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Figure 1: Left: Image from a standard lens showing limited depth ofifielith only the rightmost subject in focus. Center: Inpotirour
lattice-focal lens. The defocus kernel of this lens is desiigto preserve high frequencies over a wide depth rangehtRAn all-focused
image processed from the lattice-focal lens input. Sinealdfocus kernel preserves high frequencies, we achievedargstoration over the

full depth range.

Abstract

Depth of field (DOF), the range of scene depths that appeap sha
in a photograph, poses a fundamental tradeoff in photograph
wide apertures are important to reduce imaging noise, leytadlso
increase defocus blur. Recent advances in computatiorsagiing
modify the acquisition process to extend the DOF througtodec
volution. Because deconvolution quality is a tight funntiaf the
frequency power spectrum of the defocus kernel, desigrshigih
spectra are desirable. In this paper we study how to desfgotisk

extended-DOF systems, and show an upper bound on the maxima{g

power spectrum that can be achieved. We analyze defocusl&ern
in the 4D light field space and show that in the frequency damai
only a low-dimensional 3D manifold contributes to focus. ush
to maximize the defocus spectrum, imaging systems shouid co
centrate their limited energy on this manifold. We reviewesal
computational imaging systems and show either that thaydsee-
ergy outside the focal manifold or do not achieve a high spatt
over the DOF. Guided by this analysis we introduce the lattacal
lens, which concentrates energy at the low-dimensionall foan-
ifold and achieves a higher power spectrum than previouigjaes
We have built a prototype lattice-focal lens and presentreded
depth of field results.

Keywords: Computational camera, depth of field, light field,
Fourier analysis.

1 Introduction

Depth of field, the depth range over which objects in a phatoigr
appear acceptably sharp, presents an important tradeeffisds
gather more light than a pinhole, which is critical to rednogse,
but this comes at the expense of defocus outside the focaépla
While some defocus can be removed computationally usingrdec
volution, the results depend heavily on the informationspreed
by the blur, as characterized by the frequency power spactru
of the defocus kernel. Recent advances in computationaj-ima
ing [Dowski and Cathey 1995; Levin et al. 2007; Veeraraghava
et al. 2007; Hausler 1972; Nagahara et al. 2008] modify tregen
acquisition process to enable extended depth of field threugh

a deconvolution approach.

Computational imaging systems can dramatically extendhdep
field, but little is known about the maximal frequency magdé

response that can be achieved. In this paper, we use a standar
computational photography tool, the light field, e.g., [agwand
Hanrahan 1996; Ng 2005; Levin et al. 2008a], to address tlsese
sues. Using arguments of conservation of energy and takiiag i
account the finite size of the aperture, we present boundéi®n t
power spectrum of all defocus kernels.

Furthermore, a dimensionality gap has been observed betiliee
4D light field and the space of 2D images over the 1D set of depth
[Gu et al. 1997; Ng 2005]. In the frequency domain, only a 3D
anifold contributes to standard photographs, which spoads
focal optical conditions. Given the above bounds, we show that
it is desirable to avoid spending power in the othéwcal regions

of the light field spectrum. We review existing camera designd
find that some spend significant power in these afocal regiainise
others do not achieve a high spectrum over the depth range.

Our analysis leads to the development of the lattice-fomas+—a
novel design which allows for improved image reconstructidt
is designed to concentrate energy at the focal manifoldefigfint
field spectrum, and achieves defocus kernels with high spethe
design is a simple arrangement of lens patches with diftéoeal
powers, but the patches’ size and powers are carefullyetbrivhe
defocus kernels of a lattice-focal lens are high over a wielettd
range, but they are not depth invariant. This both requinesem-
ables coarse depth estimation. We have constructed aypetand
demonstrate encouraging extended depth of field results.

1.1 Depth of field evaluation

To facilitate equal comparison across designs all systemsal-
cated a fixed time budget and maximal aperture width, andehenc
can collect an equal amount of photons. All systems are ¢sgec
to cover an equal depth rande [dmin, dmax -

Similar to previous work, we focus on Lambertian scenes aad a
sume locally constant depth. The observed imBgef an ob-
ject at depthd is then described as a convoluti@n= @y ® | + N,
wherel is the ideally sharp image\ is the imaging noise, and
@y is the defocus kernel, commonly referred to as the pointaghre
function (PSF). The defocus P3f is often analyzed in terms of
its Fourier transformgy, known as the optical transfer function
(OTF). In the frequency domain, convolution is a multiptioa

B(w) = @(w)I(w) + N(w) where hats denote Fourier transforms.
In a nutshell, deblurring divides every spatial frequengyhe ker-



nel spectrum, so the information preserved at a spatialiéecyw

depends strongly on the kernel spectrumgif( w)| is low, noise is
amplified and image reconstruction is degraded. To capt@ecs
with a given depth rangé € [dmin, dmax, we want PSFgy whose

modulation transfer function (MTH)g| is as high as possible for
every spatial frequenay, over the full depth range. Noise is absent
from the equations in the rest of this paper, because whateise

is introduced by the sensor gets amplified as a monotoniditmc

of | @y (w)]-

In this paper, we focus on the stability of the deblurringqess to
noise and evaluate imaging systems according to the sptibelya
achieve over a specified depth range. We note, however, drai m
approaches such as coded apertures and our new lattiddefosa
involve a depth-dependent P$¥ and require a challenging depth
identification stage. On the positive side, such systempubu
coarse depth map of the scene in addition to the all-focusadé.
In contrast, designs like wavefront coding and focus swesp lan
important advantage: their blur kernel is invariant to tept

While the tools derived here apply to many computational -cam
eras, our focus is on designs capturing only a single inpaganm

In [Levin et al. 2009a] we present one possible extensionub m
tiple measurement strategies like the focal stack and &optic
camera.

1.2 Related work

Depth of field is traditionally increased by reducing the rape,

but this unfortunately lowers the light collected and irs®es noise.
Alternatively, a focal stack [Horn 1968; Hasinoff and Kutkibs
2008] captures a sequence of images with narrow depth of field
but varying focus, which can be merged for extended deptlelaf fi
[Ogden et al. 1985; Agarwala et al. 2004]. Our new latticeafo
lens can be thought of as capturing all the images from a apeci
focal stack, shifted and summed together in a single photo.

New designs have achieved improved frequency responsth&sge
with a depth invariant PSFs, allowing for deconvolution heitit
depth estimation. Wavefront coding achieves this with a@aaop-
tical element [Dowski and Cathey 1995]. Others use a logergph
[George and Chi 2003] and focus sweep approaches modifpthe f
cus configuration continuously during the exposure [Hausd&2;
Nagahara et al. 2008].

In contrast, coded aperture approaches [Veeraraghavan?€03;
Levin et al. 2007] make the defocus blur more discriminative
depth variations. Having identified the defocus diametier, tan
be partially removed via deconvolution. One disadvantagéie
design is that some light rays are blocked. A more serioub-pro
lem is that the lens is still focused only at one particulgstbieand
objects located away from the focus depth are still heaviiyrbd.

Other designs [Ben-Eliezer et al. 2005] divide the aperitt@sub-
squares consisting of standard lenses, similar to ourcéaftical
lens. But while these methods involve redundant focal lesygiur
analysis lets us optimize the combination of different fguavers
for improved depth of field.

We build on previous analysis of cameras and defocus in figlt
space [Ng 2005; Adams and Levoy 2007; Levin et al. 2008a]. A
related representation in the Fourier optics literaturdnésAmbi-
guity function [Rihaczek 1969; Papoulis 1974; Brenner £1883;
FitzGerrell et al. 1997], allowing a simultaneous analysislefo-
cus over a continuous depth range.

2 Background on defocus in light field space

Our main analysis is based on geometric optics and the ligldt, fi
but [Levin et al. 2009a] provides complementary derivegiosing
wave optics. We first review how the light field can be used to
analyze cameras [Ng 2005; Levin et al. 2008a]. It is a 4D fionct
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Figure 2: Integration surfaces in flatland. Top: Ray mapping dia-
grams. Middle: The corresponding light field and integratisur-
face qu). Bottom: The lens spectrukn The blue/red slices rep-
resent OTF-slices of the blue/red objects respectivelg Vidttical
yellow slices represery, slices discussed in Sec. 3. Left: Stan-
dard lens focused at the blue object. Right: Wavefront apdin

u,v aperture plane coordinates

X,y spatial coordinates (at focus plane)
Wy spatial frequencies

Q max spatial frequency

P(X,Y) point spread function (PSF)

P(wy, wy) optical transfer function (OTF)

If(x7 Y, U, V) 4D lens kernel

K(ax, wy, wy, wy) | 4D lens spectrum

A aperture width

eA hole/subsquare width

a(wyy), Blaxy) | bounded multiplicative factors (Egs. (43,11))

Table 1: Notation.

£(x,y,u,v) describing radiance for all rays in a scene, where aray is
parameterized by its intersections with two parallel p&arbeuv-
plane and thay-plane [Levoy and Hanrahan 1996]. Figure 2 shows
a 2D flatland scene and its corresponding 2D light field. Warass
the camera aperture is positioned on theplane, ancky is a plane

in the scene (e.g., the focal plane of a standard leqgg)re spatial
coordinates and the v coordinates denote the viewpoint direction.

An important property is that the light rays emerging fromizeg
physical point correspond to a 2D plane in 4D of the form

X=8u+(1—-s)px, y=sv+(1—-s)py, 1)
whose slope encodes the object’s depth:
s=(d—do)/d, 2

whered is the object depth and, the distance between the; xy
planes. The offsetpy and py characterize the location of the scene
point within the plane at deptth

Each sensor element gathers light over its 2D area and the@b a
ture. This is a 4D integral over a set of rays, and under firdeior



optics (paraxial optics), it can be modeled as a convolut[bly
2005; Levin et al. 2008a]. A shift-invariant kerri€lx, y, u, v) deter-
mines which rays are summed for each element, as governé by t
lens. Before applying imaging noise, the value recordedsanaor
element is then:

E(XOA/O) = /// k(xo —XYo—Y,—\, 7V)€(X7 Y, U,V) dXdydUdV'
®3)
For most designs, the 4D kernel is effectively non-zero aly 2D

integration surface because the pixel area is small cordparthe
aperture. That is, the 4D kernel is of the form

8(x— Ce(U,V),y— & (WV)RUWARV/A),  (4)

whereR is a rect functiong denotes a Dirac delta, amdu,v) —
(x,y) is a 2D— 2D surface describing the ray mapping at the lens’s
aperture, which we assume to be square and of AigeA. The
surfacec is shown in black in the middle row of Figure 2.

K(x,y,u,v) =

For example, a standard lens focuses rays emerging fromna poi
at the focus depth and the integration surfade linearc(u,v) =
(susv). The integration slopscorresponds to the slope of the fo-
cusing distance (Fig. 2, left). When integrating a lightdiedith the
same slope (blue object in Fig. 2), all rays contributing s®easor
element come from the same 3D point. In contrast, when thecobj
is misfocused (e.qg., red/green objects), values from plalscene
points get averaged, causing defocus. Wavefront codingvfRio
and Cathey 1995] involves a cubic lens. Since refractionfisme-
tion of the surface normal, the kernel is a parabolic surfaegin

et al. 2008b; Zhang and Levoy 2009] (Fig. 2, right) defined by

c(u,v) = (alf,av?) . (5)

Finally, the kernel of the focus sweep is not a 2D surface et t
integral of standard lens kernels with different slopegstds.

Consider a Lambertian scene with locally constant deptthelio-
cal scene depth, or slope, is known, the noise-free defddusage

B can be expressed as a convolution of an ideal sharp itnagé
aPSFgs: B= @g®1. As demonstrated in [Levin et al. 2008c], for a
given slopesthis PSF is fully determined by projecting the 4D lens
kernelk along the slope:

@s(x,y) = // k(x,y,u+sxv+sydudv. (6)
That is, we simply integrate over all rays y,u-+ sx v+ sy) corre-
sponding to a given point in the~plane (see Eq. 1).

For example, we have seen that the 4D kekrfel a standard lens is
planar. If the slopes of an object and the orientation of this planar
k coincide, the object is in focus and the projected RSk an
impulse. For a different slope the projected PSF is a box,fdied
the width of this box depends on the difference between theesl
of the object and that d€. For wavefront coding, the parabolic 4D
kernel has an equal projection in all directions, explainihy the
resulting PSF is invariant to object depth [Levin et al. 20@Bhang
and Levoy 2009].

Now that we have expressed defocus as a convolution, we can
analyze it in the frequency domain. L?Ie(ta&,ag,,ah,m,) denote

the 4D lens spectrum, the Fourier transform of the 4D lenaeker
k(x,y,u,v). Figure 2 visualizes lenses speckn flatland for a
standard and wavefront coding lenses. As the BSIE obtained
from k by projection (Eq. (6)), by the Fourier slice theorem, the
OTF (optical transfer functionrig is a slice of the 4D lens spectrum
kin the orthogonal direction [Ng 2005; Levin et al. 2008c]:

s, wy) = k(wy, @y, —swe, —say) - 7)
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Figure 3: Layout of the 4D lens spectrum, highlighting the focal
manifold. Each subplot representsca, y,-slice, R%_yo(ah,m,).
The outer axes vary the spatial frequermwy, y,, i.e., the slicing
position. The inner axes of each subplot, i.e., of each sliagy
wyy- The entries ok along each focal segment are color coded, so
that the 2D set of points sharing the same color correspoadmt
OTF with a given depth/slope (e.g., the red points define an oM
the slope s= —1). This illustrates the dimensionality gap: the set of
entries contributing to an OTF at any physical depth occsirly

a 1D segment in each 2B, y,-slice. In the flatland case (Fig. 2),
eachay, y,-slice corresponds to a vertical column.

Below we refer to slices of this form a3TF-slices because they
directly provide the OTF, describing the frequency respathse to
defocus at a given depth. OTF-slices in flatland are illusttan
the last row of Figure 2 (dashed red/blue). These are slatitas
whose slope is orthogonal to the object slope in the prirgat field
domain. Low spectrum values kleads to low magnitudes in the
OTF for the corresponding depth. In particular, for a staddiens,
only the OTF-slice corresponding to the focusing distaniesijed
blue, Fig. 2 left) has high values.

Notations and assumptions: All systems in this paper are allo-
cated a fixed exposure time, w.l.0.g. 1. The aperture si2e<ig\.

A denotes a pixel width back-projected onto the foxgplane.
In the frequency domain we deal with the rangeQ, Q], where
Q=1/(2D). wxy,w,y are shortcuts for the 2D vectofsy, wy),
(cy, wy). Table 1 summarizes notations.

We seek to capture a fixed depth rarid@in, dmax. To simplify the
light field parameterization, we select the location of Xiyglane
according to the harmonic mealy = 29 | corresponding to
the point at which one would focus a standard lens to equdbze
focus diameter at both ends of the depth range, e.g., [H&sind
Kutulakos 2008]. This maps the depth range to the symmétnes

range[—S/2,S/2], whereS= % (Eq. (2)). Under this pa-
rameterization the defocus diameter (onxielane) of slopescan
be expressed simply #gs|.

We also assume that scene radiance is fairly constant overath
row solid angle subtended by the camera aperture. This ge&gum
is violated by highly specular objects or at occlusion baries.

3 Frequency analysis of depth of field

We now analyze the requirements, strategies, and limitepfhd
of field extension. We show that a key factor for depth of field
optimization is the presence ofidmensionality gagn the 4D light
field: only a manifold of the 4D spectrum, which we cédtal,



contributes to focusing at physical depths. Furthermowe show
that the energy in a 4D lens spectrum is bounded. This sugjthest
to optimize depth of field, most energy should be concerdrate
the focal manifold. We discuss existing lens designs and/shat

many of them spend energy outside the focal manifold. In Sae

propose a novel design which significantly reduces thislprob

3.1 The dimensionality gap

As described above, scene depth corresponds to sliopiée light
field. It has, however, been observed that the 4D light fielsl ha
a dimensionality gapin that most slopes do not correspond to a
physical depth [Gu et al. 1997; Ng 2005]. Indeed, the setldal
planesx= syu+ px, y = Syv+ py described by their slop®, sy and
offset px, py is 4D. In contrast, the set corresponding to real depth,
i.e., wheres=s, = s, is only 3D, as described by Eq. (1). This
makes sense because scene points are 3D. The dimensigaglity
is a property of the 4D light field, and does not exist for the 2D
light field in flatland. The other slopes whesg # s, are afocal
and represent rays from astigmatic refractive or reflectivgaces,
which are surfaces with anisotropic curvature [Adams angbie
2007], e.g., the reflection from a cylindrical mirror. Singe con-
sider scenes which are sufficiently Lambertian over thetagesr
afocal light field orientations hold no interesting infortioa.

The dimensionality gap is particularly clear in the Fourde-
main [Ng 2005]. Consider the 4D lens spectrﬁrrand examine
the 2D slicesﬁ% % (e, wy), in which the the spatial frequencies

, are held constant (Fig. 3). We call thesg, y,-slices In
flatland Wy, yo-Slices are vertical slices (yellow in Fig. 2). Follow-
ing Eq. (7), we note that the set of entries in ekg,tg‘yo participat-
ing in the OTF for any depth is restricted to a 1D line:

k%.yo(_sakov_sa&d ’ ®)

for which w, = —swy,, wy, = —swy,. For a fixed slope rangeec
[—S/2,S/2] the set of entries participating in any Ok is a 1D
segment. These segments, which we refer téoaal segmenis
are highlighted in Figure 3. The rest of the spectruafécal This
property is especially important, because itimplies thast entries
of k do not contribute to an OTF at any depth

As an example, Figure 4(b-e) shows the 2D families of@py,-
slices for a variety of cameras. A standard lens has a higionse
for an isolated point in each slice, corresponding to thei$oty
distance. In contrast, wavefront coding (Fig. 4(e)) hasaather
response that spans more of the focal segment, but also lewer t
afocal region. While the spectrum of the focus sweep (Fid))4¢

on the focal segment, its magnitude is lower magnitude thandf

a standard lens.

3.2 Upper bound on the defocus MTF

In this section we derive a bound on the defocus MTF. As intro-
duced earlier, we pose depth of field extension as maximitiag
MTFs \(Zg(aky)\ over all slopes € [-S/2,S/2] and over all spatial
frequenciesuyy. Since the OTFs are slices from the 4D lens spec-
trum k (Eq. (7)), this is equivalent to maximizing the spectrum on
the focal segments &

We first derive the available energy budget, using a direetresion
of the 1D case [FitzGerrell et al. 1997; Levin et al. 2008c].

Claim 1 For an aperture of size A A and exposure length the
total energy in eachiy, y,-slice is bounded by A

// [Keo o (1, ) [Pdcadan, < AZ . ©)

The proof, provided in the appendix, follows from the finiteaunt
of light passing through a bounded aperture over a fixed expos
As a consequence of Parseval's theorem, this energy buldget t

applies to everyuy, y,-slice IQ%AYO. While Claim 1 involves geo-

metric optics, similar bounds can be obtained with Fourjgics
using slices of the ambiguity function [Rihaczek 1969; Gitz-
rell et al. 1997]. In [Levin et al. 2009a] we derive an analago
bound under Fourier optics, with a small difference—thegaids
no longer equal across spatial frequencies, but decreageshe
diffraction-limited MTF.

As in the 1D space-time case [Levin et al. 2008c], optimalst+or
case performance can be realized by spreading the energgtoud
uniformly over the range of slopes. The key difference is thaper

is the dimensionality gap. As shown in Figure 3, the OgEsover
only a 1D line segment, and most entries inw@y,y,-slice IZ%‘YO

do not contribute to any OTF. Therefore, the energy budgaitlsh
be spread evenly over the 1D focal segment only.

Given a power budget for eadly, y,-slice, the upper bound for
the defocus MTF concentrates this budget on the 1D focal segm
only. Distributing energy over the focal manifold requicsition,
however, because the segment effectively has non-zerkndss
due to its finite support in the primal domain. If a 1D focal semt
had zero thickness, its spectrum values could be made &fitile
still obeying the norm constraints of Claim 1. As we show helo
since the primal support dfis finite (k admits no light outside the
aperture), the spectrum must be finite as well, so the 1D foeg
ment must have non-zero thickness. Slices from this idesdtspm
are visualized in Figure 4(a).

Claim 2 The worst-case defocus MTF for the rarges/2,S/2] is
bounded. For every spatial frequenayy:

. - 2 B(Q&,y)AS
deggs/altps(a&,m/)l Siﬂ%ﬂ ; (10)
where the factor
Y (_ minJex], | ) 1
PO = majad Jaah ' 3 maxead, y) ) P
isin the range[ 12 ,1] ~[0.93,1].

Proof: For eacrr%_,),o-inceAkt%yo the 1D focal segment is of length
Sy, y,|- We first show that the focal segment norm is bounded by

A3, and then the worst-case optimal strategy is to spread thgelbu
evenly over the segment.

To simplify notations, we consider the casg = 0 since the gen-
eral proof is similar after a basis change. For this caselEhfocal

segment is a horizontal line of the forlh%m (@, 0), shown in the

central row of Figure 3. For a fixed value af,, this line is the
Fourier transform of:

// K(%,Y, U, V)&~ 2T @0 X 000 gy, (12)

By showing that the total power of Eq. (12) is boundedA8y Par-
seval’'s theorem gives us the same bound for the focal segment

Since the exposure time is assumed to be 1, we collect uniggne
through every, v point lying within the clear apertute

// k(x,y,u,v)dxdy= { é

1if an amplitude mask is placed at the aperture (e.g., a copeduae)
the energy will be reduced and the upper bound still holds.

Ul <A/2, V[ <A/2

otherwise (13)




Camera type Squared MTF

A3

‘ 2
a. Upper bound [&(wy)® < 55571

b. Standard lens |@s(wey) P = A%sind(A(s— so)ax)sind (A(s — o) )

c. Coded aperture | E[|@(axy)[?] =~ EZTA4sincz(eA(s—so)ay)sin(?(sA(sfso)m/)
- 2 2
d. Focus sweep |@s(wey) P ~ ACa(axy)
|axy|
i 0 2 o A
e. Wavefront coding  [@(wyy)|* ~ i
ice- o 2 o _A3Baxy)
f. Lattice-focal E[las(awxy)?] ~ T

Table 2: Squared MTFs of computational imaging designs. See
Table 1 for notation. The optimal spectrum bound falldiofarly
as a function of spatial frequency, yet existing design$ sscthe
focus sweep and wavefront coding fall gffadraticallyand do not
utilize the full budget. The new lattice-focal lens derivedhis
paper achieves a higher spectrum, closer to the upper bound.

A phase change to the integral in Eq. (13) does not increase it
magnitude, therefore, for every spatial frequengyy,,

’//k(x,y, u,v)e’Zi’T(%X*‘“foy)dxd% <1. (14)

Using Eq. (14) and the fact that the aperture is wiitdong on the
v-axis, we obtain:

. ' 2
’/// K(X.y, u,v)e’z'”%”Oy*O"dxdyd* <A?. (15)

On theu-axis, the aperture has width as well. By integrating
Eq. (15) overu we see the power is bounded A

1 ][ kix,y, u, v)e 2@ X+@0Y) dxdyd 2du <A3. (16)
[ *

Since the left-hand side of Eq. (15) is the power spectrum of
k%_yo(wu,o), by applying Parseval’s theorem we see that the to-

tal power over the focal segment is bounded®Byas well:
[ T (c2,0)Pdca, < A°. (17)

Since the focal segment norm is bounded®y and since we aim

The MTFs for the previous designs shown in Figure 5 are lower
than the upper bound. We have analytically computed spémtra
these designs. The derivation is provided in the appendisam-
marized in Table 2. We observe that no existing spectrumhesac
the upper bound. Below we review the results in Table 2b-e and
provide some intuitive arguments. In the next section wedce

a new design whose spectrum is higher than all known dedgis,
still does not fully meet the bound.

Standard lens:  For a standard lens focused at depihwe see
in Figure 4(b) high frequency content near the isolated tgoin

Ky o (—S00xo, —SoWy,), Which correspond to the in-focus depth

@,- The spectrum falls off rapidly away from these points, with
a sinc whose width is inversely proportional to the apertivénen
the deviation between the focus slope and the object skpes|

is large, this sinc severely attenuates high frequencies.

Coded aperture:  The coded aperture [Levin et al. 2007; Veer-
araghavan et al. 2007] incorporates a pattern blocking liagys.
The integration surface is linear, like that of a standand |®ut has
holes at the blocked areas. Compared to the sinc of a staagard
ture, the coded aperture camera has a broader spectrurd(&)ig.
but is still far from the bound. To see why, assume w.l.0.aat th
the lens is focused & = 0. The primal integration surface lies
on thex = 0,y = 0 plane anck is constant over altyy. Indeed,
all wy, y,-slices in Figure 4(c) are equal. Since the union of focal
segment orientations from all, y,-slices covers the plane, to guar-
antee worst-case performance, the coded aperture spestiautd
be spread over the entire 2D plane of eagl,-slice. This implies
significant energy away from focal segments.

Focus sweep:  For a focus sweep camera [Hausler 1972; Naga-
hara et al. 2008], the focus distance is varied continuodshjng
exposure and the 4D lens spectrum is the average of starefeses|
spectra over a range of slopgs(Figs. 4(d) and 5(d)). In contrast
to the isolated points covered by a static lens, this spreadsgy
over the entire focal segment, since the focus varies d@xpg-
sure. This design does not spend budget away from the fogal se
ment of interest. However, as discussed in the appendige she
lens kernel describing a focus sweep camera is not a Diraa, del
phase cancellation occurs between different focus setting the
magnitude is lower than the upper bound (Fig. 4(a)).

Wavefront coding:  The integration surface of a wavefront
coding lens [Dowski and Cathey 1995] is a separable 2D
parabola [Levin et al. 2008b; Zhang and Levoy 2009]. The spec
trum is a separable extension of that of the 1D parabola fLetval.
2008c]. However, while the 1D parabola achieves an optinoasta
case spectrum, this is no longer the case for a 2D parabolB,in 4
and the wavefront coding spectrum (Table 2e, Figs. 4(e) &8y 5

is lower than the bound. They,y,-slices in Figure 4(e) reveal

to maximize the worst-case magnitude, the best we can do is towhy. Due to the separability, energy is spread uniformlyhimithe

spread the budget uniformly over the len§thy, y,| focal segment,
which bounds the worst MTF power B2 /S/wy|. In the general
case, Eq. (16) is bounded By wy)A3 rather tharA®, and Eq. (10)
follows. []

3.3 Analysis of existing designs

We analyze the spectra of existing imaging designs withiqdar
attention paid to the spectrum on the focal manifold sinég the
portion of the spectrum that contributes to focus at physiepths.

Figure 4 visualizesu, y,-slices through a 4D lens spectryki for
recent imaging systems. Figure 5 shows the correspondingsMT
(OTF-slices) at a few depths. A low spectrum value at a pant o
the focal segment leads to low spectrum content at the OTReof t
corresponding depth. Examining Figures 4 and 5, we seedha s
designs spend a significant portion of the budget on afogédms.

minimal rectangle bounding the focal segment. For anotker p
spective, consider the wavefront coding integration sarfa the
primal domain, which is a separable parabgia,v) = (au?,aV?).
A local planar approximation to that surface around an apert
pointup, vg is of the formc(u,v) = (syu,syv), for sy 9% — Daup,

=5 =
Sy = ’;—f,y = 2avp. Forug # vg the lens is locally astigmatic, and

as discussed in Sec. 3.1, this isa&ocal surface. Thus, the only
focal part of the wavefront coding lens is the narrow strignalits
diagonal, wherely = vp.

Still, the wavefront coding spectrum is superior to that ofled
apertures at low-to-mid frequencies. It spreads budgstwithin
the minimal rectangle bounding the focal segment, but nab tipe
maximal cutoff spatial frequency. The wavefront codingctpenm
and that of a focus sweep are equaldk| = |wy|. However, the
wavefront coding spectrum is significantly improved fax| — 0
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Figure 4: 4D lens spectrum for different optical designs. Each subisl@an wy, y,-slice as described in Figure 3. In the flatland case of
Figure 2, theseuw, y,-slices correspond to vertical columns. An ideal desigrs{auld account for the dimensionality gap and spend energy
only on the focal segments. Yet, this bound is not reachedypyexristing design. A standard lens (b) devotes energy ondypoint in
each subplot. A coded aperture (c) is more broadband, buggéestrum is constant over aly, y,-slices, so it cannot cover only the focall
segment in eachy, y,-slice. The focus sweep camera (d) covers only the focalesgigirbut has reduced energy due to phase cancellations
and does not achieve the bound. A wavefront coding lens @parable in theu,, w, directions and spends significant energy on afocal
areas. Our new lattice-focal lens (f) is an improvement amdsting designs, and spreads energy budget over the fegaients. Note that

all subplots show the numerical simulation of particulasidg instances, with parameters for each design tuned taépth range (see
Sec. 5.1), approximating the analytic spectra in Table 2 iftensity scale is constant for all subplots.

< u(a)er S[e(‘tr)I)dm J ((:%) e (?3CUS ) ont (%mce_ or |wy| — O, because the rectangle becomes compact, as shown in
botnd 505 50 sweep codng " focal the central row and column of Figure 4(e).

In[Levin et al. 2009a] we also analyze the plenoptic camaththe
focal stack imaging models. Note that despite all the siritepas
mentioned so far, the derivation in this section and the kitians
in Figures 4 and 5 model pure geometric optics. Diffractiod a
wave optics effects are also discussed in [Levin et al. 200Ba
most cases Fourier optics models lead to small adjustmeriteet
spectra in Table 2, and the spectra are scaled by the diffract
limited OTF.

-

0.5

Having reviewed several previous computational imaging ap
proaches to extending depth of field, we conclude that notiecof
spends the energy budget in an optimal way. In a standardtens
entire aperture area is focal, but light is focused only framsin-
gle depth. A wavefront coding lens attempts to cover a futitde
range, but at the expense that most aperture area is afoctie |
next section we propose a new lens design, the lattice-feoal
Figure5: Spectra of OTF-slices for different optical designs over with the best attributes of both—all aperture area is fogat, it

a set of depths. The subplots represent the MTF of a givenimmag  focuses light from multiple depths. This lets our new desigh
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system for slope 3[&(@(,@”, where the subplot axes argyy. closer to the upper bound compared to existing imaging syste
These OTF-slices are the 2D analog of the slanted red and blue

slices in Figure 2. Our new lattice-focal lens design begiragi- 4 The lattice-focal lens

mates the ideal spectrum upper bound. Note that all subplutgs

the numerical simulation of particular design instanceghvpa- Motivated by the previous discussion, we propose a new desig

rameters for each design tuned to the depth range (see S8¢. 5. which we call the lattice-focal lens. The spectrum it achgis
approximating the analytic spectra in Table 2. higher than previous designs but still lower than the uppemid.
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Figure6: Left: Ray mapping for a lattice-focal lens in flatland. The
aperture is divided into three color-coded sections, eacu$ed on

a different depth. Right: In the 2D light field the integratisurface

is a set of slanted segments, shown with correspondingsolor
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(a) Lattice-focal lens (b) PSFs

Figure 7: (a) Toy lattice-focal lens design with only 4 subsquares.
(b) The PSFg in the primal domain, at two different depths. Each
subsquare (color-coded) corresponds to a box in the PSFwidité

of each box is a function of the deviation between the sulsqua
focal depth and the object depth.

In this design, the aperture is divided intge? subsquares of
size €A x €A each (for O< € < 1). Each subsquare is a fo-
cal element cropped from a standard lens focused at some slop
sj € [-S/2,5/2]. That is, the integration surface is defined as:

o(u,v) = (sju,sv) for (u,v) €W , (18)
whereW; denotes the area of thieth subsquare. Figure 6 visu-
alizes the integration surface of a lattice-focal lens, posed of
linear surfaces with different slopes (compare with Figyréeft).
Figure 7 illustrates a toy four-element lattice-focal lemnsl its PSF
for two different depths. In the primal domain, the PSF is jpesu
position of scaled and shifted boxes corresponding to thiews
aperture subsquares. For this example, one of the subsqgadoe
cused at the correct depth for each scene depth, so the PSiBtson
of an impulse plus three defocused boxes. The box width ise fu
tion of the deviation between the lens focal depth and theabbj
depth.

The OTF(ZJS(@(,?{V) of a lattice-focal lens is a sum of sincs corre-
sponding to the different subsquares:

3 2P Oy sing(eAax(s; — 9)) sinc(eAwy(s; —9)) -
]

(19)
For a subsquare centered at aperture paimtv;), (Yjx,Vjy) =
(uj(sj —s),vj(sj —s)) denotes the phase shift of tii¢h subsquare,
corresponding to its translated center. The 4D spectrunsofgie
aperture subsquare is a sinc around one point in the focalesegy
Ky o (—Sj ko, —Sj iy, ). However since each subsquare is focused
at a different slope;j the summed spectra cover the focal segment
(Figure 4(f)). In contrast to the spectrum for wavefrontiogg the
lattice-focal spectrum does not spend much budget away finem
focal manifold. This follows from the fact that the subsqualopes
in Eq. (18) are set to be equalirandv, therefore the entire aperture
area isfocal.

The lattice-focal design resembles the focus sweep in thtt b
distribute focus over the DOF—focus sweep over time, and the
lattice-focal design over aperture area. The crucial diffee is

0 0

(a) Lattice-focal lens (b) Discrete focus sweep

Figure 8: Focus sweep vs. the lattice-focal lens. (a) Lattice-focal
lens whose aperture is divided inBodifferently-focused bins. (b)
Discrete focus sweep, dividing the integration time ®itins, each
focusing on a different depth (note that an actual focus gveaen-
era varies focus continuously). Depth ranges with defocaméter
below a threshold are colored. While in both cases each lmite
1/3 of the energy, the sub-apertures for the lattice-focal lares
narrower than the full aperture used by the focus sweep, énéme
effective DOF for each of the lattice-focal bins is larger.

that since each lattice-focal subsquarsrsallerthan the full aper-
ture, its effective DOF is larger than the DOF for the full epe
ture (Figure 8). As shown in Fig. 4(d,f) and Fig. 5(d,f), the
lattice-focal lens achieves significantly higher spechant focus
sweep. Mathematically, by discretizing the exposure time N
bins, each bin of the focus sweep (focused at skypeontributes

szsino(A(sf Sj)ax)sindA(s— sj)wy) to the OTF. By contrast, by
dividing the aperture intdl bins, each bin of the lattice-focal lens
contributes? sing AN~Y/2(s — s ) ax)sin( AN"Y/2(s— sj)ay). In
both cases each bin collectgN of the total energy (and the sincs’
height isA%/N), but the lattice-focal sinc is wider. While coin-
cidental phase alignments may narrow the sincs, thesenadigts
occur in isolation and do not persist across all depths drgphatial
frequencies. Therefore, the lattice-focal lens has a higbectrum
when integrating oves;.

The wy, y,-slices in Figure 4(f), and the OTF-slices in Figure 5(f)
suggest that the lattice-focal lens achieves a higher speatom-
pared to previous designs. In the rest of this section weldpan
analytic, average-case approximation for the latticexfepectrum,
which enables order-of-magnitude comparison to othegdssiWe
then discuss the effect of window sizeand show it is a critical pa-
rameter of the construction, and implies a major differemeteveen
our design and previous multi-focus designs [George an@Q08;
Ben-Eliezer et al. 2005].

Spectrum of the lattice-focal lens: The spectrum of a particu-
lar lattice focal lens can be computed numerically (Eqg. ,1@nd
Figures 4 and 5 plot such a numerical evaluation. However, to
allow an asymptotic order-of-magnitude comparison betweas
designs we compute the expected spectrum over random shafice
the slopes; and subsquare centefs;, v;) in Eq. (18) (note that to
simplify the proof, the subsquares in a generic randontkdibcal
are allowed to overlap and to leave gaps in the aperture.de@&zn
sufficiently many subsquares, the law of large numbers eppglnd

a sample lattice-focal lens resembles the expected spectilhile
this analysis confers insight, the expected spectrum dhoai be
confused with the spectrum of a particular lattice-focakle The
spectrum of any particular lattice-focal instance is natado the
expected one.

Claim 3 Consider a lattice-focal lens whose subsquare slopes
in Eqg. (18) are sampled uniformly from the ran@eS/2,S/2],



and subsquares centers sampled uniformly over the apeanea
[-A/2,A/2] x [-A/2,A/2]. For ||, |wy| > (eSA L, the expected
power spectrum asymptotically approaches

eA3

Sy (20)

E[|s(ax, wy)[?] = (axy) »

wheref is defined in Eq. (11).

Proof: Let s denote a particular scene depth of interest anafg!et
denote the OTF of thg-th subsquare focused at sloge so that

the lattice-focal OTF isps = ¥ @. For a subsquare size ef x
€A, the aperture area is covered fy= 1/€? subsquares. Since

themrandom variablesﬁsJ are drawn independently from the same
distribution, it follows that

E[|@/?) = mE[|@ 2] +m(m— 1)|E[@d] 2. (1)

The second term in Eqg. (21) is positive, and one can show it is

small relative to the first term. For simplicity we make thenco
servative approximation [Fp|?] ~ mE[|@!|?], and show how to

compute E @!|?] below. Note that the exact lattice-focal spectrum
(Eq. (19), and the right-hand side of Eq. (21)) involvesrifgeence
from the phase of each subsquare. An advantage of our apmexi

tion mE[\qbsj 2] is that it bypasses the need to model phase precisely.

Recall that the PSF from each subsquare is a box filter and ke O
is a sinc. If thej-th subsquare is focusedst

1@ (0y) 2 = e*A%sinc(Awy(s—)))sin@ (Awy(s— ) . (22)

Since the subsquare slopes are drawn uniformly ffei®/2,S/2),
the expected spectrum is obtained by averaging Eq. (22)spver

4A4 S/2 . .
% 7s/zsmcz (eAax(sj —9)) sinc (eAwy(sj —9)) ds; .

(23)

E[| @3 =

To compute this integral we make use of the following identior
a 2D vector = (rq,r2),

/ Sinc(r1t)sinc(rt)dt — B‘(lr‘l) .
If —S/2 <s< S/2 andSis large, we can assume that the integration

boundaries of Eq. (23) are sufficiently lafgeind asymptotically
approximate Eq. (23) with the unbounded integration of 24):(

(24)

B aps 52
E[\%J‘Z}:% S//Zsinc,z(sAoq((sj— ) sinc (eAwy (s —s)) ds;
apd St
- % 73/2+Sssinc2 (eAaxs;) sin¢ (eAays;) ds;
 EAB(axy)
Slaxyl

(25)

Eqg. (20) now follows from Eq. (25), after multiplying by theim-
ber of subsquaresp = 3. []

2Note that the approximation in Eq. (25) is reasonable|dat, |cy| >
(SeA)~L. The approximation is crude at the low frequencies but besom
accurate at higher frequencies, for which the MTF appraache desired
fall off. Furthermore, note that at the exact integratiorurmaries ¢ =
+5/2) one gets only half of the contrast. Thus, in practice, dwikl setS
a bit higher than the actual depth range to be covered.
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Figure 9: The lattice-focal lens with varying window sizes. Left:
Wyyyo-Slice atwy = 0.9Q, wy = —0.9Q, through theexpectedspec-
trum. Middle: wy, y,-slice from aparticularlattice-focal lens in-
stance. Right: The defocus diameter over the depth of fighé T
expected spectrum improves when the windows number isagduc
but every particular lattice-focal lens becomes underdah@and
does not cover the full depth range.

Optimal subsquare size:  According to Claim 3, the expected
power spectrum of a lattice-focal lens increases with windze

¢ (Fig. 9). For larger subsquares the sinc blur around theraent
focal segment is narrower, so more energy is concentratetieon
focal segment. However, it is clear that we cannot makebitrar-
ily large. When the number of subsquares is small, the egdect
power spectrum is high, but there are not enough samples/és co
the full focal segment (Figure 9(a)). On the other hand, wifen
number of subsquares is too large, every subsquare has uwpee s
port around the main focal segment, leading to lower enenghe
focal segment (Fig. 9(c)).

Posed another way, each subsquare is focused at a diffevieit p
in the depth range, and provides reasonable coverage @/sulh
range of depths for which it achieves a defocus diameters¥ le
than 1 pixel (Fig. 9, rightmost column). The subsquaresrage-
ment is undersampled if the minimum defocus diameter foresom
depth range is above 1 pixel, and redundant when the sutesjuar
effective depth coverage overlap. In the optimal arrangeraach
depth is covered by exactly one subsquare.

We derive the minimal number of windows providing full coage
of the depth of field, resulting in an optimetd.

Claim 4 The maximal subsquare size which allows full spectrum
coverage is

g = (Ax) /3. (26)

Proof: If the spacing between spatial samplesAishe maxi-
mal frequency we need to be concerned witliS/2 = S/(44).

For window sizes we obtain ¥&? subsquares. If the slopes of
the subsquares are equally spaced over the ren§€2, S/2], the
spacing between samples in the frequency domain4sQSe2.
Using subsquares of widteA, we convolve the samples with
singeAax)sindeAwy). For full coverage, we thus requiA <

1/1, implying:

mszgé = e<(A)7Y3. 27)



If we plug the optimak* from Eq. (26) into Eq. (20) we conclude
that the expected power spectrum of a lattice-focal lenk oyiti-
mal window size is:

A8/3

S/3Q1/3| | B (28)

Ell@s(awx. wy)|?] = (axy) -

Discussion of lens spectra: The lattice-focal lens with an op-
timal window size achieves the highest power spectrum (les-
est to the upper bound) among all computational imaginggdssi
listed in Table 2. While the squared MTFs for wavefront cadin
and focus sweep fall offjuadratically as a function ofayy, for
the lattice-focal lens the squared MTF only falls liffearly. Fur-
thermore, while the squared MTFs for wavefront coding armli$o
sweep scale wittA2, for the lattice-focal lens the squared MTF

scales withA8/3, Still, there exists a gap ¢AR)Y between the
power spectrum of the lattice-focal lens and the upper bouhd
should be noted that the advantage of the lattice-focai$eamsy/mp-

totic and is most effective for large depth of field ranges.eWthe

depth range of interest is small the difference is less eatite, as
demonstrated below.

Compact support in other designs: From the above discus-
sion, the aperture area should be divided more or less gqu&dl
elements focused at different depths. However, beyond| egea

Large depth rangeS(= 2) Small depth rangeS(= 0.1)
Wavefront coding Lattice-focal Wavefront coding Lattifoeal

Figure12: wy, y,-slice (atay, = 0.9Q, wy, = —0.9Q) for two depth
ranges defined by slope bounds-2 (left) and S= 0.1 (right). For
the smaller range, the difference between the focal segamehthe
full bounding square is lower, and the spectra for wavefi@ding
and the lattice-focal lens are more similar.

followed by wavefront coding, then focus sweep. Note thatesi
we use a square aperture, several imaging systems have orére h
zontal and vertical frequency content. This leads to hoitizloand
vertical structure in the reconstructions of Figure 10 tipalarly
noticeable in the standard lens and the wavefront codingtses

In Figure 11 we simulate the effect of varying the depth rafige
planar object was positioned si= —0.5, and the camera parame-
ters were adjusted to cover a narrow depth raBge0.1 (Fig. 11,
top row) and a wider rang8= 2 (Fig. 11, second row). When the
focus sweep, wavefront coding and lattice-focal lens ajested
to a narrower depth range their performance significantfyroves,

we also want the aperture regions focused at each depth to besince they now distribute the same budget over a narroweeran

grouped together. Eq. (20) indicates that the expected pspez-
trum is higher if we use few wide windows, rather than manylsma
ones. This can shed some light on earlier multi-focus dssigaor
example, [George and Chi 2003] use annular focus rings, B[
Eliezer et al. 2005] use multiplexed subsquares, but meltipn-
adjacent subsquares are assigned the same focal lengttothin b
cases, the support of the aperture area focused at eachisleypth
at all compact, leading to sub-optimal MTFs.

5 Experiments

We first perform a synthetic comparison between extendethadp
field approaches. We then describe a prototype construcfitre
lattice-focal lens and demonstrate real extended-DOF ésiag

5.1 Simulation

We start with a synthetic simulation using spatially-ingat first
order (paraxial) optics. The OTFs in this simulation are pated
numerically with precision, and do not rely on the approxierfar-
mulas in Table 2.

Our simulation useé = 100Q\ and considers two depth of field
ranges given by§=2 andS= 0.1. Assuming a planar scene,
we synthetically convolved an image with the PSF of eachgtesi
adding i.i.d. Gaussian noise with standard deviatipa- 0.004.
Non-blind deconvolution was performed using Wiener fiigrand
the results are visualized in Figures 10 and 11. We set tieepiae
rameters of each design to best match the depth range—for-exa
ple, we adjust the parabola widdh(in Eq. (5)), and select the opti-
mal subsquare size of the lattice-focal lens. The standatd¢aded
lenses were focused at the middle of the depth rangg,-a.

In Figure 10 we simulate the effect of varying the depth ofdbe
ject. Using cameras tuned for depth rar§e- 2, we positioned
the planar object at= 0 (Fig. 10, top row) and= —0.9 (Fig. 10,
bottom row). As expected, higher spectra improve the vigual-
ity of the deconvolution. Standard and coded lenses obtaiale
lent reconstructions when the object is positioned at tbagslope
s= 0, but away from the focus depth the image deconvolution can-
not recover much information. Focus sweep, wavefront agpelimd
the lattice-focal lens achieve uniform reconstructionligpacross
depth. The best reconstruction is obtained by our latbofPSF,

The difference between the designs becomes more criticah wie
depth range is large. Figure 12 visualizeag,,-slice for bothS
values. ForS= 0.1, the length of the focal segment is so short
that there is little difference between the segment andoitsding
square. Thus, with a smaller depth range the wavefront gddims
incurs less of penalty for spending its budget on afocabregi

Mapping slope ranges to physical distances: Assume that the
camera has sensor resolutidg = 0.007mm, and that we use an
f = 85mm focal length lens focused at demth= 70cm. This
depth also specifies the location of thdight field plane. The DOF

is defined by the ranggmin, dmay corresponding to slopesS/2.
From Eq. (2), the depth range can be expressedh 4l + S/2),
yielding a DOF of [35,c]cm for S= 2 and [66.2,74.3]cm for
S=0.1. The pixel size in the light field id = Ag/M, where

M = f/(do — f) = 0.13 is the magnification. We set the effective
aperture sizéA to 100@\ = 100Q/M = 50.6mm, which corre-
sponds tof /1.68. The subsquares number and focal lengths are
selected such that for each point in the depth range, thesg-is
actly one subsquare achieving defocus diameter of lessdhan
pixel. The subsquare number is given by Eq. (26), in this simu
lation m = 100 aperture subsquares wih= 2, andm = 16 sub-
squares witts= 0.1. To set the focal lengths of each subsquare we
selectm equally spaced slopes in the rangg—S/2,S/2]. A slope

sj is mapped to a physical depth according to Eqg. (2). To make
the j-th subsquare focus at depiﬁwe select its focal lengtlh; ac-
cording to the Gaussian lens formula/f] = 1/d; +1/ds (where

ds denotes the sensor-to-lens distance).

5.2 Implementation

Hardware construction: To demonstrate our design we have
built a prototype lattice-focal lens. Our construction \pdes a
proof of concept showing that a lattice-focal lens can belémp
mented in practice and lead to reasonably good results, \eswe
it is not an optimized or fully-characterized system.

As shown in Figure 13, our lattice-focal lens mounts to a main
lens using the standard threaded interface for a lens filtez.sub-
squares of the lattice-focal lens were cut from BK7 sphéptzmo-
convex lens elements using a computer-controlled saw. qineres
are of size 3 x 5.5mm and thickness 3mm. By attaching our
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Figure 10: Synthetic comparison of image reconstruction at diffeajéct depths Top row: object depth=s0, Bottom row: object depth
s= —0.9 Standard and coded lenses produce high quality reconstrudor an object at the focus depth, but a very poor one awam fr
the focus depth. Focus sweep, wavefront coding and theddtical lens perform equally across depth. The highestityualconstruction

produced by our lattice-focal lens.
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Figure 11: Synthetic comparison of image reconstruction when camarapeters are adjusted for different depth ranges. Top mavrow
depth range bounded by=S0.1, Bottom row: wider range bounded by-S2. Most designs improve when they attempt to cover a narrower
range. The difference between the designs is more dradtcgs depth ranges.

lattice-focal lens to a high-quality main lens (Canon 85nin2If),
we reduce aberrations. Since most of the focusing is aathibye
the main lens, our new elements require low focal powerscand
respond to very low-curvature surfaces with limited alktére (in
our prototype, the subsquare focal lengths varied from 1&®to).

In theory the lattice-focal element should be placed in thag of
the main lens aperture or at one of its images, e.g., there@rar
exit pupils. To avoid disassembling the main lens to acdesset
planes, we note that a sufficiently narrow stop in front of ritn&in
lens redefines a new aperture plane. This lets us attachttioeia
focal lens at the front, where the stop required to define aapmsw-
ture still let us use 60% of the lens diameter.

The minimal subsquare size is limited by diffraction. Siree
normal lens starts being diffraction-limited around B2 aper-

ture [Goodman 1968], we can fit about 100 subsquares within an Calibration:

Given a fixed budget ofm subsquares of a given width, we can
invert the arguments in Sec. 4 and determine the DOF it can
cover in the optimal way. As discussed at the end of Sec. 5.1
and illustrated in Figure 9(b), for every point in the optima
DOF, there is exactly one subsquare achieving defocus diam-
eter of less than 1 pixel. This constraint also determines th
focal length for each of these subsquares. For our prototype
we focused the main lens at 180cm and chose subsquare focal
lengths covering a depth range [60,180cm. Given the limited
availability of commercial plano-convex elements, oursyuares’
coverage was not perfectly uniform, and we used focal length
10000,5000,4000,3000,2500,2000,1750,1500,1300,1200mm,
plus one flat subsquare (infinity focal length). However, for
custom-manufactured lens this would not be a limitation.

To calibrate the lattice-focal lens, we used a planar

f/1.2 aperture. To simplify the construction, however, our pro- white noise scene and captured a stack of 30 images for elitfer
totype included only 12 subsquares. The DOF this allowedus t depths of the scene. Given a blurred and sharp pair of inagés
cover was small and, as discussed in Sec. 5.1, in this ramge th at depthd, we solved for the kernefy minimizing |@ ® lg — By|.

lattice-focal lens advantage over wavefront coding istkahi Still,
our prototype demonstrates the effectiveness of our approa

We show the recovered PSF at 3 depths in Figure 13. As distusse
in Sec. 4, the PSF is a superposition of boxes of varying siags
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Figure 14: Comparison between a lattice-focal lens and a standard, leath for a narrow aperture (f16) and for the same aperture size
as our lattice-focal lens prototype (#). All photos were captured with equal exposure time, so 6 fmage is very noisy. The standard

f /4 image is focused at the white book, but elsewhere producefoaused image. The lattice-focal output is sharper overetitire scene.

the wrong PSF leads to convolution error, we can locallyestoe
explanation provided by PSg around pixel as:

Ei(d) = [Bi —Bail?+A [p(oxi(la)) +P(gyi(la)] ,  (30)

90cm

whereBy = @y ® 143, We regularize the local depth scores using
a Markov random field (MRF), then generate an all-focus image
using the Photomontage algorithm of Agarwala et al. [2004].

150cm

Results:  In Figure 14 we compare the reconstruction using our
lattice-focal lens with a standard lens focused at the reiddlthe
depth range (i.e., the white book). Using a narrow apertifég),

the standard lens produces a very noisy image, since we keld e
posure time constant over all conditions. Using the sametage
size as our prototypef (4), the standard lens resolves a sharp im-
age of the white book, but the rest of the scene is defocused. F
the purpose of comparison, we specified the depth layersatignu
and deconvolved both the standard and lattice-focal imagts
PSFs corresponding to the true depth. Because the specfrum o
the lattice-focal lens is higher than a standard lens a¢hesdepth
range, greater detail can be resolved after deconvolution.

180cm

Figure 13: Our prototype lattice-focal lens and PSFs calibrated at
three depths. The prototype attaches to the main lens likara s
dard lens filter. The PSFs are a sum of box filters from the réifiie
subsquares, where the exact box width is a function of thiatilev

between the subsquare focal depth and the object depth. Figure 15 shows all-focus images and depth maps capturad usi

our lattice-focal lens. More results are available oflin&Since
the MRF of Agarwala et al. [2004] seeks invisible seams, dlyeil
transitions usually happen at low-texture regions and htiteaac-
tual contours. Despite the MRF’s preference for piecewisestant
depth structures we handle continuous depth variatiorsh@sn in
Depth estimation:  Given the calibrated per-depth PSFs, we de- the rightmost column of Figure 15.

blur an image using sparse deconvolution [Levin et al. 200%]s
algorithm computes the latent imabgeas

lg =argmingy @1 B2+ [p(Gu(1) +p(gu())] . (29)

the exact arrangement of boxes varies with depth. For caegrar
we did the same calibration using a standard lens as well.

The results in Figure 15 were obtained fully automaticatow-
ever, depth estimation can fail, especially next to ocolusiound-
aries, which present a general problem for all computationa
extended-DOF systems [Dowski and Cathey 1995; Nagahata et a
2008; Levin et al. 2007; Veeraraghavan et al. 2007]. Whilgrecp
pled solution to this problem is beyond the scope of this papest

wheregy, 0y denote horizontal and vertical derivatives of tkil
artifacts can be eliminated with simple manual layer refieem

pixel, p is a robust function, and is a weighting coefficient.

Since the PSF varies over depth, rough depth estimationisresl
for deblurring. If an image region is deconvolved with a P8F ¢
responding to the incorrect depth, the result will includeging
artifacts. To estimate depth, we start by deconvolving thiéres
image with the stack of all depth-varying PSFs, and obtaitacks
of candidate deconvolved imagék;}. Since deconvolution with

SNote that despite the discussion in [Levin et al. 2009b], wipley a
MAP,  approach that scores a depthbased on the bedy explanation
alone. The reason this approach works here is that a dellaratjon is ab-
sent from the search space, and there is a roughly equal eafisolutions
around all PSFgy.

4“www.wisdom.weizmann.ac.il/levina/papers/lattice



Standard lens

Lattice-focal lens

Figure 15: Partially defocused images from a standard lens, compaitidam all-focused image and depth map produced by the &ftical

lens.

Figure 16: Synthetic refocusing using the coarse depth map estimatkdhe lattice-focal lens.

Relying on depth estimation to decode an image from a lafticel
lens is a disadvantage compared to depth-invariant sokjtiout it
also allows coarse depth recovery. In Figure 16 we used tighro
depth map to synthetically refocus a scene post exposure.

6 Discussion

This paper analyzes extended depth of field systems in light fi
space. We show that while effective extended DOF systenis see
high spectrum content, the maximal possible spectrum iadbed
The dimensionality gap between the 4D light field and the 3tafo
manifold is a key design factor, and to maximize spectruntestn
lenses should concentrate their energy in the focal mahdbthe
light field spectrum. We analyze existing computational gmg
designs and show that some do not follow this principle, ebth-
ers do not achieve a high spectrum over the depth range. Ghide
this analysis we propose the lattice-focal lens, accogriion the
dimensionality gap. This allows us to achieve defocus PSHs w
higher spectra compared to previous designs.

However, the lattice-focal lens does not fully achieve tippar
bound. One open question is whether better designs existheh
the upper bound could be tighter, or both. Our intuition &t tthe
upper bound could be tighter. The proof of Claim 2 is based on
the assumption that akx A primal support is devoted to every fre-
quency point. However, the fact that the integration swrfaas to
“cover” a full family of slopes implies that the aperture areas

to be divided between all slopes. Thus the primal supportiohe
slope is much smaller thaky which implies a wider frequency sup-

port around the focal segment, reducing the height of thetapa
on the focal segment itself.

We have focused on spectra magnitude, which dominates the de
convolution quality. However, the accuracy of depth estiomais
important as well. Wavefront coding and focus sweep canfeas

an important advantage that they bypass the need to esti@yatte.

On the other hand, the lattice-focal lens has the benefitoiering

a rough depth map in addition to an all-focused image. Onedut
research question is whether the higher spectrum of thedétical

lens can also be achieved with a depth-invariant design.
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Appendix: Spectra derivations
Below we complete the budget and spectra derivation of Sec. 3

Claim 5 For an aperture of size A A and exposure length the
total energy in eacuy, y,-slice is bounded by A

//I&&Om(%w)lzd%dw <AZ. (31)



Proof: The proof reviews the budget proof in [Levin et al. 2008c].
Note thalk(%yO (o, wy) is the 2D Fourier transform of:

// K(X, Y, u,v)e~ 2T DX+ oY) dxdly . (32)

For every clear aperture poiful <A/2, |v| <A/2:

) 2 2
‘//k(x,y7u7v)efz|n<%x+‘%y)dxdy{ < ‘//k(x,y,u,v)dxdy{ <1.

(33)
Where the first inequality follows from the fact that a phaksarge
does not increase magnitude, and the second inequaligw®l|
from the unit energy through every clear aperture point @se
Egs. (13) and (14)).

Since the aperture sizeA€, the total norm is bounded by?:

[ kix,y,u, v)e 20X+ 00Y) dxd 2dudvg A2 (34)
i )

By Parseval's theorem, the square integral is the same idubke
and the primal domains, thus:

// ‘&%_yo(%#hﬂzd%dm, <AZ. (35)

[

Standard lens:

shift (resulting from the translation of the subsquare egnt
k) (ax, y, @, @) = e2A%e™ ATV sing e Acy,)sing(eAw) -
(39)

As in the proof of Claim 3, we note that[iE] affects very low
frequencies only, so we use Eq. (21) to approximate

ERY) ~ ERIP (40
e2A%
= Tsincz(sAmJ)sincz(eAm,L (41)

where the number of subsquares j&€4 and the factor 12 repre-
sents the probability of a blocked subsquare. By selectinQBF-
slice, Eq. (38) follows]]

Eqg. (41) suggests that, ignoring diffraction, the sensatiapres-
olution implies a tradeoff in selecting the optimal holeesizlIf
we use small holes, the power spectrum of the aperture isrwide
and wider spectrum implies that more budget is spread aveawy fr
the main focal segment (indeed Eq. (38) shows that the exgect
spectrum is multiplied by and decreases whenis small). On
the other hand, the expected power spectrunk ddlls off like
siné(eAw,)sinc(eAwy). That is, since the lens is focused only
at a single depth, to have spectral content at slopes comdsp

to other depths, the spectrum of the aperture must be sutficie
wide, implying that a small hole sizeis needed.

Focus sweep:

: -1
Claim 6 The power spectrum of a standard lens focused at depth €1&m 8 For [a|,|ay| > (SA ™, the power spectrum of the focus

sp with aperture Ax A is

|5, ay)|? = Asinc(A(s— sp) wy)SiNG(A(s—sp)wy) - (36)

Proof: A lens focused at slopg) is modeled by a linear integration
surfacec(u,Vv) = (sou, V). If the surface were infinite, the Fourier
transform would be an impulse at, = —Soax, Wy = —Swy. Given
the finite aperture we need to convolve that with a sinc, and th

k(ax, @y, @, @) = ASingA(w, — Soax)) SiNGA(w, — 500&)23-7)
Eq. (36) follows by selecting an OTF-in(@.

The wy, y,-slices in Figure 4(b) reveals a sinc around the point

wy = —Soux, wy = —Swy. Note that reducing the aperture size
A increases the sinc width and minimizes defocus blur. Howeve
given a fixed exposure length it also reduces the amounthufdig-
lected, which reduces the MTF. Indeed, the sinc height in(&&).
decreases for smallérvalues.

Coded aperture:
lens, w.l.0.g. focused at slogge= 0. We construct a coded aperture
by dividing the aperture into squares of sezex €A and randomly
blocking each subsquare with probability2l The expected power
spectrum can then be computed analytically.

Claim 7 For alens focused aps= 0, the expected power spectrum
of a random coded aperture with holes s&Zex €A is

- e?At
Ell@s(awxy)|?] ~ ?sin(?(eAsa;()sincz(eAsay) : (38)

Proof: We express = k! wherekl is the 4D spectrum of an
individual subsquare. For an unblocked hole centerag at we

can expresﬁj analytically as the transform of a box times a phase

A coded aperture is constructed with a standard

sweep camera asymptotically approaches

- o Ala(axy)?

‘%‘ ~ Sg‘a&y‘z ) (42)

where a(|ayy|) is a bounded multiplicative factor in the range
1,v2):
|yl

a(lwy|) = ——————— . 43
19D = Frasiiend. ey “

Proof: The spectrum of a standard lens focused at stgpe
A?sinAux(so — 5))SiNC(Aw (S —9)) - (44)

The spectrum of a focus sweep is obtained by averaging EY. (44
over . To compute this integral we make use of the following
identity: for a 2D vector = [rq,r>],

/w singrit)sinc(rot)dt = allr]) . (45)

- Irl

If —S/2 < s< S/2 andSlarge enough, we use Eq. (45) and get:

. A2 S22 .
Bloxy) = g | g, SindA(so—s))sindAwy (S —s))d
A2 S/2+s )
= 5 78/2+ssmo(Aa&so)smo(Aayso)dso
A
£ v

Taking the power of Eq. (46) provides Eq. (4@.

5The approximation is reasonable fos|, |w,| > (SA™L.



Figure 4(d) displaysw, y,-slices from the power spectrum of a
focus sweep camera.
trated around the main focal segment, with the same narralthwi
achieved by the upper bound in Fig. 4(a). However, the madeit
of the focus sweep is significantly lower. In fact, the totadryy at
everywy, y,-slice is much lower than the budget of Claim 5, that is:

J] e (-0 Pl < A2.

To understand why, recall that the upper bound in Claim 5 is ob
tained by noting that whex y are integrated, the magnitude of the
projection integral is bounded by 1 (Eq. (33)). And indeetiew
the 4D lens kernel is a delta function ofv, that integral is equal
to 1. By contrast, the effective 4D kernel for a focus sweap-ca
era is the average of standard-lens 4D kernels over all deatiu
therefore is not a delta function. When such a non-deltagtesn
multiplied by a wave of the forne=2M@x+@y) interference and
phase cancelations significantly reduce the magnitudeeointie-
gral, and Eq. (33) is far below 1.

(47)

Wavefront coding:

Claim 9 For a slope sc [—-S/2,S/2], the power spectrum of a
wavefront coding lens asymptotically approaches

2
2 N

[ — 48
Tl (48)

sy, )|

Proof: A wavefront coding lens is a cubic refractive element (as
reported in [Dowski and Cathey 1995]). From Snell’s law, the
integration surface is determined by the lens normal. Theze
the integration surface is a separable parabglav) = (al?,av).
The parabola widtla can be set such that the parabola slope cov-
ers the slope range of interdstS/2,S/2], implying a = S/(2A).
The power spectrum of a 1D parabola as computed in [Levin. et al
2008c] is

~ 2

A
k(ax, )|~ ~ w5|m<3/2\m : (49)

The 2D parabola case is a separable extension:

A2

k(@ @y, wy, w)]? ~ 5———
(o - 0. WIS 1, 1y

Oja| <52/ Ol <S/2e| - (50)

If se [-S/2,5/2], we can slice Eq. (50) to get Eq. (48).
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