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Abstract

Image-based models for computer graphics lack resolution independence: they

cannot be zoomed much beyond the pixel resolution they were sampled at with-

out a degradation of quality. Interpolating images usually results in a blurring

of edges and image details. We describe image interpolation algorithms which

use a database of training images to create plausible high-frequency details in

zoomed images. Image pre-processing steps allow the use of image detail from

regions of the training images which may look quite di�erent from the image

to be processed. These methods preserve �ne details, such as edges, gener-

ate believable textures, and can give good results even after zooming multiple

octaves.
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Figure 1: An object modelledby traditionalpolygon techniques
may lack someof the richnessof real-world objects,but behaves
properlyunderzooming,(b).

Abstract

Image-basedmodelsfor computergraphicslack resolutioninde-
pendence:they cannotbe zoomedmuchbeyond the pixel resolu-
tion they weresampledat without a degradationof quality. Inter-
polating imagesusually resultsin a blurring of edgesand image
details.We describeimageinterpolationalgorithmswhich usea
databaseof training imagesto createplausiblehigh-frequency de-
tails in zoomedimages.Imagepre-processingstepsallow the use
of imagedetailfrom regionsof thetrainingimageswhichmaylook
quitedifferentfrom theimageto beprocessed.Thesemethodspre-
serve fine details,suchasedges,generatebelievabletextures,and
cangive goodresultsevenafterzoomingmultipleoctaves.

1 Introduction

As shown in Fig. 1, polygon-basedrepresentationsof 3-
dimensionalobjects offer resolution independenceover a wide
rangeof scales.Objectboundariesremainsharpasonezoomsin
on theobjectuntil very closerange,wherefacetingappearsdueto
finite polygonsize.

Constructingpolygonmodelsfor complex, real-world objectscan
be difficult. Image-basedrendering(IBR) is a complementaryap-
proachfor representingandrenderingobjects,usingcamerasto ob-
tain rich modelsdirectly from real-world data.Unfortunately, these
representationsno longerhave resolutionindependence.Whenwe
zoom into a bitmappedimage,we get a blurred image.Figure2
shows the problem for an IBR “version” of teapot image, rich
with real-world detail.Weknow theteapot’sfeaturesshouldremain
sharpaswezoomin onthem,yetstandardpixel interpolationmeth-
ods,suchaspixel replication(b, c) andcubic splineinterpolation
(d, e), introduceartifactsor blurring of edges.For imageszoomed
3 octaves,suchasthese,sharpeningtheinterpolatedresulthaslittle
usefuleffect (f, g).

A methodto achieve higherresolutionviews of pixel-basedimage
representations,which we will call super-resolution,would have
someof the bestof both worlds, complex modelsand resolution
independence.In addition,many otherapplicationsin graphicsor
imageprocessingcouldbenefitfrom suchpixel resolutionindepen-
dence,suchastexturemapping,enlarging consumerphotographs,

and converting NTSC video contentto HDTV. We don’t expect
perfectresolutionindependence—even thepolygonrepresentation
doesn’t have that—but increasingthe resolutionindependenceof
pixel-basedrepresentationsis an importanttask for image-based
rendering.Our example-basedsuper-resolutionalgorithm yields
Fig. 2 (h, i).

2 Related approaches

Figure3 shows severalcomplementarywaysto increasetheappar-
ent resolutionof an image:(a) sharpening,(b) aggregation from
multiple frames,and (c) single-framesuper-resolution.We feel
eachshouldbe usedwherever possible.Sharpeningamplifiesde-
tails that arepresentin the image.Integratingresolutioninforma-
tion overmultiple framesis sometimescalledsuper-resolution.For
thepurposesof thispaper, wewill alwaysmeansingle-framesuper-
resolution.

Super-resolutionrelatesto imageinterpolation—how shouldone
interpolate betweenthe digital samplesof a photograph?Re-
searchershave long studiedthis problem,althoughonly recently
usingmachinelearningor samplingapproaches,whichoffer much
power.

Cubic spline interpolation[9] is a very commonimageinterpola-
tion function,but suffersfrom blurring of edgesandimagedetails.
Recentattemptsto improveoncubicsplineinterpolation[12, 16, 3]
havemetwith limitedsuccess.Schreiberandcollaborators[12] pro-
poseda sharpenedGaussianinterpolatorfunction to minimize in-
formationspilloverbetweenpixelsandoptimizeflatnessin smooth
areas.SchultzandStevenson[13] haveusedaBayesianmethodfor
super-resolution,but hypothesizedtheprior probability.

Theseanalyticapproachesoftensuffer from percievedlossof detail
in texturedregions.A proprietary, undisclosedalgorithm,Altamira
GenuineFractals2.0 [1] (an Adobe Photoshopplug-in), doesas
well asany of thenon-training-basedmethods,but still suffersfrom
blur in regionsof textureandatfine lines.

2.1 Example-based approaches

Onewould expectthat therichnessof real-world imageswould be
difficult to captureanalytically. Thismotivatesa learning-basedap-
proach:in atrainingset,learnthefinedetailsthatcorrespondto dif-
ferentimageregionsseenatalow-resolution;thenusethoselearned
relationshipsto predictfinedetailsin otherimages.For thepastsev-
eralyears[5, 6], wehavebeenexploringthisapproachfor enlarging
images.

To motivatewhy this approachshouldwork at all, notethata col-
lection of imagepixels arespecialsignalswhich have much less
variability thanwould a correspondingsetof completelyrandom
variables.Researchershave studiedtheseregularities to account
for the early processingstagesof the mammalianvisual systems
[4, 15]. Weexploit theseregularitiesin our algorithms,aswell: we
usesmall piecesof oneimage,modifiedfor generalizationby the
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Figure 2: (a) An image(100x100)of a real-world teapotshows
a richnessof texture, but yields a blocky or blurred imagewhen
zoomedin by afactorof 8 in eachdimensionby (b,c) pixel replica-
tionor (d,e)cubicsplineinterpolation.(Images(b) through(i) were
32x32pixel originalsub-images,zoomedby 8 to 256x256images).
Sharpeningthecubicsplineinterpolationmaynot helpto increase
theperceptualsharpness(f, g, using“sharpenmore” in AdobePho-
toshop).(h, i) show theresultsof our one-passsuper-resolutional-
gorithm,maintainingedgeandline sharpness,andplausibletexture
details.

appropriatepre-processing,to createplausibleimageinformationin
asecondimage.Withoutveryspecifictrainingdata,it is notreason-
ableto expectto generatethecorrect high-resolutioninformation.
Weaimfor themoreattainablegoalof generatingvisually plausible
imagedetails,suchassharpedges,andplausiblelooking texture.

(a)

(b)

(c)
Figure 3: Differentcomplementaryapproachesto increasetheper-
ceptualresolutionof animage.(a)Showsschematicallythechange
in thespatialfrequency amplitudespectrumof animageassociated
with image sharpening. Existinghigh frequenciesin theimageare
amplified.This is oftenusefulto do,providednoiseisn’t amplified,
but not thesubjectof super-resolution.(b) Extractingasinglehigh-
resolutionframefrom a sequenceof low-resolutionvideo images
is useful,andis alsosometimesreferredto assuper-resolution.(c)
Thesuper-resolutiongoalof thispaperis to estimatemissinghigh-
resolutiondetailthatis notpresentin theoriginal image,andwhich
cannotbemadevisibleby simplesharpening.

3 Training set generation

To generateourtrainingset,westartfrom acollectionof highreso-
lution images,anddegradeeachof themin amannercorresponding
to thedegradationwe planto undoin the imageswe laterprocess.
Typically, we blur andsubsamplethemto createa low-resolution
imageof 1

4 thenumberof originalpixels.

We apply an initial analyticinterpolation,suchascubic spline,to
thelow-resolutionimage.Weonly needto storethedifferencesbe-
tweena cubicsplineinterpolationof the image,andthe true,high
resolutionimage.Figure4 (a)and(c) show low andhighresolution
versionsof animage;(b) is theinitial up-interpolation(bilinearwas
usedfor thisexample).

We want to storethehigh-resolutionpatchcorrespondingto every
possiblelow-resolutionimagepatch;thesepatchesaretypically5x5
and7x7pixels,respectively. Evenrestrictingourselvesto plausible
imageinformation,this is ahugeamountof informationto store,so
weneedto pre-processtheimagesto remove variablitity andmake
thetrainingsetsasgenerallyapplicableaspossible.

We believe that the highest resolutioncomponentsof the low-
resolutionimage(b) aremostimportantin predictingtheextra de-
tails presentin (c). We filter out the lowest-frequency components
of (b), so thatwe don’t have to storeexamplepatchesfor all pos-
sible lowestfrequency componentvalues.We alsobelieve that the
relationshipbetweenhigh andlow-resolutionimagepatchesis es-
sentiallyindependentof local imagecontrast,andwedon’t wantto
have to storeexamplesof thatrelationshipfor all possiblevaluesof
the local imagecontrast.The resultingbandpassfiltered andcon-



Figure 4: Image pre-processingstepsfor training images.We
startfrom a low-resolutionimage,(a), andits corresopndinghigh-
resolutionsource,(c). We form an initial interpolation,(b), of the
low-resolutionimageto thehigherpixel samplingresolution.In the
training set,we storecorrespondingpairsof patchesfrom (f) and
(e), which arethe bandpassor highpassfiltered andcontrastnor-
malizedversionsof (b) and(c), respectively. Thisprocessingallows
thesamepatchpair examplesto applyin differentimagecontrasts
andlow-frequency offsets.

trastnormalizedimagepairsusedfor trainingareshown in Fig. 4
(d) and(e). We undothe contrastnormalizationstepuponrecon-
structionof thehigh-resolutionimage.

3.1 Markov network algorithm

If local imageinformationaloneweresufficient to predictthemiss-
ing high resolutiondetails,we shouldbe able to usethe training
setpatchesby themselves for super-resolution.For a given input
imageto enlarge,we would apply the pre-processingsteps,break
the imageinto patches,and look-up the missinghigh resolution
detail.Unfortunately, thatapproachdoesn’t work, asillustratedin
Fig. 5 (a); thehigh resolutiondetail imagelookslike oatmeal.The
localpatchaloneis notsufficient to estimateplausiblelookinghigh
resolutiondetail.

Fig.5 (b) illustrateswhy. Foragivenlow-resolutioninputpatch,we
searchedatypicaltrainingdatabaseof about100,000patchestofind
the16closestexamplesto theinputpatch,shown in thesecondline
of Fig. 5 (b). Eachof theselooks fairly similar to the input patch.
Thebottomrow shows thehigh resolutiondetailcorrespondingto
eachof thesetrainingexamples;eachof thoselooksquitedistinct
from the other. This illustratesthat local patchinformationalone
is not sufficient for super-resolution;spatialneighborhoodeffects
mustbetakeninto account.

We have modelledthespatialrelationshipsbetweenpatchesusing
aMarkov network, for whichwell-known usesin imageprocessing
include[7]. In Fig. 6, thecirclesrepresentnetwork nodes,andthe
lines indicatestatisticaldependenciesbetweennodes.We let the
low-resolutionimagepatchesbeobservationnodes,y. Weselectthe
16 or soclosestexamplesto eachinputpatchasthedifferentstates
of thehiddennodes,x, thatwe seekto estimate.For this network,
the probabilityof any given high-resolutionpatchchoicefor each
nodeis theproductof all setsof compatibility matrices

�
relating

the possiblestatesof eachpair of neighboringhiddennodes,and

(a)Nearestneighbor

(b)
Figure 5: (a)Estimatedhighfrequenciesfor tiger image(Fig. 4 (e)
arethe truehigh frequencies)formedby substitutingthe high fre-
quenciesof the closesttraining patch to Fig. 4 (d). The lack of
a recognizableimageindicatesthat a nearestneighboralgorithm
is not sufficient; spatialcontext must also be used.(b) An input
patch,andsimilar low-resolution(middle rows) andpairedhigh-
resolution(bottomrows) patches.For many of thesesimilar low-
resolutionpatches,the high-resolutionpatchesarequite different,
reinforcingthelessonfrom (a) above.

matrices� relatingeachobservationto theunderlyinghiddenstates.

To specifythe
�

functionsof theMarkov network, we usea sim-
ple trick. We samplethe nodesof the input image so that the
high-resolutionpatchesoverlap with eachother by one or more
pixels. In the region of overlap, the pixel valuesof compatible
neighboringpatchesshould agree.We measuredab

ij , the sum of
squareddifferencesbetweenpatchcandidatesi and j at nodesa
and b. The compatibility matrix betweennodesa and b is then

� ab(i, j) = exp( � (dab
ij )2

2� ), where � is a noise parameter. We use
a similar quadraticpenaltyon differencesbetweenthe observed
low-resolutionimagepatch,andthecandidatelow-resolutionpatch
foundfrom thetrainingset,to specifytheMarkov network compat-
ibility function,

�
.

Theoptimalhigh-resolutionpatchesat eachnodeis thatcollection
which maximizesthe probabiltyof the Markov network. Finding
theexact solutioncanbe computationallyintractible,but we have
foundgoodresultsusingtheapproximatesolutionobtainedby run-
ninga fast,iterativealgorithmcalledBelief Propagation.Typically,
3 or 4 iterationsof thealgorithmaresufficient,seeFig. 7.

3.2 Single-pass algorithm

The fact that belief propagationconverged to a solution of the
Markov network soquickly led us to believe theproblemwasnot
a difficult one.We founda simpleone-passalgorithmwhich gives
resultsthatarenearlyasgoodastheiterativesolutionto theMarkov
network.



Figure 6: Markov network modelfor super-resolutionproblem.

In our algorithm,we only computehigh resolutionpatchcompati-
bilities for neighboringpatchesthatarealreadyfixed,typically the
patchesabove andto theleft, in raster-scanorderprocessing.If we
pre-structurethe training dataproperly(Figure11), matchingthe
local low-resolutionimagedataaswell asselectingthecompatible
high resolutionpatchcandidatecanall be donein a singleoper-
ation: finding the nearestneighborto a given input vector in the
trainingset.Thesimplificationavoidsstepsof finding thecompat-
ibility matricesandtheiterative belief propagationalgorithm,with
negligible reductionin imagequality.

Figure8 showsanimagezoomedwith super-resolution,alongwith
the sameimagezoomedwith cubic splineand the true high res-
olution image.At the bottomarethe imagesfrom the trainingset
usedin thesuper-resolutionzoom.Thecentersectionshowsthede-
tailsof a few patchesin thezoomedimageandtheir corresponding
bestmatchesin thetrainingset.Thetop andbottomrowsshow the
imagecontentof thepatchesin thesuper-resolutionimageandthe
trainingset.Thesecondandfifth rowsshow thelow resolution,con-
trastnormalizedpatches.The third row shows the high resolution
contentof thetruehigh resolutionimage,andthefourthshows the
highresolutionpatchchosenby thesuper-resolutionalgorithm.Al-
thoughnotperfect,thematchesbetweenthetrueandestimatedhigh
resolutionpatchesarereasonablygood.Note that thealgorithmis
able to make useof training patchexamplesfrom sourceimage
regionsthat look very differentthantheregionswherethey arein-
sertedinto the zoomedimage.For example,the orangebordered
patchcorrespondsto a shadow boundaryon wood in the training
image(of 3 girls),but is appliedto zoomupagreenplantocclusion
boundary. Thebandpassfiltering andcontrastnormalizationallows
for this re-use,whichmakesthetrainingsetmorepowerful.

4 Single-pass algorithm details

In thesimplestterms,one-passsuper-resolutiongeneratesthemiss-
ing high frequency contentof a zoomedimageas a sequenceof
predictionsfrom local imageinformation.Theinput imageis sub-
divided into low-frequency patcheswhich are traversedin raster
scanorder. At eachstep,a high-frequency patchis selectedfrom
thetrainingsetbasedon thelocal low-frequency detailsaswell as
adjacent,previously determinedhigh-frequency patches.

In thealgorithmsdescribedbelow, (nonpredictive)scalingupof im-
agesis performedvia cubicsplineinterpolation,andscalingdown
by convolving with a [0.25 0.5 0.25] blurring filter and subsam-
pling on theeven indices.([6] usedlinear interpolationfor theup-
sampling,which putsmoreinterpolationburdenon the restof the
algorithm).

4.1 Prediction

Given the highest frequenciesin an input image, the super-
resolutionalgorithmpredictsthenext octaveup,i.e.thefrequencies
missingfrom an imagezoomedwith cubic interpolation.Theout-
put of thealgorithmis thesumof its input andthehigh frequency
predictions(Figure9).

Thehigh frequenciesarepredictedfor NxN pixel patchesatatime,
in raster-scanorder. Eachpredictionis basedon two competingre-
quirements.First, the high frequency patchshouldcomefrom a
locationin thetrainingimagethathasa similar low-frequency ap-
pearance.Second,thehigh-frequency predictionshouldagreeatthe
edgesof thepatchwith its neighbors,to preventdiscontinuities.

Thefirst requirementcanbefulfilled by extractingalow-frequency
patch(MxM, not necessarilythe samesizeasthe high frequency
patch)from the imagewe arezoomingandsearchingfor a match
in the training set madeup of pairs of low- and high-frequency
patches.To meetthesecondcriterion,weoverlappredictedpatches
at their borders(Figure10). Whensearchingthe training set, the
high-frequency datapreviously predictedis alsousedin selecting
the bestpair. A user-controlledweighting factor � is usedto ad-
just the relative importanceof the low frequency patchversusthe
overlapwith high frequency patches.

Thesuper-resolutionalgorithmoperatesundertheassumptionthat
thepredictive relationshipbetweenlow andhighfrequency patches
is independentof contrast,andwe thereforenormalizepatchpairs
by theaverageabsolutevalueof thelow frequency patch,acrossthe
colorchannels(plussomesmall � to avoid overflow).

Thepixels in low-frequency patchandthehigh-frequency overlap
areconcatenatedto form a searchvector. The training set is also
storedasa setof vectors,sosearchingfor a matchcanbeaccom-
plishedby finding thenearestneighborin thetrainingset.Whena
matchis found,thecontrastnormalizationis reversedon thehigh-
frequency patch,andit is addedto theoutputimage(Figure11).

4.1.1 Search algorithm

Wesearchfor matchesusinganL2 norm.Dueto thehighdimension
of thesearchspace,finding theabsolutebestmatchwouldbecom-
putationallyprohibitive. Instead,we usea tree-based,approximate
nearestneighborsearch.The tree is built by recursively splitting
thetrainingsetin thedirectionof highervariation.At eachstepwe
divide thesetof tiles in half, to maintainabalancedtree.

We use“best-first” searchof the tree to find a goodmatch.This
allows for a speed-qualitytradeoff: by searchingmorebranchesof
thetreewecanfindabettermatch.Sincebest-firstsearchisunlikely
to give the true bestmatchwithout searchingmost or all of the
tree,we improve thebest-firstmatchby agreedywalk in thegraph
connectingapproximatenearestneighborsin thetrainingset.This
improves the matchwith negligible cost. In all examplesin this
paper, we connecteachpatchpair to its 32 approximatenearest
neighbors,computedby amethodsimilar to [10].

4.2 Training

Trainingsetsfor thesuper-resolutionalgorithmarebuilt from band-
passandhighpasspairstaken from a setof training images.Spa-
tially correspondingMxM low-frequency andNxN high-frequency
patchesaretaken from imagepairsat a setof samplinglocations
(usually, M=7, N=5, andsamplesaretakenatevery pixel).

Patchpairsarecontrastnormalizedasdescribedabove.Thesearch
vectorfor a patchpair is createdby the concatenationof the low-
frequency patchandtheregion thatwill beoverlappedin thehigh-



frequency patchduring the predictionphase,adjustedby the con-
sistenc� y weightingfactor � (Figure11).

Weusedthesamesetof trainingimagesfor all thesuper-resolution
examplesin thispaper, shown in Figure12.They weretakenwith a
Nikon Coolpix 950digital cameraat 640x480resolutionandhigh-
estqualitycompressionsettings.

4.3 Parameter settings

Attentionto parametersettingscanimproveimagequality. For both
levelsof zooming,weused5x5pixel high-resolutionpatches(N=5)
with 7x7pixel low-resolutionpatches(M=7). Theoverlapbetween
adjacenthigh-resolutionpatcheswas1. Thesesettingsdo well to
capturesmalldetails.Largerpatchsizescanbeusedfor lessaccen-
tuationof smalldetails.

For amoreconservativeestimateof thehigherresolutiondetail,the
algorithmcanbeperformed4 timesat staggeredoffsetsrelative to
thepatchsamplinggrid. This gives4 independentestimatesof the
high frequencies,which canthenbeaveragedtogether, smoothing
someimagedetails.

The parameter� controlsthe tradeoff betweenmatchingthe low-
resolutionpatchdataand finding a high-resolutionpatch that is
compatiblewith its neighbors.Thevalue � = 0.1 M2

2N � 1 gave good
quality resultsin ourexperiments.Thefractionadjustsfor therela-
tiveareasof low-frequency patchesandoverlappedhigh-frequency
pixels.

5 Results

Figures13and14showsouralgorithmappliedto abrick wall anda
man’sface.Thetrainingsetwastakenfromtheimagesin Figure12.
Theresultingzoomsaresignificantlysharperthanthosefrom cubic
splineinterpolation,preservingsharpedgesandimagedetails.

Figure15shows anexamplewhereour low-level trainingsetalone
is not enoughto distinguishJPEGcompressionnoisefrom correct
imagedata;thealgorithminterpretstheartifactsasimagedataand
enhancesthem.Extensionsof specializedhigh-level modelssuch
as[2] couldbeneeded.

In a simpleexplorationof therelationof thezoomedimageto the
trainingimages(see[6] for others),weenlargedtheimageof Fig.8
usingapathologicaltrainingsetof imagesof text. Nonetheless,the
algorithmdoesitsbesttoexplaintheobservedlow-resolutionimage
in its vocabulary of text examples,resultingin a zoomwith high
resolutiondetailformedoutof concatenatedcharacters,Fig. 16.

5.1 Discussion

Recentwork by Hertzmannet al [8] hasalsouseda training-based
methodto performsuper-resolution,in thecontext of analogiesbe-
tweenimages.Our methoddiffersin thatit operateson tiles rather
thanper-pixel, providing a performancebenefit.It alsonormalizes
thetrainingsetaccordingto contrast,andassumesthat thehighest
frequency detailsin animagecanbepredictedusingonly thenext
lower octave. Thesetwo generalizationsallow us to zooma wider
classof imagesusingasingle,generictrainingset,ratherthanbeing
restrictedto operatingonimagesthatareverysimilarto thetraining
image.

A training-basedapproachwasusedby [11], but no attemptwas
madeto enforcethe spatialconsistency constraintsnecessaryfor
goodimagequality.

If well-known objectsaresparselysampledin theimage,animage
extrapolationbasedonlocal imageevidencealonewill notproduce

the new details that the viewer expects.Very small face images
aresuseptableto this problem.To addresstheseproperly, higher-
level reasoningwould have to be addedto the algorithm.Baker
andKanade[2] have recentlyexploredsuper-resolutionalgorithms
tunedto aparticularclassof images,suchasfacesor text.

In thezoomed-upimages,low-contrastdetailsnext to highcontrast
edgesmaybe lost, dueto thecontrastnormalizationfixing on the
level of thehigh contrastedge.Independentcontrastnormalization
for differentimageorientations,eachzoomedseparately, mightad-
dressthis problem.However, it is not clearthata one-passimple-
mentationwouldsuffice for thatmodification.

Finally, the algorithm works best when the resolutionor noise
degradationsof the datamatchthoseof the imagesto which it is
applied.

Numerically, the root-mean-squarederror from the true high fre-
quenciestendto beapproximatelythesameasfor theoriginal cu-
bic splineinterpolation.Unfortunately, thismetrichasonly a loose
correlationwith percieved imagequality [12]. Typical processing
times for the single-passalgorithm are two secondsto enlarge a
100x100imageup to 200x200pixels.

Wehave focussedon thecaseof enlargingsingleimages.Thecase
of enlargingmoving imagesis differentin two respects:(1) thereis
moreinput data;multiple observationsof thesamepixel couldbe
usedfor super-resolution.(2) Caremustbe taken to ensurecoher-
enceacrosssubsequentframesso that the made-upimagedetails
donotscintillatein themoving image.

6 Conclusions

Thereis a surprisingregularity acrossimages,suchthata training
setmadefrom theimagesof Fig. 12 canbeusedto inventmissing
detailsin many others(all thosein this paper).While a trainingset
tunedto theimagesto beprocessedof courseworksbest,a training
setof genericimagescanhandleavery broadclassof inputs.

We have built on the training-basedsuper-resolutionalgorithmof
[6], andintroduceda faster, simpler, and,we believe, betteralgo-
rithm for one-passsuper-resolution.Thealgorithmrequiresonly a
nearest-neighborsearchin thetrainingsetfor avectorderivedfrom
eachpatchof localimagedata.Thisone-passsuper-resolutionalgo-
rithm is asteptowardachieving resolutionindependencein image-
basedrepresentations.

Thesealgorithmsare an instanceof a generaltraining-basedap-
proachthatmaybeusefulfor imageprocessingor graphicsappli-
cations(see[6, 14]). Trainingsetscanbebuilt to helpenlarge im-
ages,remove noise,estimate3-d surfaceshapes,andattackother
imagingapplications.
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(a)beliefprop.,iter. 0

(b) beliefprop.,iter. 1

(c) beliefprop.,iter. 3

(d) beliefpropagation
Figure 7: Beliefpropagationsolutionto Markov network for super-
resolution.(a), (b), and(c) aretheestimatedhigh frequenciesafter
0, 1, and3 iterationsof beliefpropagation.(d) is theestimatedfull-
resolutionimage.(The inverseof the contrastnormalizationused
in Fig. 4 (d) was appliedto Fig. 7 (c). The result was addedto
Fig. 4 (b) to obtainFig. 7 (d)). Thetrainingsetfor this imagewas
two categoriesof theCoreldatabase,includingothertigers,but not
this image[6].



Figure 8: Exampleshowing how patchesin thetrainingimageare
usedto createdetailin thetestimage;seetext.

Figure 9: High level view of run time processingin our super-
resolutionalgorithm.

Figure 10: Patch centers, low-resolution and high-resolution
patches,and high-resolutionpatch overlap. The shadedhigh-
resolutionpatcheshavealreadybeenprocessed,andtheshadedarea
overlappedby thecurrent(unshaded)patchareusedto enforcespa-
tial consistency in thehigh-resolutiondetails.

Figure 11: Block diagramshowing raster-orderper-patchprocess-
ing. At eachstep,local low- andhigh-frequency details(shown in
greenandred,respectively) areusedto searchthe training setfor
a new high-frequency patch,which is addedto thehigh-frequency
image.



(a) (b) (c)

(d) (e) (f)
Figure 12: Training imagesusedfor the examplesof this paper,
unlessotherwisestated.Patcheswere sampledat 1 pixel offsets
over eachof theseimagesand over their syntheticallygenerated
low-resolutioncounterparts(afterpre-processingsteps).Thesesix
200x200imagesyieldedatrainingsetof slightly over200,000high
andlow resolutionimagepatchpairs.

(a)
(b)

(c)

(d)

(e)

(f)
Figure 13: Super-resolutioncanbeusedfor zoominginto texture-
mappedsurfaces.(a) original texturein 52x52pixel bitmap.super-
resolutionzoomedby 2 (b), by 4 (c) and by 8 (d) times in each
dimension.Samelevel of zooming,using(e) cubicsplineinterpo-
lation,and(f) AltamiraGenuineFractalsproprietarysoftware.Our
super-resolutionalgorithm inventssharp,plausibleimagedetails,
usingexamplespreviously observedin thetrainingdatabase.
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Figure 14: (a) Original image. (b) cubic spline interplation (c)
Super-resolutioninterpolation

(a)

(b) (c)

(d) (e)
Figure 15: Failureexample.(a) original image.(b) and(d): cubic
splineinterpolationby factorof 4 in eachdimension.Note JPEG
compressionartifacts madevisible. (c) and (e): one passsuper-
resolutioninterpolation.Without high-level information,the algo-
rithm treatstheJPEGnoiseassignal,andamplifiesit.
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Figure 16: Super-resolutionexampleusing pathologicaltraining
setcomposedentirelyof text in onefont; (a) is anexampleimage
from thetrainingset.(b) zoomedimage,and(c) close-up.Notethat
thealgorithmdoesasbestasit canto inventplausibledetailfor this
image,formingcontoursby concatenatedletters.


