time. In all of the experiments, our method outperformed LSPI, using fewer exploration
data and exhibiting significantly less variance. Our method also significantly outperformed Dataset
Aggregation (DAgger), a state-of-art LfD algorithm, in cases where the expert demonstrations are
few or suboptimal.

2 Proposed Algorithm

We consider a continuous-state, finite-action discounted MDP (X ,A, P,R, γ), where X is a
measurable state space, A is a finite set of actions, P : X × A → M(X ) is the transition
model, R : X × A → M(R) is the reward model, and γ ∈ [0, 1) is a discount factor.1 Let
r(x, a) = E [R(·|x, a)], and assume that r is uniformly bounded by Rmax. A measurable mapping
π : X → A is called a policy. As usual, V π and Qπ denote the value and action-value function for
π, and V ∗ and Q∗ denote the corresponding value functions for the optimal policy π∗ [5].

Our algorithm is couched in the framework of API [7]. A standard API algorithm starts with an
initial policy π0. At the (k+1)th iteration, given a policy πk, the algorithm approximately evaluates
πk to find Q̂k, usually as an approximate fixed point of the Bellman operator Tπk : Q̂k ≈ TπkQ̂k.2
This is called the approximate policy evaluation step. Then, a new policy πk+1 is computed, which
is greedy with respect to Q̂k. There are several variants of API that mostly differ on how the approx-
imate policy evaluation is performed. Most methods attempt to exploit the structures in the value
function [8, 9, 10, 11], but in some problems one might have extra information about the structure
of good or optimal policies as well. This is precisely our case, since we have expert demonstrations.

To develop the algorithm, we start with regularized Bellman error minimization, which is a common
flavour of policy evaluation used in API. Suppose that we want to evaluate a policy π given a batch
of data DRL = {(Xi, Ai)}ni=1 containing n examples, and that the exact Bellman operator Tπ is
known. Then, the new value function Q̂ is computed as:

Q̂ ← argmin
Q∈F |A|

�Q− T
π
Q�2n + λJ

2(Q), (1)

where F |A| is the set of action-value functions, the first term is the squared Bellman error evaluated
on the data,3 J2(Q) is the regularization penalty, which can prevent overfitting when F |A| is com-
plex, and λ > 0 is the regularization coefficient. The regularizer J(Q) measures the complexity of
function Q. Different choices of F |A| and J lead to different notions of complexity, e.g., various
definitions of smoothness, sparsity in a dictionary, etc. For example, F |A| could be a reproducing
kernel Hilbert space (RKHS) and J its corresponding norm, i.e., J(Q) = �Q�

H
.

In addition to DRL, we have a set of expert examples DE = {(Xi,πE(Xi))}mi=1, which we would
like to take into account in the optimization process. The intuition behind our algorithm is that
we want to use the expert examples to “shape” the value function where they are available, while
using the RL data to improve the policy everywhere else. Hence, even if we have few demonstration
examples, we can still obtain good generalization everywhere due to the RL data.

To incorporate the expert examples in the algorithm one might require that at the states Xi from DE,
the demonstrated action πE(Xi) be optimal, which can be expressed as a large-margin constraint:

1For a space Ω with σ-algebra σΩ, M(Ω) denotes the set of all probability measures over σΩ.
2For discrete state spaces, (TπkQ)(x, a) = r(x, a) + γ

�
x� P (x�|x, a)Q(x�,πk(x

�)).
3�Q− TπQ�2n � 1

n

�n
i=1 |Q(Xi, Ai)− (TπQ)(Xi, Ai)|2 with (Xi, Ai) from DRL.
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Q(Xi,πE(Xi)) − maxa∈A\πE(Xi) Q(Xi, a) ≥ 1. However, this might not always be feasible, or
desirable (if the expert itself is not optimal), so we add slack variables ξi ≥ 0 to allow occasional
violations of the constraints (similar to soft vs. hard margin in the large-margin literature [12]). The
policy evaluation step can then be written as the following constrained optimization problem:

Q̂ ← argmin
Q∈F |A|,ξ∈Rm

+

�Q− T
π
Q�2n + λJ

2(Q) +
α

m

m�

i=1

ξi (2)

s.t. Q(Xi,πE(Xi))− max
a∈A\πE(Xi)

Q(Xi, a) ≥ 1− ξi. for all (Xi,πE(Xi)) ∈ DE

The parameter α balances the influence of the data obtained by the RL algorithm (generally by trial-
and-error) vs. the expert data. When α = 0, we obtain (1), while when α → ∞, we essentially
solve a structured classification problem based on the expert’s data [13]. Note that the right side of
the constraints could also be multiplied by a coefficient ∆i > 0, to set the size of the acceptable
margin between the Q(Xi,πE(Xi)) and maxa∈A\πE(Xi) Q(Xi, a). Such a coefficient can then be
set adaptively for different examples. However, this is beyond the scope of the paper.

The above constrained optimization problem is equivalent to the following unconstrained one:

Q̂ ← argmin
Q∈F|A|

�Q− TπQ�2n + λJ2(Q) +
α
m

m�

i=1

�
1−

�
Q(Xi,πE(Xi))− max

a∈A\πE(Xi)
Q(Xi, a)

��

+

(3)

where [1− z]+ = max{0, 1− z} is the hinge loss.

In many problems, we do not have access to the exact Bellman operator Tπ , but only to sam-
ples DRL = {(Xi, Ai, Ri, X

�
i)}ni=1 with Ri ∼ R(·|Xi, Ai) and X �

i ∼ P (·|Xi, Ai). In this
case, one might want to use the empirical Bellman error �Q − T̂πQ�2n (with (T̂πQ)(Xi, Ai) �
Ri + γQ(X �

i,π(X
�
i)) for 1 ≤ i ≤ n) instead of �Q − TπQ�2n. It is known, however, that this is a

biased estimate of the Bellman error, and does not lead to proper solutions [14]. One approach to
address this issue is to use the modified Bellman error [14]. Another approach is to use Projected
Bellman error, which leads to an LSTD-like algorithm [8]. Using the latter idea, we formulate our
optimization as:

Q̂ ← argmin
Q∈F |A|,ξ∈Rm

+

���Q− ĥQ

���
2

n
+ λJ

2(Q) +
α

m

m�

i=1

ξi (4)

s.t. ĥQ = argmin
h∈F |A|

����h− T̂
π
Q

���
2

n
+ λhJ

2(h)

�

Q(Xi,πE(Xi))− max
a∈A\πE(Xi)

Q(Xi, a) ≥ 1− ξi. for all (Xi,πE(Xi)) ∈ DE

Here λh > 0 is the regularization coefficient for ĥQ, which might be different from λ. For some
choices of the function space F |A| and the regularizer J , the estimate ĥQ can be found in closed-
form. For example, one can use linear function approximators h(·) = φ(·)�u and Q(·) = φ(·)�w
where u,w ∈ Rp are parameter vectors and φ(·) ∈ Rp is a vector of p linearly independent basis
functions defined over the space of state-action pairs. Using L2-regularization, J2(h) = u�u and
J2(Q) = w�w, the best parameter vector u∗ can be obtained as a function of w by solving a ridge
regression problem:

u∗(w) =
�
Φ�Φ+ nλhI

�−1
Φ�(r + γΦ�w),

where Φ, Φ� and r are the feature matrices and reward vector, respectively: Φ =
(φ(Z1), . . . ,φ(Zn))

�, Φ� = (φ(Z �
1), . . . ,φ(Z

�
n))

�, r = (R1, . . . , Rn)
�, with Zi = (Xi, Ai)

and Z �
i = (X �

i,π(X
�
i)) (for data belonging to DRL). More generally, as discussed above, we might

choose the function space F |A| to be a reproducing kernel Hilbert space (RKHS) and J to be its
corresponding norm, which provides the flexibility of working with a nonparametric representation
while still having a closed-form solution for ĥQ. We do not provide the detail of formulation here
due to space constraints.

The approach presented so far tackles the policy evaluation step of the API algorithm. As usual
in API, we alternate this step with the policy improvement step (i.e., greedification). The resulting
algorithm is called Approximate Policy Iteration with Demonstration (APID).
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Up to this point, we have left open the problem of how the datasets DRL and DE are obtained. These
datasets might be regenerated at each iteration, or they might be reused, depending on the availability
of the expert and the environment. In practice, if the expert data is rare, DE will be a single fixed
batch, but DRL could be increased, e.g., by running the most current policy (possibly with some
exploration) to collect more data. The approach used should be tailored to the application. Note
that the values of the regularization coefficients as well as α should ideally change from iteration to
iteration as a function of the number of samples as well as the value function Qπk . The choice of
these parameters might be automated by model selection [15].

3 Theoretical Analysis

In this section we focus on the kth iteration of APID and consider the solution Q̂ to the optimization
problem (2). The theoretical contribution is an upper bound on the true Bellman error of Q̂. Such an
upper bound allows us to use error propagation results [16, 17] to provide a performance guarantee
on the value of the outcome policy πK (the policy obtained after K iterations of the algorithm)
compared to the optimal value function V ∗. We make the following assumptions in our analysis.

Assumption A1 (Sampling) DRL contains n independent and identically distributed (i.i.d.) samples
(Xi, Ai)

i.i.d.∼ νRL ∈ M(X × A) where νRL is a fixed distribution (possibly dependent on k) and
the states in DE = {(Xi,πE(Xi)}mi=1 are also drawn i.i.d. Xi

i.i.d.∼ νE ∈ M(X ) from an expert
distribution νE. DRL and DE are independent from each other. We denote N = n+m.

Assumption A2 (RKHS) The function space F |A| is an RKHS defined by a kernel function K :

(X × A) × (X × A) → R, i.e., F |A| =
�
z �→

�N
i=1 wiK(z, Zi) : w ∈ RN

�
with {Zi}Ni=1 =

DRL ∪ DE. We assume that supz∈X×A K (z, z) ≤ 1. Moreover, the function space F |A| is Qmax-
bounded.

Assumption A3 (Function Approximation Property) For any policy π, Qπ ∈ F |A|.

Assumption A4 (Expansion of Smoothness) For all Q ∈ F |A|, there exist constants 0 ≤ LR, LP <

∞, depending only on the MDP and F |A|, such that for any policy π, J(TπQ) ≤ LR + γLPJ(Q).

Assumption A5 (Regularizers) The regularizer functionals J : B(X ) → R and J : B(X ×A) →
R are pseudo-norms on F and F |A|, respectively,4 and for all Q ∈ F |A| and a ∈ A, we have
J(Q(·, a)) ≤ J(Q).

Some of these assumptions are quite mild, while some are only here to simplify the analysis, but
are not necessary for practical application of the algorithm. For example, the i.i.d. assumption A1
can be relaxed using independent block technique [18] or other techniques to handle dependent data,
e.g., [19]. The method is certainly not specific to RKHS (Assumption A2), so other function spaces
can be used without much change in the proof. Assumption A3 holds for “rich” enough function
spaces, e.g., universal kernels satisfy it for reasonable Qπ . Assumption A4 ensures that if Q ∈ F |A|

then TπQ ∈ F |A|. It holds if F |A| is rich enough and the MDP is “well-behaving”. Assumption A5
is mild and ensures that if we control the complexity of Q ∈ F |A|, the complexity of Q(·, a) ∈ F
is controlled too. Finally, note that focusing on the case when we have access to the true Bellman
operator simplifies the analysis while allowing us to gain more understanding about APID. We are
now ready to state the main theorem of this paper.

Theorem 1. For any fixed policy π, let Q̂ be the solution to the optimization problem (2) with the
choice of α > 0 and λ > 0. If Assumptions A1–A5 hold, for any n,m ∈ N and 0 < δ < 1, with
probability at least 1− δ we have

4 B(X ) and B(X ×A) denote the space of bounded measurable functions defined on X and X ×A. Here
we are slightly abusing notation as the same symbol is used for the regularizer over both spaces. However, this
should not cause any confusion since the identity of the regularizer should always be clear from the context.
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���Q̂− TπQ̂
���
2

νRL
≤ 64Qmax

√
n+m
n

�
(1 + γLP )

√
R2

max + α√
λ

+ LR

�
+

min

�
2αEX∼νE

��
1−

�
Qπ(X,πE(X))− max

a∈A\πE(X)
Qπ(X, a))

��

+

�
+ λJ2(Qπ),

2 �QπE − TπQπE�2νRL
+ 2αEX∼νE

��
1−

�
QπE (X,πE(X))− max

a∈A\πE(X)
QπE (X, a))

��

+

�
+

λJ2(QπE )

�
+ 4Q2

max

��
2 ln(4/δ)

n
+

6 ln(4/δ)
n

�
+ α

20(1 + 2Qmax) ln(8/δ)
3m

.

The proof of this theorem is in the supplemental material. Let us now discuss some aspects of
the result. The theorem guarantees that when the amount of RL data is large enough (n � m),
we indeed minimize the Bellman error if we let α → 0. In that case, the upper bound would
be OP (

1
√
nλ

) + min{λJ2(Qπ), 2 �QπE − TπQπE�2νRL
+ λJ2(QπE )}. Considering only the first

term inside min, the upper bound is minimized by the choice of λ = [n1/3J4/3(Qπ)]−1, which
leads to OP (J2/3(Qπ)n−1/3) behaviour of the upper bound. The bound shows that the difficulty of
learning depends on J(Qπ), which is the complexity of the true (but unknown) action-value function
Qπ measured according to J in F |A|. Note that Qπ might be “simple” with respect to some choice
of function space/regularizer, but complex in another one. The choice of F |A| and J reflects prior
knowledge regarding the function space and complexity measure that are suitable.

When the number of samples n increases, we can afford to increase the size of the function space
by making λ smaller. Since we have two terms inside min, the complexity of the problem might
actually depend on 2 �QπE − TπQπE�2νRL

+λJ2(QπE ), which is the Bellman error of QπE (the true
action-value function of the expert) according to π plus the complexity of QπE in F |A|. Roughly
speaking, if π is close to πE , the Bellman error would be small. Two remarks are in order. First, this
result does not provide a proper upper bound on the Bellman error when m dominates n. This is
to be expected, because if π is quite different from πE and we do not have enough samples in DRL,
we cannot guarantee that the Bellman error, which is measured according to π, will be small. But,
one can still provide a guarantee by choosing a large α and using a margin-based error bound (cf.
Section 4.1 of [20]). Second, this upper bound is not optimal, as we use a simple proof technique
based on controlling the supremum of the empirical process. More advanced empirical processes
techniques can be used to obtain a faster error rate (cf. [12]).

4 Experiments

We evaluate APID on a simulated domain, as well as a real robot path-finding task. In the simulated
environment, we compare APID against other benchmarks under varying availability and optimality
of the expert demonstrations. In the real robot task, we evaluate the practicality of deploying APID
on a live system, especially when DRL and DE are both expensive to obtain.

4.1 Car Brake Control Simulation

In the vehicle brake control simulation [21], the agent’s goal is reach a target velocity, then maintain
that target. It can either press the acceleration pedal or the brake pedal, but not both simultaneously.
A state is represented by four continuous-valued features: target and current velocities, current
positions of brake pedal and acceleration pedal. Given a state, the learned policy has to output one
of five actions: acceleration up, acceleration down, brake up, brake down, do nothing. The reward
is −10 times the error in velocity. The initial velocity is set to 2m/s, and the target velocity is set
to 7m/s. The expert was implemented using the dynamics between the pedal pressure and output
velocity, from which we calculate the optimal velocity at each state. We added random noise to the
dynamics to simulate a realistic scenario, in which the output velocity is governed by factors such
as friction and wind. The agent has no knowledge of the dynamics, and receives only DE and DRL.

For all experiments, we used a linear Radial Basis Function (RBF) approximator for the value func-
tion and CVX, a package for specifying and solving convex programs [22], to solve the optimization
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Figure 1: (a) Average reward with m = 15 optimal demonstrations. (b) Average reward with
m = 100 sub-optimal demonstrations. Each iteration adds 500 new RL data to APID and LSPI,
while the expert data stays the same. First iteration has n = 500 −m for APID. LSPI treats all the
data at this iteration RL data.

problem (4). We set α
m to 1 if the expert is optimal and 0.01 otherwise. The regularization param-

eter was set according to 1/
√
n+m. We averaged results over 10 runs and computed confidence

intervals as well. We compare APID with the regularized version of LSPI [6] in all the experiments.
Depending on the availability of expert data, we either compare APID with the standard supervised
LfD, or DAgger [1], a state-of-the-art LfD algorithm that has strong theoretical guarantees and good
empirical performance when the expert is optimal. DAgger is designed to query for more demon-
strations at each iteration; then, it aggregates all demonstrations and trains a new policy. The number
of queries in DAgger increases linearly with the task horizon. For Dagger and supervised LfD, we
use random forests to train the policy.

We first consider the case with little but optimal expert data, with task horizon 1000. At each
iteration, the agent gathers more RL data using a random policy. In this case, shown in Figure 1a,
LSPI performs worse than APID on average, and it also has much higher variance, especially when
DRL is small. This is consistent with empirical results in [6], in which LSPI showed significant
variance even for simple tasks. In the first iteration, APID has moderate variance, but it is quickly
reduced in the next iteration. This is due to the fact that expert constraints impose a particular shape
to the value function, as noted in Section 2. The supervised LfD performs the worst, as the amount of
expert data is insufficient. Results for the case in which the agent has more but sub-optimal expert
data are shown in Figure 1b. Here, with probability 0.5 the expert gives a random action rather
than the optimal action. Compared to supervised LfD, APID and LSPI are both able to overcome
sub-optimality in the expert’s behaviour to achieve good performance, by leveraging the RL data.

Next, we consider the case of abundant demonstrations from a sub-optimal expert, who gives random
actions with probability 0.25, to characterize the difference between APID and DAgger. The task
horizon is reduced to 100, due to the number of demonstrations required by DAgger. As can be
seen in Figure 2a, the sub-optimal demonstrations cause DAgger to diverge, because it changes the
policy at each iteration, based on the newly aggregated sub-optimal demonstrations. APID, on the
other hand, is able to learn a better policy by leveraging DRL. APID also outperforms LSPI (which
uses the same DRL), by generalizing from DE via function approximation. This result illustrates
well APID’s robustness to sub-optimal expert demonstrations. Figure 2b shows the result for the
case of optimal and abundant demonstrations. In this case, which fits Dagger’s assumptions, the
performance of APID is on par with that of DAgger.

4.2 Real Robot Path Finding

We now evaluate the practicality of APID on a real robot path-finding task and compare it with LSPI
and supervised LfD, using only one demonstrated trajectory. We do not assume that the expert is
optimal (and abundant), and therefore do not include DAgger, which was shown to perform poorly
for this case. In this task, the robot needs to get to the goal in an unmapped environment by learning
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Figure 2: (a) Performance with a sub-optimal expert. (b) Performance with an optimal expert. Each
iteration (X-axis) adds 100 new expert data points to APID and DAgger. We use n = 3000−m for
APID. LSPI treats all data as RL data.

to avoid obstacles. We use an iRobot Create equipped with Kinect RGB-depth sensor and a laptop.
We encode the Kinect observations with 1 × 3 grid cells (each 1m × 1m). The robot also has three
bumpers to detect a collision from the front, left, and right. Figures 3a and 3b show a picture of the
robot and its environment. In order to reach the goal, the robot needs to turn left to avoid a first box
and wall on the right, while not turning too much, to avoid the couch. Next, the robot must turn
right to avoid a second box, but make sure not to turn too much or too soon to avoid colliding with
the wall or first box. Then, the robot needs to get into the hallway, turn right, and move forward to
reach the goal position; the goal position is 6m forward and 1.5m right from the initial position.

The state space is represented by 3 non-negative integer features to represent number of point clouds
produced by Kinect in each grid cell, and 2 continuous features (robot position). The robot has three
discrete actions: turn left, turn right, and move forward. The reward is minus the distance to the
goal, but if the robot’s front bumper is pressed and the robot moves forward, it receives a penalty
equal to 2 times the current distance to the goal. If the robot’s left bumper is pressed and the robot
does not turn right, and vice-versa, it also receives 2 times the current distance to the goal. The robot
outputs actions at a rate of 1.7Hz.

We started from a single trajectory of demonstration, then incrementally added only RL data. The
number of data points added varied at each iteration, but the average was 160 data points, which is
around 1.6 minutes of exploration using �-greedy exploration policy (decreasing � over iterations).
For 11 iterations, the training time was approximately 18 minutes. Initially, α

m was set to 0.9, then
it was decreased as new data was acquired. To evaluate the performance of each algorithm, we ran
each iteration’s policy for a task horizon of 100 (≈ 1min); we repeated each iteration 5 times, to
compute the mean and standard deviation.

As shown in Figure 3c, APID outperformed both LSPI and supervised LfD; in fact, these two meth-
ods could not reach the goal. The supervised LfD kept running into the couch, as state distributions
of expert and robot differed, as noted in [1]. LSPI had a problem due to exploring unnecessary
states; specifically, the �-greedy policy of LSPI explored regions of state space that were not rele-
vant in learning the optimal plan, such as the far left areas from the initial position. �-greedy policy
of APID, on the other hand, was able to leverage the expert data to efficiently explore the most rele-
vant states and avoid unnecessary collisions. For example, it learned to avoid the first box in the first
iteration, then explored states near the couch, where supervised LfD failed. Table 1 gives the time it
took for the robot to reach the goal (within 1.5m). Only iterations 9, 10 and 11 of APID reached the
goal. Note that the times achieved by APID (iteration 11) are similar to the expert.

Table 1: Average time to reach the goal

Average Vals Demonstration APID-9th APID-10th APID-11th

Time To Goal(s) 35.9 38.4± 0.81 37.7± 0.84 36.1± 0.24
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Figure 3: (a) Picture of iRobot Create equipped with Kinect. (b) Top-down view of the environment.
The star represents the goal, the circle represents the initial position, black lines indicate walls, and
the three grid cells represent the vicinity of the Kinect. (c) Distance to the goal for LSPI, APID and
supervised LfD with random forest.

5 Discussion

We proposed an algorithm that learns from limited demonstrations by leveraging a state-of-the-art
API method. To our knowledge, this is the first LfD algorithm that learns from few and/or suboptimal
demonstrations. Most LfD methods focus on solving the issue of violation of i.i.d. data assumptions
by changing the policy slowly [23], by reducing the problem to online learning [1], by querying
the expert [2] or by obtaining corrections from the expert [3]. These methods all assume that the
expert is optimal or close-to-optimal, and demonstration data is abundant. The TAMER system [24]
uses rewards provided by the expert (and possibly blended with MDP rewards), instead of assuming
that an action choice is provided. There are a few Inverse RL methods that do not assume optimal
experts [25, 26], but their focus is on learning the reward function rather than on planning. Also,
these methods require a model of the system dynamics, which is typically not available in practice.

In the simulated environment, we compared our method with DAgger (a state-of-the-art LfD
method) as well as with a popular API algorithm, LSPI. We considered four scenarios: very few but
optimal demonstrations, a reasonable number of sub-optimal demonstrations, abundant sub-optimal
demonstrations, and abundant optimal demonstrations. In the first three scenarios, which are more
realistic, our method outperformed the others. In the last scenario, in which the standard LfD as-
sumptions hold, APID performed just as well as DAgger. In the real robot path-finding task, our
method again outperformed LSPI and supervised LfD. LSPI suffered from inefficient exploration,
and supervised LfD was affected by the violation of the i.i.d. assumption, as pointed out in [1].
We note that APID accelerated API by utilizing demonstration data. Previous approaches [27, 28]
accelerated policy search, e.g. by using LfD to find initial policy parameters. In contrast, APID
leverages the expert data to shape the policy throughout the planning.

The most similar to our work, in terms of goals, is [29], where the agent is given multiple sub-
optimal trajectories, and infers a hidden desired trajectory using Expectation Maximization and
Kalman Filtering. However, their approach is less general, as it assumes a particular noise model in
the expert data, whereas APID is able to handle demonstrations that are sub-optimal non-uniformly
along the trajectory.

In future work, we will explore more applications of APID and study its behaviour with respect to
∆i. For instance, in safety-critical applications, large ∆i could be used at critical states.
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[8] A.-m. Farahmand, M. Ghavamzadeh, Cs. Szepesvári, and S. Mannor. Regularized policy iteration. In

NIPS 21, 2009. 2, 3
[9] J. Z. Kolter and A. Y. Ng. Regularization and feature selection in least-squares temporal difference

learning. In ICML, 2009. 2
[10] G. Taylor and R. Parr. Kernelized value function approximation for reinforcement learning. In ICML,

2009. 2
[11] M. Ghavamzadeh, A. Lazaric, R. Munos, and M. Hoffman. Finite-sample analysis of Lasso-TD. In ICML,

2011. 2
[12] I. Steinwart and A. Christmann. Support Vector Machines. Springer, 2008. 3, 5
[13] I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, and Y. Singer. Large margin methods for structured

and interdependent output variables. Journal of Machine Learning Research, 6(2):1453–1484, 2006. 3
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