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Abstract— Compressed sensing [7], [6] is a recent set of
mathematical results showing that sparse signals can be exactly
reconstructed from a small number of linear measurements.
Interestingly, for ideal sparse signals with no measurement
noise, random measurements allow perfect reconstruction while
measurements based on principal component analysis (PCA)
or independent component analysis (ICA) do not. At the same
time, for other signal and noise distributions, PCA and ICA can
significantly outperform random projections in terms of enabling
reconstruction from a small number of measurements.

In this paper we ask: given a training set typical of the signals
we wish to measure, what are the optimal set of linear projections
for compressed sensing ? We show that the optimal projections
are in general not the principal components nor the independent
components of the data, but rather a seemingly novel set of
projections that capture what is still uncertain about the signal,
given the training set. We also show that the projections onto
the learned uncertain components may far outperform random
projections. This is particularly true in the case of natural images,
where random projections have vanishingly small signal to noise
ratio as the number of pixels becomes large.

I. I NTRODUCTION

Compressed sensing [7], [6] is a set of recent mathematical
results on a classic question: given a signalx ∈ Rn and a
set of p linear measurementsy ∈ Rp, y = Wx, how many
measurements are required to allow reconstruction ofx ?

Obviously, if we knew nothing at all aboutx, i.e. x can be
anyn dimensional vector, we would needn measurements. Al-
ternatively, if we know our signalx lies in a low-dimensional
linear subspace, say of dimensionk, thenk measurements are
enough. But what if we know thatx lies in a low-dimensional
nonlinear manifold ? Can we still get away with fewer than
n measurements ?

To motivate this question, consider the space of natural
images. An image withn pixels can be thought of as a vector
in Rn but natural images occupy a tiny fraction of the set of
all signals in this space. If there was a way to exploit this fact,
we could build cameras with a small number of sensors that
would still enable us perfect, high resolution, reconstructions
for natural images.

The basic mathematical results in compressed sensing deal
with signals that arek sparse. These are signals that can
be represented with a small number,k of active (non-zero)
basis elements. For such signals, it was shown in [7], [5],
that ck log n generic linear measurements are sufficient to
recover the signal exactly (withc a constant). Furthermore,
the recovery can be done by a simple convex optimization or
by a greedy optimization procedure [8].

These results have generated a tremendous amount of ex-
citement in both the theoretical and practical communities. On
the theoretical side, the performance of compressed sensing
with random projections has been analyzed when the signals
are not exactlyk sparse, but rathercompressible (i.e. can
be well approximated with a small number of active basis
elements) [7], [5] as well as when the measurements are
contaminated with noise [11], [19]. On the practical side,
applications of compressed sensing have been explored in
building “single-pixel” cameras [20], medical imaging [14]
and geophysical data analysis [12].

Perhaps the most surprising result in compressed sensing is
that perfect recovery is possible withrandom projections. This
is surprising given the large amount of literature in machine
learning and statistics devoted to finding projections thatare
optimal in some sense (e.g. [4]). In fact, as we review in
the next section, for ideal sparse signals with no measure-
ment noise,random measurements significantly outperform
measurements based on principal component analysis (PCA)
or independent component analysis (ICA). At the same time,
for other signal and noise distributions, PCA and ICA can
significantly outperform random projections.

In this paper we ask: given a training set typical of the
signals we wish to measure, what are the optimal set of linear
projections for compressed sensing ? We show that the optimal
projections are in general not the principal components northe
independent components of the data, but rather a seemingly
novel set of projections that capture what is still uncertain
about the signal, given the training set. We also show that
the projections onto the learneduncertain components may
far outperform random projections. This is particularly true
in the case of natural images, where random projections have
vanishingly small signal to noise ratio as the number of pixels
becomes large.

II. RANDOM PROJECTIONS VERSUSPCA AND ICA

To compare random projections to PCA and ICA, con-
sider the sparse signals illustrated by the image patches in
figure 1. In this dataset, each signalx has exactly one non-
zero component, and this non-zero component is uniformly
distributed in the range[−Ui, Ui]. We assume that all indices
i have approximately the same range, i.e.Ui ≈ 1, but to break
symmetries we setUi = 1 + ε/i.

We are interested in the probability of correct reconstruc-
tion, from a projected signal:

y = Wx (1)
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Fig. 1. Comparing PCA and random projections for ideal sparsesignals.
Each signal has exaclty one nonzero pixel. Random projections work much
better than PCA
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Fig. 2. Comparing PCA and random projections for small image patches.
Each signal is an8×8 patch, randomly cropped from a natural image. Random
projections work much worse than PCA

whereW is a p × n matrix.
The probability of correct reconstruction is simply:

Pcorr(W ) = E(δ(xMAP − x)) (2)

WherexMAP is the MAP decoding:

xMAP = arg max
x

Pr(x|y;W ) (3)

We first calculatePcorr(W ) for PCA and ICA. The princi-
pal components are the eigenvectors of the covariance matrix
with maximal eigenvalue. For this dataset, the covariance
matrix is a diagonal matrix so the principal components are
simply the unit vectorsei. These unit vectorsei will also be
recovered by most ICA algorithms [4].

When will projecting alongp unit vectors allow recovery
of the original x ? Obviously, this will happen only if the
active coefficient inx is one of thep projection directions.
This gives:

Pcorr(WPCA) =
p

n
(4)

Thus for a fixed p and large signal dimensionn the
probability of correct recovery from compressed sensing goes

to zero using PCA and ICA. The reason is is that for a large
fraction of signalsx, the projectiony = Wx is not unique.
It turns out that for arandom measurement matrix W, where
every element ofW is chosen independently and randomly,
the projections can be shown to be unique with probability
one, as long as the number of projectionsp is greater than
or equal to two. This follows from the following lemma (see
appendix for a short proof).

Sparse Random Projection Lemma:Let W be a random
p×n matrix. Definey = Wx. With probability one, ifp ≥ 2k
then anyk sparse signal has a unique projection .

This gives:

Pcorr(Wrand) = 1, p ≥ 2 (5)

Thus for this idealized setting, where the signals are highly
sparse and there is no measurement noise, random projections
are much better than PCA and ICA. Suppose our signal lies
in a 106 dimensional space, then two random projections will
give perfect recovery while two PCA projections will only
reconstruct correctly with probability2/106.

We emphasize that this advantage of random projections
assumes no noise, a highly sparse signal and MAP decoding.
Haupt and Nowak [10] have analytically compared random
projection to traditonal, pixel-based sampling and shown that
in the low SNR regime, pixel-based sampling may actually
outperform random projections. Elad [9] has shown that when
MAP decoding is replaced with LP decoding, one can improve
on random measurement matrices.

To explore the performance under other signal and noise
regimes, we conducted experiments using simulations. In
these simulations, we assumed the signalx came from a
(possibly very large) set of discrete signalsX. This assumption
of discreteX allowed us to perform MAP decoding using
exhaustive search and allowedPcorr to be nonzero even in
the presence of noise.

We first used a discrete version of the sparse signal set, and
assumed noisy measurements:

y = Wx + η (6)

whereη is Gaussian noise with varianceσ2. To avoid a trivial
way of overcoming the noise, the rows ofW were constrained
to have unit norm.

As shown in figure 1, when the variance ofη is small (σ2 =
0.05), the simulation results are similar to the ideal analytical
results. The PCA correct decodings increase linearly with the
number of projections, while random projections achieve good
performance with a few projections. With larger noise (σ2 =
0.5) variances, random measurements are still better, but the
advantage is less dramatic.

However, when we change the signal distribution, the results
are markedly different (figure 2). We randomly sampled7200
8 × 8 patches from natural images, and repeated the exact
same protocol as used in the synthetic sparse signals. Here,
PCA projections work better than random projections, both
for small and large amounts of noise.



Fig. 3. The power spectrum of natural images falls off as1/f2 (replotted
from [17]). We use this fact to prove that the SNR of a random projection
approaches zero as the number of pixels grows.

A. Random Projections and Natural Image Statistics

Can we attribute the poor performance of random projec-
tions in our simulations to the experimental protocol? While
it is difficult to analytically predict the percent of correct
decoding of random projections on natural images, we show
in this section that the signal to noise ratio (SNR) of a random
unit norm projection on a natural image approaches zero as
the number of pixels grows. In contrast, a single unit norm
PCA projection gives a constant, positive SNR, even as the
number of pixels grows.

Analyzing performance on “natural images” would seem to
require a precise definition of the statistics of such images.
This is an active area of research (e.g. [16]). But it turns out
that simply characterizing the second-order statistics isenough
to prove our result. These second-order statistics are well
understood: the eigenvectors of the covariance matrix are the
Fourier basis elements (since images are spatially stationary)
and their eigenvalues fall off with increasing spatial frequency
f . Furthermore, these eigenvalues (which are just the power
spectra of natural images) fall off as a power law [18]) -
typically falling off as1/f2. This is a remarkably consistent
property - figure 3 shows the mean power of 6000 natural
scenes (replotted from [17]) which obeys a power law with
the exponent2.02.

Theorem 1: Random Projections and Natural Image
Let x be a natural image withn pixels. Letw be a random
projection with (approximately) unit norm - each component
w(i) is sampled IID from a zero mean Gaussian with variance
1/n. Define y = wT x + η with any nonzero noise variance
σ2. Then for largen the signal to noise ratio SNR(w) is given
by:

SNR(w) =
1

n

π2

6σ2
(7)

with probability one.
Proof: The SNR is by definition the ratio of the signal

variance,V ar(wT x) and the noise varianceσ2. Sincew is
random, the signal variance is also random, but its expectation
is given by:

E[V ar(wT x)] = Ew[V ar(
∑

f

ŵ(f)x̂(f))] (8)

= Ew[
∑

f

| ˆw(f)|2V ar(x̂(f))] (9)

Data PCA and ICA UCA

a b c

Fig. 4. Learning compressed sensing. Given the dataset{xi} shown on
the left, we wish to find a single projection vectorw that will enable
reconstructing the 2D signalx from its noisy projection, if you are allowed
to exploit the training data. Both PCA and ICA give bad projections (middle)
while UCA (right) allows nearly perfect estimation of the 2D signal from the
1D projection.

= Ew[
∑

f

| ˆw(f)|2 1

f2
] (10)

=
1

n

∑

f

1

f2
(11)

→ 1

n

π2

6
(12)

where we have used Parseval’s theorem to rewritewT x in
terms of the Fourier transform̂w(f), x̂(f) of the projection
vector and the signal.

A similar calculation shows that the variance (with respect
to w) of the signal variance goes to zero so that almost any
randomw will have the expected signal variance. Since the
signal variance approaches zero, while the noise variance is
constant, the SNR of almost any random projection goes to
zero as the number of pixel grows.

In contrast, the PCA SNR does not approach zero. In fact,
by choosingwPCA to be a unit norm projection whose power
spectrum is all in the lowest spatial frequency, we achive:

SNR(wPCA) =
1

12σ2
=

1

σ2
(13)

regardless of the number of pixels.
To illustrate this difference, assume the number of pixels,

n, is a million. An imaging system with500, 000 different
random projections will capture less signal variance than a
single PCA projection.

To summarize, neither random projections nor PCA and
ICA are in general the best projections for compressed sensing.
PCA and ICA work terribly for ideal sparse signals, while
random projections work terribly for natural images. What is
needed is a new component analysis that takes advantage of
both signal and noise statistics.

III. U NCERTAIN COMPONENT ANALYSIS

Figure 4a shows toy “cross” dataset inR2. Suppose we
are only allowed a single linear projection. We are looking
for a projectionw for which a measurementy = wT x , plus
knowledge of the datasets statistics, would allow us to recover
the original signalx.

Figure 4b shows the first principal component of the
data - the horizontal axis. While this direction of projection
maximizes the variance of the projection, it isnot a good
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Fig. 5. The intuition behind our definition of uncertain component analysis.
For two different signals, and the projection of Fig. 4b, we show the prior,
likelihood, and posterior. Maximizing the posterior penalizes projections
where many datapoints have nearby projections (top) and rewards projections
where the reconstruction of many signals from the projectionis easy (e.g. the
signal shown on bottom).

measurement vector for compressed sensing. All the points
along the vertical axis, will project to the same point, and
therefore cannot be reconstructed.

This dataset has two independent components - one for the
vertical axis and one for the horizontal axis. Again, both of
these directions are bad for compressed sensing since all points
on the orthogonal axis will be projected to the same point. So
at least for this dataset, neither PCA nor ICA will give the
best projection for compressed sensing. In fact, in the noiseless
case, both PCA and ICA give the worst projections.

We define a new component analysis, Uncertain Component
Analysis (UCA). The first uncertain component,w∗, is defined
to be the projection direction that maximizes the probability
of the data, given the projections and the training data.

w∗ = arg max
w,‖w‖=1

∏

i

Pr(xi|yi;w) (14)

with yi = wT xi.
Figure 5 gives some intuition for this definition. The left

panel shows the empirical prior probability ofx, in this case
it is simply uniform over all signals in the dataset, and zerofor
anyx not in the dataset. The middle panel shows the likelihood
of a signal, given the horizontal projection of the signal shown
in red in the left panel. From the generative model this is just:

Pr(yi|x) =
1√

2πσ2
e−(yi−wT x)2/2σ2

(15)

Finally, the right panel shows the empirical posterior prob-
ability which is obtained by multiplying the prior and the
likelihood and normalizing. Signals whose projection is far
from yi get vanishingly small probability and are not shown.

Note that we are maximizing theposterior probability of
the input signalx given its projectiony = wT x. Since the
posterior probability is normalized - the sum of the posterior
over all signals in the training set is one, when a datapointxi

has high posterior probability given its projection (e.g. bottom
of figure 5) this means that there are few datapoints in the
dataset that give rise to similar projections and successful

recovery of xi from its noisy projection is likely. On the
other hand, when a datapointxi has low posterior probability
given its projection (e.g. top of figure 5) this means that there
are many datapoints which give rise to similar projections,
and successful recovery ofxi from its noisy projection is
unlikely. The UCA definition is therefore trying to maximize
the number of datapoints that can be accurately recovered from
their noisy projections.

Figure 4c shows the UCA vector for the cross dataset
(calculated withσ = 0.05). Unlike PCA and ICA which
choose one of the coordinate axes and therefore will fail to
reconstruct points on the orthogonal axis, UCA chooses a
vector where most points can be robustly reconstructed from
their noisy projection.

A. Information Maximization

UCA is closely related to a classical approach to find-
ing linear projections called information maximization (or
InfoMax [2], [13], [1], [4]). In our setting, InfoMax would
search for a matrixW so that the mutual information between
the signalX and its noisy projectionY is maximal. Since
I(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X), and
H(X),H(Y |X) are independent ofW , InfoMax is equivalent
to maximizing the entropy of the outputH(Y ) or minimizing
the entropy of the input given the outputH(X|Y ).

To relate UCA to InfoMax, consider astochastic version
of UCA in which, for each signalxi, we sample a noisy
projection yi = Wxi + η, and then, as in ordinary UCA,
maximize the probability of the data,

∏

i Pr(xi|yi). In this
stochastic version of UCA, the log likelihood of the data will
converge to−H(X|Y ). Thus, this stochastic UCA is exactly
the same as InfoMax. Ordinary UCA, in whichyi = Wxi,
will be exactly the same as InfoMax forσ → 0 and can be
thought of as a deterministic approximation to InfoMax for
the general case.

Interestingly, InfoMax has been shown to be equivalent to
ICA when the matrixW is invertible [4], [3]. But in the
compressed sensing setting, where the number of projections
p is less than the dimension of the signalx, ICA and UCA
can give very different projections.

IV. CHARACTERIZING OPTIMAL PROJECTIONS

The uncertain component in figure 4c was calculated by
searching over a dense sampling of unit norm vectors. It would
be better to get an algorithmic solution. The following analytic
characterization ofw∗ allows doing so.

Observation: Let w∗ be the first uncertain component
(equation 14). Thenw∗ satisfies the following fixed-point
equations, relating the data assignment probabilitiesqij and
the projection directionw.

qij = Pr(xj |yi;w) (16)

w = eigmax
∑

i,j

qij (xi − xj) (xi − xj)
T (17)



Proof: We first explicitly write the posterior probability:

Pr(xi|yi) =
Pr(xi) Pr(yi|xi;w)

Pr(yi;w)
(18)

Note that the numerator is independent ofw since, by the
likelihood equation (eq. 15),Pr(yi|xi) = 1√

2πσ2
e−0. Thus we

can alternatively rewrite the UCA criterion:

w∗ = arg max
w

∏

i

1

Pr(yi;w)
(19)

= arg max
w

∑

i

− log Pr(yi;w) (20)

The marginal log likelihood can be rewritten using the
familiar, “free energy” functional (e.g. [15]):
∑

i

− log Pr(yi;w) = min
q:
∑

j
qij=1

−
∑

ij

qij log Pr(xj , yi;w)

+
∑

ij

qij log qij (21)

So that:
w∗ = arg max

w
min

q
F (w, q) (22)

with:

F (w, q) =
∑

ij

qij(w
T (xi − xj))

2 +
∑

ij

qij log qij (23)

(where we have assumed thatPr(xi) is uniform over the
dataset).

The fixed point equations are simply saying that at the
optimal w∗, minimizing F (w, q) with respect toq and then
maximizing with respect tow should leave us at the samew.

We can extend the UCA definition top vectors by defining
the p × n matrix W ∗ whose rows are the projection vectors.

W ∗ = arg max
W,WW T =I

∏

i

Pr(xi|yi;W ) (24)

with yi = Wxi.
It is easy to show that the fixed-point equations still hold.

The only difference is that the rows ofW ∗ should be the top
p eigenvectors of:

∑

i,j

qij (xi − xj) (xi − xj)
T

This characterization of the fixed-point allows us to under-
stand the behavior of UCA in different special cases.

Corollary 1: UCA ⇒ PCA. As σ → ∞ UCA approaches
PCA.

Proof: As σ ⇒ ∞ the likelihood (equation 15) ap-
proaches a uniform function ofx, and assuming the prior
is uniform over the dataset, the posteriorsqij will also be
uniform. Thus the UCA matrix are simply the eigenvectors of
(xi − xj) (xi − xj) and these are the principal components of
the data.

Corollary 2: UCA=PCA for p dimensional data. If the
data {xi} lie in a p dimensional subspace, then the UCA
vectors and the topp PCA vectors span the same subspace.

Proof: We can define a new dataset whose elements are
the difference vectorsdij = (xi − xj). The UCA vectors
are the prinicpal components of the dataset{dij} where each
difference vector is weighted byqij . Sincexi, xj both lie in a
p dimensional subspace, so doesqijdij and hence UCA will
recover an orthogonal basis of thisp dimensional subspace. On
the other hand, if the data lie in ap dimensional basis, PCA
will also recover an orthogonal basis of thisp dimensional
subspace.

Corollary 3: UCA=Random for noiseless sparse dataIf
the data{xi} arek sparse in any basis, andp ≥ 2k then for
σ → 0 a randomW matrix maximizes the UCA cost function
with probability one.

Proof: This follows from the sparse random projection
lemma - with probability one, no twok sparse signals can have
the same random projection. This means that the empirical
posterior probabilityPr(xi|yi;W ) will approach one asσ → 0
for all datapointsxi.

While the fixed-point equations show that under certain
conditions, PCA and UCA give the same projections, they also
highlight the difference. PCA tries to maximize the variance
of the projections, which can be thought of as maximizing the
average distance between the projections of any two signals.
UCA maximizes aweighted average distance between the
projections of any two signals, weighted by the probabilityof
assignment to each observation. The weighted average gives
high weight to pairs of signals whose projections are similar
(determined by the noise levelσ). This makes sense in terms
of robust reconstruction. For a given noise levelσ two signals
whose projected distance is10σ are almost as good as two
signals whose projected distance is100σ.

A. Algorithms

Direct calculation gives the gradient of the log likelihood
with respect tow:

∂ log P

∂w
=





∑

ij

qij (xi − xj) (xi − xj)
T



 w (25)

with qij as in the fixed-point equations (eq. 16).
However, in our experiments, this gradient update can be

very slow (especially since one needs to enforce the unit norm
constraint). Often, better performance is achieved iterating a
dampened version of the fixed-point equations (eq. 16,17)
(moving only part-way from the old values to the new ones).

Note that unlike other uses of the free energy in machine
learning (e.g. the EM algorithm), iterating the fixed-point
equations is not guaranteed to improve the likelihood at every
iteration. This is because the global optimum is a saddle point
of F (p, q) and not a minimum. Nevertheless, if we do happen
to converge to a fixed-point, it is guaranteed to be a local
constrained optimum of the UCA cost function.

V. RESULTS

We first estimated uncertain components for ideal sparse
signals for different imaging noise valuesσ2 and different
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Fig. 6. UCA results on ideal sparse images. Each image has exactly one
nonzero component.Top: Projection of the full dataset from 16 dimensions
onto two dimensions using random projections and UCA.Bottom: Compari-
son of percentage of correct decodings as a function of numberof projections,
for different noise levels.

Random UCA

−120 −100 −80 −60 −40 −20 0 20 40
−30

−20

−10

0

10

20

30

−120 −100 −80 −60 −40 −20 0 20 40
−30

−20

−10

0

10

20

30

low noise high noise

Fig. 7. UCA results on natural image patches.Top: Projection of the full
dataset from 16 dimensions onto two dimensions using random projections
and UCA. Bottom: Comparison of percentage of correct decodings as a
function of number of projections, for different noise levels. The UCA and
PCA results are almost identical so the green line is occludedby the blue
line.

numbers of projectionsp. The signals were in4 × 4 image
patches, and each patch had one nonzero pixel. The value in
that pixel was an integer distributed uniformly in the range
[−16, 16]. Recall that for noiseless measurements, random
projections are optimal for such signals (from the sparse
random projections lemma).

As expected by corollary 3, whenσ2 is very small, any
random projection is a fixed-point of the algorithm. But when
σ2 is large, UCA learns projections that are still incoherent (i.e.
they have nonzero elements for all pixels) but nonrandom. To
visualize the learnt UCA projections, we plot in figure 6 the
projections of the sparse signals into two dimensions using
random projections (left) and the UCA projections (right).
Since all signals are1 sparse in the high dimensional space,
the signal set defines a discrete set of rays in high dimensions,
all starting at the origin. In both the random projections
and the UCA projections, one can still observe the projected
rays, but UCA finds a projection in which these rays are
(approximately) emanating at regular angles. Thus UCA is
finding a projection in which the number of signals with
similar projections is smaller than in a random projection.
Figure 6 compares the decoding performance of the different
projections (again, using MAP decoding). As expected, UCA
performs slightly better than random projections, and both
UCA and random perform much better than PCA.

In our second experiment, we estimated uncertain compo-
nents for a set of1, 000 4×4 image patches randomly sampled
from natural images. For this dataset, we found that UCA
learns projections that are nearly identical to PCA. This isto
be expected from the1/f2 power spectrum of natural images,
which means that the image patches lie (approximately) in
a low dimensional subspace. In fact, for this dataset,99% of
the variance is captured by the first two principal components.
Thus corollary 2 predicts that UCA and PCA should give
very similar results for this data. Again, to visualize the UCA
projections versus a random projection, we show projections
of the image signals into two dimensions using random projec-
tions (figure 7 left) and the UCA projections (right). Note that
the variance of the random projections is significantly smaller
than that of the UCA projections, as predicted by theorem
1. We repeated the experiment with10, 000 15 × 15 image
patches and (as predicted by theorem 1) found that random
projections capture an even smaller amount of signal variance.
Figure 7 compares the decoding performance of the different
projections (again, using MAP decoding). As expected, UCA
performs identically to PCA and much better than random
projections.

VI. D ISCUSSION

Suppose we are allowed to take a small number of linear
projections of signals in a dataset, and then use the projections
plus our knowledge of the dataset to reconstruct the signals.
What are the best projections to use? We have shown that
these projections are not necessarily the principal components
nor the independent components of the data nor random
projections, but rather a new set of projections which we



call uncertain components. We formalized this notion by
maximizing the probability of a signal given its projection,
and derived fixed-point equations that need to be satisifed at
the optimum. Our experiments show that learning projections
can give much better performance compared to simply using
random projections. This is particularly true for natural image
signals, where random projections don’t perform well and can
be shown to have vanishingly small signal to noise ratio as
the number of pixels increases.
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APPENDIX: PROOF OFSPARSERANDOM PROJECTION

LEMMA

Sparse Random Projection Lemma:Let W be a random
p×n matrix. Definey = Wx. With probability one, ifp ≥ 2k
then anyk sparse signal has a unique projection .

Proof: Suppose, by way of contradiction, that there exists
a secondk sparse vectorz exists, so thatWx = Wz. Let I
be a set of2k indices that includes all the indices on which
both x andz are nonzero. Note that since bothx andz arek
sparse, their set of nonzero indices cannot be of size greater
than2k. DefineWI to be ap×|I| submatrix ofW obtained by
taking all columns inI and all rows. By the defintion of matrix
multiplication Wx = WIxI andWz = WIzI (since the zero
elements can be ignored in the matrix multiply). This means
that WIzI = WIxI with xI 6= zI which implies that the|I|
columns ofW are linearly dependent. But since these columns
of W are |I| random p dimensional vectors and|I| ≤ p this
happens with probability zero.


