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Abstract— Compressed sensing [7], [6] is a recent set of These results have generated a tremendous amount of ex-
mathematical results showing that sparse signals can be exactly citement in both the theoretical and practical communit@s
reconstructed from a small number of linear measurements. the theoretical side, the performance of compressed gensin

Interestingly, for ideal sparse signals with no measurement ith d iecti has b | d when the si |
noise, random measurements allow perfect reconstruction while Wt random projections has been analyzed when the signals

measurements based on principal component analysis (PCA) are not exactlyk sparse, but rathecompressible (i.e. can

or independent component analysis (ICA) do not. At the same be well approximated with a small number of active basis

time, for other signal and noise distributions, PCA and ICA can elements) [7], [5] as well as when the measurements are
significantly outperform random projections in terms of enabling contaminated with noise [11], [19]. On the practical side,

reconstruction from a small number of measurements. S - .
) o - . . applications of compressed sensing have been explored in
In this paper we ask: given a training set typical of the signals

we wish to measure, what are the optimal set of linear projections Puilding “single-pixel” cameras [20], medical imaging [14

for compressed sensing ? We show that the optimal projections and geophysical data analysis [12].

are in general not the principal components nor the independent  Perhaps the most surprising result in compressed sensing is
components of the data, but rather a seemingly novel set of {nat perfect recovery is possible withndom projections. This

projections that capture what is still uncertain about the signal, . . . . . .
given the training set. We also show that the projections onto is surprising given the large amount of literature in maehin

the learned uncertain components may far outperform random  l€@rning and statistics devoted to finding projections #rat
projections. This is particularly true in the case of natural images, optimal in some sense (e.g. [4]). In fact, as we review in
where random projections have vanishingly small signal to noise the next section, for ideal sparse signals with no measure-

ratio as the number of pixels becomes large. ment noise,random measurements significantly outperform
measurements based on principal component analysis (PCA)
I. INTRODUCTION or independent component analysis (ICA). At the same time,

for other signal and noise distributions, PCA and ICA can
Compressed seqsing [7]! [6] i; a set of_ recent mathematig@dmﬁcanﬂy outperform random projections.
results on a classic question: given a signak R™ and @ | this paper we ask: given a training set typical of the
set of p linear measurementg € R, y = Wx, how many gignals we wish to measure, what are the optimal set of linear
measurements are required to allow reconstruction &f projections for compressed sensing ? We show that the dptima
Obviously, if we knew nothing at all about, i.e. z can be projections are in general not the principal componentsmer
anyn dimensional vector, we would needneasurements. Al- jndependent components of the data, but rather a seemingly
ternatively, if we know our signat lies in a low-dimensional novel set of projections that capture what is still uncertai
linear subspace, say of dimensibnthenk measurements areapout the signal, given the training set. We also show that
enough. But what if we know that lies in a low-dimensional the projections onto the learnaghcertain components may
nonlinear manifold ? Can we still get away with fewer thangar outperform random projections. This is particularlyetr
n measurements ? in the case of natural images, where random projections have
To motivate this question, consider the space of natusgnishingly small signal to noise ratio as the number of Igixe
images. An image with. pixels can be thought of as a vectolbecomes large.
in R™ but natural images occupy a tiny fraction of the set of
all signals in this space. If there was a way to exploit thid,fa [I. RANDOM PROJECTIONS VERSUSPCAAND ICA
we could build cameras with a small number of sensors that-l-O compare random projections to PCA and ICA, con-

would still enable us perfect, high resolution, reconstams  qjjer the sparse signals illustrated by the image patches in

for natural images. figure 1. In this dataset, each signalhas exactly one non-
.The.basic mathematical results in compregsed sensing dggl, component, and this non-zero component is uniformly

with signals that arek sparse. These are signals that Cagstributed in the rangé-U;, U;]. We assume that all indices

be represented with a small numbérof active (non-zero) ; pave approximately the same range, ife~ 1, but to break

basis elements. Fpr _such signals, it was shown in .[7], [Eé]ymmetries we salf; = 1+ ¢/i.

that cklogn generic linear measurements are sufficient 10" \e are interested in the probability of correct reconstruc-

recover the signal exactly (with a constant). Furthermore,tion’ from a projected signal:

the recovery can be done by a simple convex optimization or

by a greedy optimization procedure [8]. y=Wz (1)



Samples: to zero using PCA and ICA. The reason is is that for a large

fraction of signalsz, the projectiony = Wz is not unique.
It turns out that for aandom measurement matrix W, where
every element of/ is chosen independently and randomly,

the projections can be shown to be unique with probability

] low noise o7 Nigh noise one, as long as the number of projectignss greater than
or equal to two. This follows from the following lemma (see
Random Random .
3 g appendix for a short proof).
5.5 §o3 Sparse Random Projection Lemma:Let W be a random
X PCA ES PCA p x n matrix. Definey = Wx. With probability one, ifp > 2k
then anyk sparse signal has a unique projection .
0 ; ; .
0 o) 10 15 20 OO 5 10 15 20 This gives.
# of projections # of projections
PCOT?"(WTand) =1 p=>2 (5)

Fig. 1. Comparing PCA and random projections for ideal spargpals. o ] ) ) )
Each signal has exaclty one nonzero pixel. Random projestieork much Thus for this idealized setting, where the signals are kighl

better than PCA sparse and there is no measurement noise, random profection

Samples: are much better than PCA and ICA. Suppose our signal lies
- in a 10% dimensional space, then two random projections will
LL . ll F -1 give perfect recovery while two PCA projections will only
. Eﬂ reconstruct correctly with probabilitg/109.
We emphasize that this advantage of random projections
low noise high noise assumes no noise, a highly sparse signal and MAP decoding.
=S 0.7 Haupt and Nowak [10] have analytically compared random
N N projection to traditonal, pixel-based sampling and shohat t
8 Random 8 PCA in the low SNR regime, pixel-based sampling may actually
g4 839 outperform random projections. Elad [9] has shown that when
N N Random MAP decoding is replaced with LP decoding, one can improve
on random measurement matrices.
% 2 4 & 8 10 % =% 0 15 To explore the performance under other signal and noise
# of projections # of projections

regimes, we conducted experiments using simulations. In
Fig. 2. Comparing PCA and random projections for small imagesst these_ simulations, we ass%’med th_e Slgmat_:ame from. a
Each signal is a8 x 8 patch, randomly cropped from a natural image. RandorP0Ssibly very large) set of discrete sign&ls This assumption
projections work much worse than PCA of discrete X allowed us to perform MAP decoding using
exhaustive search and allowdd,,,, to be nonzero even in
. . the presence of noise.
whereW is ap x n matrix. P

. L ) We first used a discrete version of the sparse signal set, and
The probability of correct reconstruction is simply: : )
assumed noisy measurements:

Peorr(W) = E(‘s(xMAP — 1)) (2
_ . y=Wzx+n (6)
WherezMAF is the MAP decoding:
MAP _ wheren is Gaussian noise with varianeé. To avoid a trivial
r = argmax Pr(z|y; W) (3)  way of overcoming the noise, the rows 16f were constrained

We first calculate?,.,.(W) for PCA and ICA. The princi- © have unit norm. _
pal components are the eigenvectors of the covariancexmatriAS Shown in figure 1, when the variancespis small ¢* =
with maximal eigenvalue. For this dataset, the covarianfe’5), the simulation results are .S|m|lfa1r to the |_deaI anal_ytlca
matrix is a diagonal matrix so the principal components af§Sults. The PCA correct decodings increase linearly viieh t
simply the unit vectors;. These unit vectors; will also be number of prOJE_?CUOHS, Whlle_ ran_dom pr(_)jectlons ach|evacgo
recovered by most ICA algorithms [4]. perform_ance with a few projections. With Iarg_er noisé &
When will projecting alongp unit vectors allow recovery 0.5) variances, random measurements are still better, but the
of the originalz ? Obviously, this will happen only if the @dvantage is less dramatic. _ o
active coefficient inz is one of thep projection directions. ~However, when we change the signal distribution, the result
This gives: are markedly different (figure.Z). We randomly sampteg0
Proyr(Wpea) = p (4) 8 x 8 patches from natl_JraI images, a}nd repeatgd the exact
n same protocol as used in the synthetic sparse signals. Here,
Thus for a fixedp and large signal dimensiom the PCA projections work better than random projections, both
probability of correct recovery from compressed sensingsgofor small and large amounts of noise.
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Fig. 4. Learning compressed sensing. Given the datgggf shown on
the left, we wish to find a single projection vectas that will enable
reconstructing the 2D signal from its noisy projection, if you are allowed
to exploit the training data. Both PCA and ICA give bad prémts (middle)
while UCA (right) allows nearly perfect estimation of the 2[@rsal from the
1D projection.

Fig. 3. The power spectrum of natural images falls offigg? (replotted
from [17]). We use this fact to prove that the SNR of a randowigation
approaches zero as the number of pixels grows.

A. Random Projections and Natural Image Satistics

Can we attribute the poor performance of random projec- = Eu) |w(f)|2%] (10)
tions in our simulations to the experimental protocol? While f
it is difficult to analytically predict the percent of cortec _ lzi (11)
decoding of random projections on natural images, we show ne f?
in this section that the signal to noise ratio (SNR) of a rando 1 72
unit norm projection on a natural image approaches zero as - 5 (12)

the number of pixels grows. In contrast, a single unit norm

PCA projection gives a constant, positive SNR, even as théiere we have used Parseval's theorem to rewriter in

number of pixels grows. terms of the Fourier transforni(f),z(f) of the projection
Analyzing performance on “natural images” would seem t¢ector and the signal.

require a precise definition of the statistics of such images A similar calculation shows that the variance (with respect

This is an active area of research (e.g. [16]). But it turns ofp W) of the signal variance goes to zero so that almost any

that simply characterizing the second-order statistiengugh randomw will have the expected signal variance. Since the

to prove our result. These second-order statistics are w&ignal variance approaches zero, while the noise variasice i

understood: the eigenvectors of the covariance matrixtere €onstant, the SNR of almost any random projection goes to

Fourier basis elements (since images are spatially stagipn Zero as the number of pixel grows.

and their eigenvalues fall off with increasing spatial freqcy ~ In contrast, the PCA SNR does not approach zero. In fact,

f. Furthermore, these eigenvalues (which are just the pow choosingwpc 4 to be a unit norm projection whose power

spectra of natural images) fall off as a power law [18]) SPectrum is all in the lowest spatial frequency, we achive:

typically falling off as1/f2. This is a remarkably consistent 1 1

property - figure 3 shows the mean power of 6000 natural SNR(wpca) = 1202 o2 (13)

scenes (replotted from [17]) which obeys a power law Withagardless of the number of pixels.

the exponen?.02. o To illustrate this difference, assume the number of pixels,
Theorem 1: Random Projections and Natural Image ,, js a million. An imaging system witt500,000 different

Let = be a natural image with pixels. Letw be a random yangom projections will capture less signal variance than a
projection with (approximately) unit norm - each componer§ingle PCA projection.

w(i) is sampled 1D from a zero mean Gaussian with variance 1o symmarize, neither random projections nor PCA and
14"- Definey = w”x + 7 with any nonzero noise variance|CA are in general the best projections for compressed sgnsi
o=. Then for largen the signal to noise ratio SNR(W) is givenpca and ICA work terribly for ideal sparse signals, while

by: ) random projections work terribly for natural images. What is
SNR(w) = 1 (7) needed is a new component analysis that takes advantage of
n 6o? both signal and noise statistics.

with probability one.
Proof: The SNR is by definition the ratio of the signal I1l. UNCERTAIN COMPONENT ANALYSIS

variance,Var(w”z) and the noise variance®. Sincew is  Figure 4a shows toy “cross” dataset i¥. Suppose we

random, the signal variance is also random, but its exgentatare only allowed a single linear projection. We are looking

is given by: for a projectionw for which a measurement = w”z , plus
. o knowledge of the datasets statistics, would allow us toueico
ElVar(w"z)] = Eu[Var(d_ a(f)i(f))] (8) the original signal.

f Figure 4b shows the first principal component of the
Ew[z \w(f)|2Var(i(f))} (9) data - the horizontal axis. While this direction of projeatio
f

maximizes the variance of the projection, it met a good



prior likelihood posterior recovery of z; from its noisy projection is likely. On the

: other hand, when a datapoint has low posterior probability

(? given its projection (e.g. top of figure 5) this means thateahe

i are many datapoints which give rise to similar projections,

: and successful recovery af; from its noisy projection is
T unlikely. The UCA definition is therefore trying to maximize

the number of datapoints that can be accurately recoveved fr

their noisy projections.

Figure 4c shows the UCA vector for the cross dataset
(calculated witho = 0.05). Unlike PCA and ICA which
R A choose one of the coordinate axes and therefore will fail to
Fig. 5. The intuition behind our definition of uncertain compat analysis. econstruct points on the orthogonal axis, UCA chooses a

IFlfrltr\\No éiiffer?jnt signals, and the prOjeChtion of Fig. 4b, vfgw the prior, vector where most points can be robustly reconstructed from
ikelihood, and posterior. Maximizing the posterior pemei projections : ; PO

where many datapoints have nearby projections (top) andrdsvaojections their noisy projection.
where the reconstruction of many signals from the projedsagasy (e.g. the

signal shown on bottom). A. Information Maximization

o oAa

— pr—

o
S— 5 @
H
.

UCA is closely related to a classical approach to find-

measurement vector for compressed sensing. All the poiing linear projections called information maximizationr (o
along the vertical axis, will project to the same point, anthfoMax [2], [13], [1], [4]). In our setting, InfoMax would
therefore cannot be reconstructed. search for a matri¥¥” so that the mutual information between

This dataset has two independent components - one for the signal X and its noisy projectiort” is maximal. Since
vertical axis and one for the horizontal axis. Again, both of(X;Y) = H(X) - H(X|Y) = H(Y) — H(Y|X), and
these directions are bad for compressed sensing sincerspoH (X), H(Y|X) are independent di, InfoMax is equivalent
on the orthogonal axis will be projected to the same point. $o maximizing the entropy of the outpi (Y") or minimizing
at least for this dataset, neither PCA nor ICA will give théhe entropy of the input given the outpHt(X|Y").
best projection for compressed sensing. In fact, in theatess  To relate UCA to InfoMax, consider aochastic version
case, both PCA and ICA give the worst projections. of UCA in which, for each signak;, we sample a noisy

We define a new component analysis, Uncertain Compongmojectiony; = Wz, + n, and then, as in ordinary UCA,
Analysis (UCA). The first uncertain component;, is defined maximize the probability of the datd,[, Pr(x;|y;). In this
to be the projection direction that maximizes the probsbili stochastic version of UCA, the log likelihood of the datalwil
of the data, given the projections and the training data.  converge to—H (X|Y"). Thus, this stochastic UCA is exactly

the same as InfoMax. Ordinary UCA, in whigh = Wx;,

w' = I T Pr(zilys; w) (14)  will be exactly the same as InfoMax fer — 0 and can be
’ g thought of as a deterministic approximation to InfoMax for
with y; = wTz;. the general case.

Figure 5 gives some intuition for this definition. The left Interestingly, InfoMax has been shown to be equivalent to
panel shows the empirical prior probability of in this case ICA when the matrixW is invertible [4], [3]. But in the
it is simply uniform over all signals in the dataset, and Zero compressed sensing setting, where the number of projection
anyz not in the dataset. The middle panel shows the likelihogdis less than the dimension of the signal ICA and UCA
of a signal, given the horizontal projection of the signalsh can give very different projections.
in red in the left panel. From the generative model this is jus

IV. CHARACTERIZING OPTIMAL PROJECTIONS
67(%7me)2/202 (15)

V2ro? The uncertain component in figure 4c was calculated by

Finally, the right panel shows the empirical posterior pro@earching over a dense sampling of unit norm vectors. It evoul

ability which is obtained by multiplying the prior and thebe better to get an algorithmic solution. The following tial

likelihood and normalizing. Signals whose projection is fecharacterization ofv* allows doing so.

from y; get vanishingly small probability and are not shown. Observation: Let w* be the first uncertain component
Note that we are maximizing thgosterior probability of (equation 14). Therw* satisfies the following fixed-point

the input signalz given its projectiony = w”z. Since the equations, relating the data assignment probabilijigsand

posterior probability is normalized - the sum of the posteri the projection directiono.

over all signals in the training set is one, when a datapejnt

has high posterior probability given its projection (e.gttbm ai; = Pr(z;lys;w) (16)

of figure 5) thi_s means tha_t t_here are fe_w datapoints in the w = eigmaXZqij (z; — x5) (; — xj)T (17)

dataset that give rise to similar projections and successfu i

Pr(y;|z) =



Proof: We first explicitly write the posterior probability: Proof: We can define a new dataset whose elements are
the difference vectorsl;; = (x; — x;). The UCA vectors
Pr(z;) Pr(y;|z;; - t ¥ J
Pr(z;ly;) = r(xfz (r@ |";C w) (18) are the prinicpal components of the datagét } where each
o i _ difference vector is weighted hy;. Sincez;, z; both lie in a
Note that the numerator is independentwofsince, by the j, dimensional subspace, so dogsd;; and hence UCA wiill

likelihood equation (eq. 15Fr(y;|z;) = \/2;7(0. Thus we recover an orthogonal basis of thislimensional subspace. On

can alternatively rewrite the UCA criterion: the other hand, if the data lie injadimensional basis, PCA
x H 1 (19) will also recover an orthogonal basis of thisdimensional
w = argmax —_—
S ; Pr(y;; w) subspace.

Corollary 3: UCA=Random for noiseless sparse datdf
= arg maxz —log Pr(y;; w) (20) the data{z;} arek sparse in any basis, and> 2k then for
v o — 0 a randomi¥ matrix maximizes the UCA cost function
The marginal log likelihood can be rewritten using thavith probability one.

familiar, “free energy” functional (e.g. [15]): Proof: This follows from the sparse random projection
lemma - with probability one, no twbk sparse signals can have
> —logPr(yi;w) =  _min = gi;;logPr(z;,5:5w) the same random projection. This means that the empirical
i w2 0=l posterior probabilityPr (z;|y;; W) will approach one as — 0
+> gijlog gi; (21) for all datapointsz;.
ij While the fixed-point equations show that under certain
So that: conditions, PCA and UCA give the same projections, they also

22) highlight the difference. PCA tries to maximize the varianc
of the projections, which can be thought of as maximizing the
with: average distance between the projections of any two signals.
UCA maximizes aweighted average distance between the
F(w,q) = gij(w" (@i —2;))* + > _g¢ijlogai;  (23) projections of any two signals, weighted by the probabitity
]

w* = argmax min F'(w, q)
w o q

ij assignment to each observation. The weighted average gives
(where we have assumed thBi(z;) is uniform over the high weight to pairs of signals whose projections are simila
dataset). (determined by the noise level). This makes sense in terms

The fixed point equations are simply saying that at tHef robust reconstruction. For a given noise leveiwo signals
optimal w*, minimizing F(w, ¢) with respect tog and then whose projected distance i9o are almost as good as two
maximizing with respect tav should leave us at the same signals whose projected distanceli¥)o.

We can extend the UCA definition o vectors by defining

the p x n matrix W* whose rows are the projection vectors.A' Algorithms
Direct calculation gives the gradient of the log likelihood
W*=arg max [T Pr(eilys W) (24)  with respect tow:
’ T
It is easy to show that the fixed-point equations still hold. ow Zqij (i —xj) (@i —zj)" |w (25)
The only difference is that the rows &F* should be the top Y
p eigenvectors of: with ¢;; as in the fixed-point equations (eq. 16).
T However, in our experiments, this gradient update can be
Z Gij (2 — 25) (2i — ;) very slow (especially since one needs to enforce the unihnor
2,

constraint). Often, better performance is achieved itggaa
This characterization of the fixed-point allows us to undedampened version of the fixed-point equations (eq. 16,17)

stand the behavior of UCA in different special cases. (moving only part-way from the old values to the new ones).
Corollary 1: UCA = PCA. As 0 — oo UCA approaches Note that unlike other uses of the free energy in machine
PCA. learning (e.g. the EM algorithm), iterating the fixed-point

Proof: As ¢ = oo the likelihood (equation 15) ap-equations is not guaranteed to improve the likelihood atyeve
proaches a uniform function af, and assuming the prior iteration. This is because the global optimum is a saddletpoi
is uniform over the dataset, the posteriagss will also be of F(p,q) and not a minimum. Nevertheless, if we do happen
uniform. Thus the UCA matrix are simply the eigenvectors db converge to a fixed-point, it is guaranteed to be a local
(x; — x;) (x; — ;) and these are the principal components afonstrained optimum of the UCA cost function.
the data.

Corollary 2: UCA=PCA for p dimensional data.If the V. RESULTS
data {z;} lie in a p dimensional subspace, then the UCA We first estimated uncertain components for ideal sparse
vectors and the top PCA vectors span the same subspacesignals for different imaging noise valueg and different



numbers of projectiong. The signals were i x 4 image
patches, and each patch had one nonzero pixel. The value in
Random UCA that pixel was an integer distributed uniformly in the range
: [-16,16]. Recall that for noiseless measurements, random
projections are optimal for such signals (from the sparse
random projections lemma).

As expected by corollary 3, when? is very small, any
random projection is a fixed-point of the algorithm. But when
o? is large, UCA learns projections that are still incohereet (
they have nonzero elements for all pixels) but nonrandom. To
visualize the learnt UCA projections, we plot in figure 6 the
projections of the sparse signals into two dimensions using

low noise high noise random projections (left) and the UCA projections (right).
! UCA . Since all signals aré sparse in the high dimensional space,
g Rand - UCA and the signal set defines a discrete set of rays in high dimession
§5 % all starting at the origin. In both the random projections
e PCA <15 PCA and the UCA projections, one can still observe the projected
rays, but UCA finds a projection in which these rays are
o 0f (approximately) emanating at regular angles. Thus UCA is

T 2 3 4 5 6 7 8 2 3 4 5 6 7 8

finding a projection in which the number of signals with
similar projections is smaller than in a random projection.
Fig. 6. UCA resugs OnPidE_al _Spars}e ri]mf;glflesd Each ;magel ga&slwm Figure 6 compares the decoding performance of the different
e el o A8 e C™Sprojections (again, using MAP decoding). As expected, UCA
son of percentage of correct decodings as a function of nuofl@ojections, performs slightly better than random projections, and both
for different noise levels. UCA and random perform much better than PCA.

In our second experiment, we estimated uncertain compo-
nents for a set of, 000 4 x 4 image patches randomly sampled
from natural images. For this dataset, we found that UCA
learns projections that are nearly identical to PCA. Thitois
be expected from the/ 2 power spectrum of natural images,

Random UCA which means that the image patches lie (approximately) in
a low dimensional subspace. In fact, for this datag@¥; of
the variance is captured by the first two principal composent
Thus corollary 2 predicts that UCA and PCA should give
very similar results for this data. Again, to visualize thEA
projections versus a random projection, we show projestion
of the image signals into two dimensions using random projec
tions (figure 7 left) and the UCA projections (right). Notath

# of projections # of projections

b . ] the variance of the random projections is significantly $enal
) . . than that of the UCA projections, as predicted by theorem
low noise high noise 1. We repeated the experiment witlh, 000 15 x 15 image
5 / ioe patches and (as predicted by theorem 1) found that random
¥ UCA N Random projections capture an even smaller amount of signal vegian
8 3 Figure 7 compares the decoding performance of the different
E-B . § ° projections (again, using MAP decoding). As expected, UCA
° ° performs identically to PCA and much better than random
o 5 projections.
1T 2 3 4 5 6 7 8 1T 2 3 4 5 6 7 8
# of projections # of projections V1. DISCUSSION
Fig. 7. UCA results on natural image patch&ep: Projection of the full Suppose we are allowed to take a small number of linear

dataset from 16 dimensions onto two dimensions using randajeqtions PR ; : (-
and UCA. Bottom: Comparison of percentage of correct decodings as %rOJectlons of S|gnals in a dataset, and then use the PranECt

function of number of projections, for different noise lexeThe UCA and Plus our knowledge of the dataset to reconstruct the signals
PCA results are almost identical so the green line is occlugethe blue What are the best projections to use? We have shown that
line. these projections are not necessarily the principal compisn
nor the independent components of the data nor random
projections, but rather a new set of projections which we



call uncertain components. We formalized this notion bgo] Michael B. Wakin, Jason N. Laska, Marco F. Duarte, Draard,

maximizing the probability of a signal given its projectjon

Shriram Sarvotham, Dharmpal Takhar, Kevin F. Kelly, and Ridh@.
Baraniuk. An architecture for compressive imaging. IG@iP, pages

and derived fixed-point equations that need to be satisifed a 1573 1576, |EEE. 2006.

the optimum. Our experiments show that learning projestion

can give much better performance compared to simply using APPENDIX: PROOF OFSPARSERANDOM PROJECTION
random projections. This is particularly true for naturabge
signals, where random projections don’t perform well anal ca Sparse Random Projection Lemma:Let W be a random
be shown to have vanishingly small signal to noise ratio gs<n matrix. Definey = W x. With probability one, ifp > 2k
the number of pixels increases.
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LEMMA

then anyk sparse signal has a unique projection .
Proof: Suppose, by way of contradiction, that there exists
a secondk sparse vector exists, so thaWWzx = Wz. Let [

[pe a set o2k indices that includes all the indices on which

sparse, their set of nonzero indices cannot be of size greate
than2k. DefineW; to be ap x |I| submatrix ofi¥ obtained by
taking all columns inf and all rows. By the defintion of matrix
multiplication Wz = W;z; and Wz = W;z; (since the zero
elements can be ignored in the matrix multiply). This means
that Wiz = Wirxg with xrr 7é 21 which |mp||es that thq1|
columns ofV are linearly dependent. But since these columns
of W are|I| random p dimensional vectors and| < p this
happens with probability zero.



