
DRAFT – To appear with revisions in CVPR 2004

Efficient Graphical Models for Processing Images

Marshall F. Tappen Bryan C. Russell William T. Freeman

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
{mtappen, brussell, billf}@ai.mit.edu

Abstract

Graphical models are powerful tools for processing images.
However, the large dimensionality of even local image data
poses a difficulty: representing the range of possible graph-
ical model node variables with discrete states leads to an
overwhelmingly large number of states for the model, mak-
ing inference computationally intractable. We propose a
representation that allows a small number of discrete states
to represent the large number of possible image values at
each pixel or local image patch. Each node in the graph
represents the best regression function, chosen from a set
of candidate functions, for estimating the unobserved im-
age pixels from the observed samples. This permits a small
number of discrete states to summarize the range of possible
image values at each point in the image. Belief propagation
is then used to find the best regressor to use at each point.
To demonstrate the usefulness of this technique, we apply it
to two problems: super-resolution and color demosaicing.
In both cases, we find our method compares well against
other techniques for these problems.

1. Introduction
Recent advances in methods for performing approximate in-
ference in graphical models, such as belief propagation [17]
and graph cuts [4], have enabled their modelling power to
be applied to many vision problems. A graphical model is
especially useful for problems which focus on estimating
images because a graphical model makes it convenient to
express relationships between pixels in both the observed
image and the image or scene being estimated.

The chief barrier to using graphical models for estimat-
ing images is the huge dimensionality of images. Typically,
each pixel or patch of pixels in the image being estimated
is treated as a separate variable or node in the graph. A
simple discrete representation of images would allocate one
discrete state of each variable for each possible gray-level
in the image. For a typical gray-scale image, this would re-
quire 256 states per node in the graphical model. If each

variable corresponds to a patch of N pixels, then 256N

states will be required! For algorithms such as belief prop-
agation, the amount of computation required for approxi-
mate inference in a graphical model typically varies on the
order of N2 ×M where M is the number of nodes in the
graph and N is the number of discrete states per node. The
quadratic relationship between the complexity of inference
and the number of states limits the sort of problems that
discrete-valued graphical models can be applied to.

The ability to express this task in a graphical model with
discrete states is important because many of the statistics of
natural images are non-Gaussian [19]. This prevents the use
of continuous Gaussian models. A simple strategy for keep-
ing inference tractable is to reduce the number of states for
each node in the graph. In this paper, we show a convenient
representation which allows a graphical model with a low
number of states per node to infer high-dimensional image
values. A significant benefit of this representation is that
the probabilistic model does not have to be designed with
this representation in mind. The probabilistic model for the
task can be first specified as if a single state were assigned
to each gray-level in the image. The model is then easily
adapted for use with this representation.

Section 2 describes the representation. To demonstrate
its usefulness, we apply it to two problems: super-resolution
and color demosaicing. The applications are described in
Sections 3, 4, and 5. For both applications, our model takes
advantage of the regular statistics of natural images [19].
Our results compare well with other techniques for these
problems.

2. Using a Low Number of States
The basic task is to estimate some quantity hi, from Ni(L),
a neighborhood of pixels in the observed image L. For
example, hi could be pixels from an unobserved high-
resolution image, while L is the low-resolution observation.
Simple linear regression is unlikely to work generally be-
cause the relationship between hi and L is likely not mod-
elled well with a simple Gaussian distribution. However,

1

DRAFT – To appear with revisions in CVPR 2004

consider a set of linear regressors, each trained over a sub-
set of the (hi, Ni(L)) pairs. If each regressor in the set were
applied to some particular Ni(L), it is likely that at least
one of them would predict the corresponding hi accurately,
if the set of linear regressors was large enough.

The problem of estimating hi can then be rephrased as
choosing the linear regressor that best predicts hi from the
observed data. Assume that a set of N regression functions,
M1(·) . . .MN (·) has been defined. LetM

M̂i
(Ni(L)) be the

regressor that best estimates hi. In our representation, the
best estimate of hi is then

ĥi = M
M̂i

(Ni(L)) (1)

where M̂i is the index of the interpolator chosen at location
i that predicts hi most accurately.

In the applications demonstrated in this paper, we will
use a graphical model to find M̂ at each spatial location.
A convenient feature of this representation based on multi-
ple regressors is that a compatibility function designed for
a representation which assigns one state per possible gray
level can be easily transformed to create a compatibility
function relating two neighboring regressor indices. Given
a compatibility function ψ′(hi, hj) between two neighbor-
ing high-resolution values, the compatibility between the
regressors assigned to the two variables M̂i and M̂j can be
defined as

ψ(M̂i, M̂j) = ψ′(M
M̂i

(Ni(L)),M
M̂j

(Ni(L))) (2)

The compatibility between two neighboring regressors is
found by first using the observed image to calculate the esti-
mates of hi and hj , using M

M̂i
and M

M̂j
as the regression

functions. The original compatibility function is then ap-
plied to hi and hj to define the compatibility between M̂i

and M̂j .
The regressors, M1 . . .Mn, are found using training

data. For the two applications shown here, we trained the
regressors using an algorithm similar to the EM algorithm,
but with hard assignments.

Each regression function M can be viewed as a scene
recipe [20], a simple function that translates the observed
image to hi, the quantity being estimated.

2.1. Statistical Interpretation
This representation can be described statistically by mod-
elling the joint distribution of hi and Ni(L) as a mixture of
Gaussians. In this interpretation, Mj denotes one compo-
nent of the mixture:

P (hi, Ni(L)) =
∑N

j=1 πjMj(hi, Ni(L))

=
∑N

j=1 πjN ({hi, Ni(L)};µj ,Σj) (3)

where π1...πN are the mixing coefficients. In this model
µ1 . . . µN and Σ1 . . .ΣN are known and identical for every
hi. Only π1...πN vary from pixel to pixel.

Even if π1...πN are estimated first, maximizing Equa-
tion 3 will still require an iterative search for the maximum.
This will be infeasible for every pixel in an image, so we
approximate the value of hi that maximizes Equation 3 by
choosing the most likely mixture component, Mĵ , then cal-

culating the most likely value of ĥi, using Mĵ as the joint
distribution:

ĥi = arg max
hi

M
M̂i

(hi, Ni(L)) (4)

where M̂i = arg maxj πj .
In the statistical view, our goal is to pick the mixture

component that best models the joint distribution of Ni(L)
and hi. Standard estimation techniques can then be used to
find the best estimate of hi using Ni(L) and this distribu-
tion.

2.2. Error Introduced by this Representation
If the set of regression functions is large enough, one of
the regressors will typically produce a value very close to
the true value. In Figure 1, we show the average mean ab-
solute error per pixel per color channel introduced by us-
ing regression functions generate full-color values for the
demosaicing problem described in Section 5. This error
is calculated from a testing set by using the set to gen-
erate high-resolution samples and the corresponding low-
resolution observations. Each regressor then estimates the
high-resolution samples using the low-resolution observa-
tions. The vertical axis in Figure 1 shows the average
mean absolute error per color channel between the true
high-resolution data and the estimate closest to the high-
resolution data. This is a lower-bound on the error. If the
model for choosing the right regression function at each
point was perfect, the system would still have the amount
of error shown in Figure 1 because of the approximation.

Fortunately, the lower bound on the error is quite low.
Using 16 regressors, the mean absolute error averages less
than one half of a gray level out of 256 possible gray lev-
els per color channel. This low error permits an algorithm
designer to focus on perfecting the model. The regression
based discretization described in Section 2 can then be ap-
plied without introducing significant error.

3. Utilizing a Regression-Based Repre-
sentation

To show the usefulness of this approximation, we show
how it can be used for two useful image applications:

2

DRAFT – To appear with revisions in CVPR 2004

0 10 20 30 40 50 60 70
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Regressors

M
ea

n
A

bs
ol

ut
e

E
rr

or
 L

ow
er

 B
ou

nd

Figure 1: The average mean absolute error per pixel per
color channel between the true high-resolution data and the
estimate produced by the regressors that is closest to the
high-resolution data.

super-resolution and image demosaicing. In both applica-
tions, low-resolution observations are used to infer a high-
resolution image. These applications also demonstrate a
general strategy for designing a system:

1. Design compatibility functions as if there was a single
state allocated for each possible pixel value.

2. Use training data to learn a fixed set of linear regres-
sion functions M1 . . .MN .

3. Use Equation 2 to define new compatibility functions.

4. For all locations i, use the max-product belief propa-
gation [17] algorithm to choose M̂i, the index of the
best linear regressor for estimating the high resolution
information at location i from the observed low reso-
lution image.

5. For all locations i, let ĥi = M
M̂i

(Ni(L)).

Details on the belief propagation algorithm can be found
[7, 17]

4. Super Resolution
The first application we consider is the task of super reso-
lution. The goal of a super resolution resolution algorithm
is to produce a high-resolution image from a single low-
resolution image. This task is also often referred to as image
interpolation.

Functional interpolation methods, such as bicubic and
cubic spline interpolation, approximate an unknown con-
tinuous function by a set of local functions, which can then
be discretely sampled to the desired resolution [9]. While
these methods are usually fast and easy to implement, the
resulting images often have blurred edges. Image sharp-
ening techniques have been proposed to ameliorate the re-
sults from functional interpolation methods [8, 15]. These

methods result in sharper images, but may contain haloing
artifacts. An alternate solution involves deconvolving the
blurring filter [3, 21]. While the results are quite good, de-
convolution methods, as well as image sharpening methods,
only enhance features that are present in the low resolution
image. Learning-based methods use prior information to
enhance the solution space [1, 7, 6]. These methods add
realistic image details, but can also add artifacts.

4.1. Model
We approach the problem by assuming a model for the
degradation of the high resolution image. Specifically, we
assume that a low resolution image L is generated from a
high resolution image H by first convolving H with a low-
pass filter and then down-sampling.

To take advantage of the local spatial regularities of im-
ages,H is modelled as a collection of non-overlapping 4×4
patches. Each xi represents the value of the 4 × 4 patch at
location i. By choosing this patch size, we are increasing
the resolution of the input image by a factor of 4.

To recover H from L, we model the joint probability
distribution of H and L as a graphical model with two
types of compatibility functions [7]. The first compatibil-
ity function, φ′(·), constrains H to match L when H is
down-sampled. If yi is a low-resolution pixel in L, let pi

be the pixel in H such that Npi
(H) ∗ w = yi, where w is

the anti-aliasing filter used before down-sampling the im-
age, Npi

(H) is a neighborhood of pixels in H surrounding
pi, and ∗ is the convolution operator evaluated at pi. The
pixel pi can be thought of as the center of the group of high-
resolution pixels used to generate yi. With these definitions,
the compatibility function for a low-resolution observation
yi and a set of patches is

φ′({x}pi
, yi) = exp

(
−

1

2

(
Npi

(H) ∗ w − yi

σR

)2
)

(5)

where {x}pi
denotes the smallest set of patches necessary

to cover Npi
(H), assuming Npi

(H) is the same size as the
filter w. This compatibility function can be interpreted as
forcing the inferred high-resolution image to match the low-
resolution observation when it is scaled down.

The second compatibility function in our system relates
the patches in H to each other. The constraint is based on
the observation that the distribution of an image derivative,
∆h, in a natural image is described well as

p(∆h) ∝ e−
|∆h|α

s (6)
where α typically ranges between 0.5 and 1.2 [14]. We use
this distribution to produce ψ′(·), which is the compatibility
between neighboring patches in the high-resolution image:

ψ′(xi, xj) =
∏

(pi,pj)

e−
|pi−pj |α

s (7)

3

DRAFT – To appear with revisions in CVPR 2004

x1 x3x2 x4

y2y1 3y y4

PSfrag replacements

ψ

φ

{x1
1, x

2
1, x

3
1, x

4
1}

(a)
(b)
(c)
(d)
(e)
(f)
1
S
xa

i

xb
i

Figure 2: Factor graph for 1D super resolution example.
The random variables are represented by the transparent
nodes where the xi are the latent variables and the yi are
the observed variables, the solid squares represent ψ(·), the
constraint between neighboring patches, and the solid cir-
cles represent φ(·), the compatibility function between the
high-resolution signal and low-resolution observations. The
nodes labelled xi represent patches, so the upsampling is
not visible from this graph.

where (pi, pj) are neighboring pixels with pi contained in
the patch xi and pj in xj . Effectively, the product is cal-
culated along the border of the patches xi and xj . For our
super-resolution experiments, we set α = 0.7 and s = 0.01.

Given L, we estimate H by using the steps described in
Section 3. For each patch xi, we estimate M̂i, which is
the index of the regression function which best predicts the
value of xi from the low-resolution image L. Once M̂i is
found, xi can be estimated using M

M̂i
(·). The distribution

of the indices M̂ is modelled as a graphical model:

P ({M̂}|L) ∝
∏

i

φ({M̂}yi
, yi)

∏

(xj ,xk)

ψ(xj , xk) (8)

where {M̂}yi
denotes the indices of the smallest set of

patches which affect the low-resolution pixel at the same
location as yi when H is down-sampled. The compatibil-
ity functions ψ(·) and φ(·) are found using ψ′(·) and φ′(·)
using the same method as in Equation 2. Once the com-
patibility functions have been defined, M̂ can be found for
each patch by using the max-product Belief Propagation al-
gorithm.

Figure 2 shows a 1-D example of the model defined by
Equation 8, visualized as a factor graph [11]. Each node la-
belled xi represents four high-resolution values. Each node
labelled yi represents a low-resolution observation. The
solid squares represent ψ(·), the constraint between neigh-
boring patches. The solid circles represent φ(·), the com-
patibility function between the high-resolution signal and
low-resolution observations.

4.2. Results
The linear interpolators are trained using a set of natural
images. We use a 7 × 7 Gaussian kernel and subsample

(a) Input image (b) Sampled
input image

Figure 5: An example of poly-chromatic sampling. (a) The
original input image. (b) The polychromatically sampled
version of the input image.

to get a low/high resolution pair. For each low resolution
pixel, the corresponding 3×3 low resolution local evidence
patch is extracted along with the 4×4 high resolution patch.
For the experiments in this paper, we set α = 0.7, s = 1,
and σR = 0.01 and ran BP for 10 iterations. The training set
consisted of nine 432×576 pixel gray-scale natural images,
which generated roughly 500,000 low/high resolution patch
pairs that were used to train 64 linear interpolators.

To evaluate our super resolution algorithm, we first dec-
imated a test image by filtering it with a 7 × 7 Gaussian
kernel then sub-sampled it. Next we super resolved back
to the original dimensions.For comparison, we show our
results against two other super-resolution algorithms. We
compared the our algorithm against bicubic interpolation
and a nonlinear image sharpening algorithm [8]. For the
sharpening algorithm, we used band-pass filtering with the
algorithm-specific parameters set to c = 0.2, and s = 7.

A comparison of the outputs for the different super res-
olution algorithms are shown in Figure 4 and Figure 3.
In both cases, using bicubic interpolation results in overly
smooth results. In Figure 3, our method produces notice-
ably sharper images without significant artifacts, such as the
halos around the specularities in Figure 3. Our method in-
troduces some artifacts in Figure 4(d), but still produces the
sharpest results.

Our method also outperforms the others in terms of the
mean absolute error between each algorithm’s results and
the true high-resolution image. The mean absolute error is
listed in the captions of Figures 4 and 3.

5. Demosaicing CCD Output

A similar problem to super-resolution is that of estimating a
full-color image from samples of only one color band. Typ-
ical CCD’s are only able to sample one color band at each
pixel in the sensor. This is known as poly-chromatic sam-
pling because the samples at neighboring pixels represent
the intensity of different color bands. Figure 5(b) shows

4

DRAFT – To appear with revisions in CVPR 2004

(a) Original High Resolution Input (b) Pixel Replication (c) Bicubic Interpolation

(d) Nonlinear enhancement (e) Multiple Regressors

Figure 3: Results on interpolating a 64 × 64 image of peppers. The mean absolute error between each result and the true high-resolution
values in shown in brackets. (a) The original high-resolution image (b) Interpolated using pixel replication. This represents the low-
resolution input. (c) Using bicubic interpolation [12.5] (d) Using the Greenspan et al. nonlinear enhancement algorithm [34.8] (e) Using
multiple regressors [7.9]. Our method produces a noticeably sharper image without the “haloing” artifacts seen in (d).

(a) Pixel Replication (b) Bicubic Interpolation (c) Nonlinear enhancement (d) Multiple Regressors

Figure 4: Results on interpolating a 64×64 image of a cat. The mean absolute error between the result and the true high-resolution image
is shown in brackets. (a) Interpolated using pixel replication (b) Using bicubic interpolation [19.5] (c) Using the Greenspan et al. nonlinear
enhancement algorithm [37.2] (d) Using multiple regressors [16.7]. In this case, our method produces some artifacts, but still produces the
sharpest results.

5

DRAFT – To appear with revisions in CVPR 2004

(a) True Image (b) Multiple Regression functions (c) Single Interpolator

Figure 6: A comparison of the results produced by using multiple interpolators versus a single interpolator. Notice that the
image produced with multiple interpolators, shown in (c), does not have the color fringes along the coat and tie.

the poly-chromatically sampled version of Figure 5(a), us-
ing the Bayer Mosaic as the sampling pattern[2]. To obtain
the full-color image, with the value of three color bands
per pixel, the value of the other two color bands at each
pixel must be interpolated from the observed samples. This
problem, known as demosaicing, is similar to the super-
resolution problem in that we are trying to estimate hid-
den information at every pixel location in the image, except
now we are trying to estimate color values instead of high-
resolution information.

While the missing color values in each band could sim-
ply be interpolated from the observed values in that band,
that ignores the correlation between color band values. A
change in one color band is usually correlated with a change
in the other bands also. In order to take advantage of this
correlation, researchers have proposed using all of the sam-
ples in a neighborhood around the pixel being estimated to
interpolate the unobserved color bands. The interpolated
color values, h, are calculated as the linear combination of
the observed color samples, l.

In [13], Brainard shows how to find the linear interpola-
tion coefficients using Bayesian methods. Researchers have
used learning methods to find the coefficients from both test
patterns [22] and real images [10, 16]. In [16], the system
also performs non-linear interpolation by expanding l to in-
clude its squared terms.

In terms of the model presented in Section 2, each of
these algorithms assumes that a single linear regressor can
model every pixel in the image. However, the correlation
between color bands varies according to the structure of the
image. The correlation between red and green bands will be
very different for a cyan edge than for a white edge. If the
interpolator best suited to a cyan edge is applied to a white
edge, then the results will be incorrect. On the other hand,
if the interpolator best matched to a white edge is used then
the results will be excellent. Intuitively, allowing the corre-
lation between color bands to vary from pixel to pixel will

greatly improve performance. Using our model effectively
allows the system to choose from a set of interpolators at
each point. Each interpolator, or regressor, is trained for a
different correlation between color channels.

5.1. Model

As with the super-resolution system described in Section 4,
our system for demosaicing is defined by two compatibil-
ity functions. The first type, φ′(·), expresses the compati-
bility between a neighborhood of observed color samples,
NL(yi), and a candidate value of M̂i, the index of the re-
gressor produces the best estimate of the two unobserved
color samples at pixel i. In our system, this is modelled as
a multivariate Gaussian:

φ′(NL(yi), M̂i) = N (NL(yi);µM̂i
,Σ

M̂i
) (9)

The second compatibility function, ψ′(·), relates neigh-
boring pixels. If xi and xj are the unobserved color samples
for two neighboring pixels, let pi and pj be RGB triplets
created from combining xi and xj with the observed sam-
ples yi and yj . Note that yi and yj are observations of dif-
ferent color bands. The compatibility between xi and xj is
defined as

ψ(xi, xj) = exp

(
−|pr

i − pr
j |

α − |pg
i − p

g
j |

α − |pb
i − pb

j |
α

s

)

(10)

where pr
i is the value of the red color band at pi and the rest

of the color bands are labelled accordingly. For the results
shown here, we use α = 0.7 and s = 0.1.

With φ(·) and ψ(·) defined, the full-color image can be
recovered using the steps described in Section 3 and Section
5.

6

DRAFT – To appear with revisions in CVPR 2004

(a) Original Image (b) Using a single interpolator

(c) Median Filter Method [5] (d) Using multiple regressors

Figure 7: A comparison of our results against using a single interpolator and the median filter method [5]. Using a mixture
representation increases the quality of the reconstruction, especially along the roof of the car. Figure 7(a) came from [12].

5.2. Results

For the first evaluation of our demosaicing algorithm, we
compared it against using a single linear interpolator to find
the two unobserved color values at each point. While [16]
suggests performing non-linear interpolation by augment-
ing the observations with quadratic functions of the data,
we found that did not improve the results on our training
set. Both the single global interpolator used for comparison
and the set of regressors used by our algorithm were trained
on a set of 18 natural images. The images were a combina-
tion of scanned photographs and high-resolution digital pic-
tures. Each of the images was down-sampled to reduce the
effects of any demosaicing that occurred when the images
were captured. Our model used a set of twenty regressors.
In this pattern there are actually four different types of local
neighborhoods. Therefore, we learn four different sets of
twenty regressors. The choice of which set of regressors is
used at a pixel depends entirely on the type of pixel being
interpolated.

To evaluate the performance of the two algorithms, we
use L2 norm of the difference between each pixel of the
demosaiced image and each pixel of the true image. Over
the whole training set, we found that average L2 error of
the pixels produced by our method was 86% of those pro-
duced by using a single linear interpolator. Note that [16]
showed that using a single interpolator produced a signifi-
cant improvement over simply interpolating each color band
separately.

However, the mean squared error does not capture the
important perceptual differences. The important difference
in performance lies along the edges in the image, where
color fringing can occur. Examining the images qualita-
tively shows a great improvement by using the regressor-

based representation, especially along edges in the image.
The most noticeable artifacts of demosaicing algorithms are
colored fringes along edges. Figure 6 shows the difference
in fringing caused by using one interpolator versus using a
set of regression functions. Using one interpolator causes
the fringes along the suit coat shown in Figure 6(c). These
are caused when the correlation between color bands im-
plied in the interpolator is incorrect. For example, if the
interpolator believes that red and green are correlated, a red
edge will have a greenish fringe when it is demosaiced. By
using multiple regressors and belief propagation, our algo-
rithm significantly reduces the amount of color fringing in
Figure 6(b).

In Figure 7 we compare the results of our algorithm, in
Figure 7(d), to a second method that utilizes the median
filter [5]. The median filter algorithm has been found to
perform well experimentally in [13, 18], so we use it as a
representative of competing approaches. Again the output
using multiple regression functions has the least amount of
artifacts.

The importance of setting the exponent α to be less than
one, is illustrated in Figure 8. Setting α greater than 1 leads
to multiple small derivatives being favored over a single
large derivative. This leads to the artifacts in Figure 8(b).
When α is less than one, sharp edges are preferred, result-
ing in Figure 8(a).

6. Conclusion

In this paper, we have designed graphical models for two
image processing tasks: super-resolution and image demo-
saicing. For both applications, the flexibility of the graphi-
cal model allowed us to incorporate the statistics of natural

7

DRAFT – To appear with revisions in CVPR 2004

(a) Sample results for α = 0.7 (b) Sample results for α = 2.0

Figure 8: The effect of the exponent α on the results. The results are sharper when α = 0.7 because the statistical prior favors
fewer, large derivatives.

images to define compatibility functions between the high-
resolution pixels being estimated.

Performing inference in the graphs is tractable because
of an efficient discretization introduced in this paper. The
state of each variable corresponds to a single linear regres-
sor that estimates the high-resolution pixel values from the
low-resolution observations. This permits a small number
of discrete states to model the range of possible image val-
ues at each point in the image. This computational effi-
ciency allows effective use of graphical models in image
processing problems.

References

[1] S. Baker and T. Kanade. Hallucinating faces. Fourth Inter-
national Conference on Automatic Face and Gesture Recog-
nition, 2000.

[2] B. E. Bayer. Color imaging array. US Patent No. 3,971,065,
1975.

[3] M. Belge, M. Kilmer, and E. Miller. Wavelet domain image
restoration with adaptive edge-preserving regularity. IEEE
Trans. Image Processing, 9(4):597–608, 2000.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(11):1222–
1239, November 2001.

[5] W. T. Freeman. Median filter for reconstructing missing
color samples. U.S. Patent No. 5,373,322, 1988.

[6] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-
based super resolution. IEEE Computer Graphics and Ap-
plications, 2002.

[7] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learn-
ing low-level vision. International Journal of Computer Vi-
sion, 40(1):25–47, 2000.

[8] H. Greenspan, C. Anderson, and S. Akber. Image enhance-
ment by nonlinear extrapolation in frequency space. IEEE
Trans. on Image Processing, 9(6), 2000.

[9] H. H. Hou and H. C. Andrews. Cubic splines for image in-
terpolation and digital filtering. IEEE Trans. Acoust. Speech
Signal Processing, ASSP-26(6):508–517, 1978.

[10] K. Knopf and R. Morf. A new class of mosaic color encod-
ing patterns for single-chip cameras. IEEE Transactions on
Electron Devices, ED-32(8), August 1985.

[11] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transactions
on Information Theory, 42(2):498–519, 2001.

[12] P. Longere, P. B. Delahunt, X. Zhang, and D. H.
Brainard. Supplementary material for perceptual
assesment of demosaicing algorithm performance.
http://color.psych.upenn.edu/depreference/index.html.

[13] P. Longere, P. B. Delahunt, X. Zhang, and D. H. Brainard.
Perceptual assessment of demosaicing algorithm perfor-
mance. Proceedings of the IEEE, 90:123–132, 2002.

[14] S. G. Mallat. A theory for multiresolution signal decom-
position: the wavelet representation. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 11(7):674–694,
July 1989.

[15] B. Morse and D. Schwartzwald. Image magnification using
level set reconstruction. Proc. International Conf. Computer
Vision (ICCV), pages 333–341, 2001.

[16] S. K. Nayar and S. G. Narasimhan. Assorted pixels: Multi-
sampled imaging with structural models. In ECCV (4), vol-
ume 2353 of Lecture Notes in Computer Science, pages 636–
652. Springer, 2002.

[17] J. Pearl. Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan Kaufmann, 1988.

[18] R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. S. III.
Demosaicking methods for bayer color arrays. Journal of
Electronic Imaging, 11(3):306–315, July 2002.

[19] E. P. Simoncelli. Statistical models for images: Compres-
sion, restoration and synthesis. In 31st Asilomar Conference
on Signals Systems, and Computers, pages 673–678, Pacific
Grove, CA., 1997.

[20] A. Torralba and W. T. Freeman. Properties and applications
of shape recipes. In IEEE Conf. Computer Vision and Pat-
tern Recognition, volume 2, pages 383–390, 2003.

[21] Y. Wan and R. Nowak. A wavelet-based approach to joint
image restoration and edge detection. SPIE Conference on
Wavelet Applications in Signal and Image Processing VII,
1999.

[22] M. A. Wober and R. Soini. Method and apparatus for recov-
ering image data through the use of a color test pattern. U.S.

8

DRAFT – To appear with revisions in CVPR 2004

Patent 5,475,769, December 1995.

9

