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Abstract which k is a delta kernel and is the input blurred image.
The MAP, ;. score does favor sharp signals at the vicinity

In blind deconvolution one aims to estimate from an in- L d
put blurred imagey a sharp image: and an unknown blur pf step edges, z_md thus steering it towz_;lrds the sharp solutio
is usually sensitive to a careful detection of step edges and

kernel k. Recent research shows that a key to success isthe boosting of their contribution
to consider the overall shape of the posterior distribution While ags'm ltaneous MAP ést'mat'on of both image
p(z, k|y) and not only its mode. This leads to a distinction ! imu u Imatl imag

beueen VAP, sirteges which estiate the mode par 274E1e1 Ibposed, estmaing he erel one st
x, k and often lead to undesired results, and MAdtrate- P

; ; . T is small relative to the number of image pixels measured
gf;ss/gg;:?msaegllzcs:t the bestwhile marginalizing over all [14]. This leads to MAR estimation:

The MAR, principle is significantly more robust than k = arg max p(kly) = argmax/p(z,k:|y)dw. @)
the MAR; ;, one, yet, it involves a challenging marginal-

ization over latent images. As a result, MARchniques  The challenge of the MAPscore is that computing(k|y)
are considered complicated, and have not been widely ex-in Eq. (3) involves a computationally intractable marginal
ploited. This paper derives a simple approximated MAP ization over all possible: explanations. The best practi-
algorithm which involves only a modest modification of cal MAP; algorithm is that of Fergust al. [5], but this
common MAR ;; algorithms. We show that MARcan, in algorithm is sometimes viewed as challenging to imple-
fact, be optimized easily, with no additional computationa ment. In general, despite the superior robustness of the
complexity. MAP;. estimation principle, only a few recent approaches
to blind deconvolution have taken this direction [5, 22,,18]

. whereas many research attempts are devoted to the, AP
1. Introduction approach [20, 2, 4, 7, 6, 21, 3, 23].

Blind deblurring is the problem of recovering a sharp ~ The main contribution of this paper is to show that an ap-
version of a blurred input image when the blur parameters proximation to MAR, can, in fact, be optimized easily us-
are unknown. Under certain motion types, a blurred input ing a simple modification to MAP;, algorithms. Similar to
y can be modeled as convolution of a latent sharp image most MAP, ;, approaches, we alternate between solving for
with a blur kernelk: the kernel and solving for the image. The critical differenc

y=k®u (1) is that our kernel update system accounts for the covariance
where bothz and k are unknown. Since there is an in- around the current latent image estimate, and not only for
finite set of pairs(z, k) that can explain an input image the central: estimate itself. Furthermore, an efficient ap-

y, additional assumptions are required. The common ap-Proximation to this covariance can be computed with no
proach is to utilize prior knowledge about the statistics €Xtra computational complexity. We derive this simple al-

of natural images, such as their sparse derivative distribu 90rithm by casting the MAPproblem in the Expectation-
tion [5, 11, 20, 2, 4, 7, 6, 21, 3, 23]. However, the prior itsel Minimization framework where the latent variable is the

is usually not enough, and the estimation strategy should beSharp imager. _
chosen with caution. We build on the algorithm of Ferguet al. [5], but pro-

The direct approach is to look for a MAR. estimate vide a significantly simpler derivation. As a result we shed

that is, a paif &, k) with maximal a posteriori probability new light on the success of this algorithm and lead to im-
proved performance.

2 To isolate the effect of the various algorithmic compo-
nents, we compare experimentally multiple algorithmic ver
The MAP, ;, pair should minimize the convolution error, sions. In particular, we show that the use of independent
and have sparse derivatives. However, as shown by Levinandy derivative images, which was originally thought of
et al. [14], the total contrast of all derivatives in a blurred as an approximation to the correct use of a real derivative
image is usually lower than in a sharp one. As a result, thefield, significantly improves performance. To encourage fol
MAP,, i, score tends to favor the no-blur explanation, for low up research, we include omat | ab implementation.

(2, k) = arg maxlog p(x, k|y).
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2. MAP,, blind deconvolution

In blind deconvolution, one observes a blurred imgge
which is the convolution of a latent sharp imagevith a
latent blur kernek, corrupted by measurement noise

y=k®x+n 4)

We denote the number of unknownsink by N, M respec-
tively, where typicallyM < N. Ferguset al. [5], formulate
the problem in derivative space, and consider:

@y =kQ(fa®@x)+nn, fo

with {fn, fo} = {[-1,1],[-1,1]7}. In their formulation,
the “blurred input” is taken ag = [f, ® v; f, ® y|, and
one solves for the derivative image= [f, ® z; f, ® «],
without enforcing{ f;, ® z, f, ® x} to integrate into a single
imagez. While ignoring integrability neglects an impor-

@y =k®(fo®z)+n0. (5)

wherec denotes a constantandp(k) is assumed uniform
and ignored.

The straightforward approach to blind deconvolution is
to search for the MAPR, solution:

(&, k) =argmax p(z, kly) =argmaxp(z,y, k) (10)

However, as analyzed by Levat al. [14], for priors of the
form of Eq. (6), MAR; ;, does not provide the expected an-
swer and favors the no blur explanation. Instead, they sug-
gest that since the kernel size is significantly smaller than
the image size, a MAP estimation of the kernel alone is well
conditioned. Thus, one should look for a MARSstimate,
marginalizing over all latent images:

k = arg max p(k|y) = arg max p(y|k)

11
p(y|k’)=/p(m,y|k)d:c (11)

tant constraint on the problem, we show that the derivative However, computing the integral of Eq. (11) is not trivial,

representation significantly improves the results in pcact
Our goal is to estimate and k from the blurred input
y. Since there are many paitsk which can explain the

y observation, one should utilize some prior knowledge. A

common natural image prior is to assume that the image

and the remainder of this paper discusses approximation
strategies.

2.1. EM optimization

To optimize the MAR score, we consider an

derivatives are sparse. In this article we express the spars Expectation-Maximization framework which treats the la-

prior as a mixture off Gaussians (MOG):
HiH'yp(fi V(x))

Z 372_ ||f1,.y(z)||2
J

wheref; - (x) denotes the output gf, ® = at thei’'th pixel.
In the image space formulation (Eq. (4})]”7}5:1 are a
set of derivative filters. In the derivative space formwati
(Eq. (5)).{ f+} consists of the delta filter.

Most blind deconvolution algorithms use a sparsity prior

(6)
(7)

p(x)
p(fin (7))
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on the kernel, and in practice our implementation employs 1. E-step: Sey(z) = p(z|y, k)

a weak sparsity prior as well. However, the contribution
of this term is usually small and for the simplicity of the
derivation, we consider here a uniform prior brand only
enforce all entries of to be non negative.

Assuming an i.i.d. Gaussian imaging noise with variance
n?, we can write

(wl. F) 1 _Ik@z—yl? ®
pylr, k) = ———xe
(vamn)™
whereN is the number of image pixels.
Combining Egs. (6)—(8) we express
p(y, . k) = p(y, x|[k)p(k) = p(y|z, k)p(z)p(k)
Thus,
k ® -
~logp(y, alk) = &2 —ull” y” Zlogp firn(@)) +c (9)

tent image as a hidden variable and marginalizes over it. In
a nutshell, this algorithm alternates between two mairsstep
In the E-step one solves a non-blind deconvolution problem
and estimates the mean image given the current kernel, with
the covariance around it. In the M-step one solves for the
best kernel given the image. However, it accounts for the
covariance around the image estimate and not only for the
mean image estimate itself. Accounting for the covariance
is the crucial difference distinguishing the EM MARp-
proach from the MAR ;. approach. Formally, the algorithm

is defined as follows:

, and compute, C, the
mean and covariance ¢fx), which are the mean im-
age given a kernel and the covariance around it.

2. M-step: Findk minimizing

Eq[lk®z—yl?]. (12)

As explained below, since Eq. (12) integrates a
guadratic term, the mean and covariance computed in
the E-step are the sufficient statisticsq¢f) required

for that minimization.

The standard EM derivation shows that if the E-step is ex-
act, every step of this algorithm improvéss p(y|k) [8].
The M-step minimization can be done easily, by solving a
guadratic programming problem. This requires knowledge
of the mean and covariance @flone and not the full dis-
tribution.

IThrough this paper, we overload the variable denote any additive
constant independent of the variables of current interest.
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Claim 1l Eqg. (12) is minimized by the solution to the as:
guadratic programming problem

— log p(y, alk)= te

[k ® 2~y |l fir ()]
21?2 +; 202

1 _ _
min 5kTAkk: —bik, st k>0 (13)

1 T T
=T A,z —b 18
where 2x TobprAce (18)

A, (1109)=>", pli+iDpli+is) + Clitiy,i+io (14) wherec denotes an additive constant and:
br()=>"; n+i)y ). (15) A= LTI+ 55 T Ty, (19)

Proof: For a fixedz, the convolution error is quadratic in be =Ty (20)

and therefore can be written as ) ) o
whereT, denotes a Toeplitz (convolution) matrix with the

Ik @z —y|* = k" Apk — bL k (16) filter ¢. The conditional distributiop(z|y, k) is also Gaus-
sian, and its mean and covariance can be shown to be:
If kis anm xm kernel andM = m?, A, isanM x M C=At 4= Cb,. 1)

matrix representing the covariance ofall m windows in

x, andby, the correlation withy: This implies thaty is the solution of the linear system

A, = by, which is essentially a non-blind deconvolution
problem: find an imagg@ such that its convolution witlk

Ak(ihiz):z:m(i—&—il)x(i+i2)7 bk(il)zzx(iJril)y(i) approximateg,, plus a regularization term on the deriva-
' ' (17) tives. The deconvolution system can be solved efficiently
wherei sums over all image pixels, angl, i> are kernel in the frequency domain. We show in Sec. 3 that this sim-

indexes (in practice these are 2D indexes but we use theple Gaussian prior already provides good results, but spars
1D vectorized version of the image and kernel). Averaging priors can further improve performance.

Eq. (17) overx values coming from the distributiog(x) ) , i

provides Egs. (14) and (15). Therefore, minimizing Eq. (12) APProximate E-step using sampling: Unfortunately,

with respect td is equivalent to minimizing Eq. (13B there is no closed-form formula_for the mean and <_:ovari-
ance under a general sparse prior. One approach is to ap-

_ _ proximate these using samples. We tried the MOG sam-
EMMAP ;. v.s. MAP, .. MAP, . algorithms usually al-  pjing algorithm of Levi and Weiss [10, 19]. However, this

ternate between two main steps: 1) Bebnstant and solve  sampling algorithm is quite slow. A better option discussed
for the best (a non-blind deconvolution problem), and 2) - i, the next section, is to consider variational free-enexgy
setx constant and solve for the bést The EM algorithm proximations.

is not more complicated: finding the mean image in the E- o _
step is equivalent to solving fargivenk. Inthe M-stepone  2.2. Variational free energy strategies

solves fork, where the only difference is that solving fer Since for a sparse prior the mean and covariance can-
in Eq. (13) takes into account not only the besbut also  not be computed in closed form, we approximate the condi-
the covariance around it. However, this small covariance tional distribution with a simpler one using variationalop
term has a crucial effect on the results. Deleting the co- timization. The major algorithmic steps are summarized
variance term from Eq. (14) will move us from the desired in Algorithm 1. In practice, this algorithm is very simple
MAP,, result to the problematic MAP;; one. We show that  to implement and involves steps which are anyway com-
an approximated covariance can be computed efficiently. puted by MAR, ; algorithms. Givenk it solves a non-
blind deconvolution problem, at which a mean latent im-
2.1.1 The E-step age estimatg is computed using iterative reweighted least
.squares[12, 13]. In each iteration, one fipdsy solving an
N x N linear systemA, i = b,.. This system seeks mini-
mizing the convolution error plus a weighted regularizatio
term on the derivatives (compare Eq. (19) with Eq. (24)).
The weights are selected to provide a quadratic upper bound
on the MOG negative log likelihood based on the previous
1 solution. This iterative reweighted least squares algorit
is a standard strategy for findingin a MAP, ;, approach.
E-step under a Gaussian prior: A Gaussian prior o To efficiently compute the covariance around the mean im-
can be expressed using Eq. (7) with a single mixture com-ageu, we approximate it with a diagonal matrix. The di-
ponentp(y, z|k) is then Gaussian as well, and Eq. (9) reads agonal approximation can be computed easil@{iV), by

For general sparse priors, computing the mean and covar
ance of the distribution is hard, and below we discuss our
approximation strategy. For simplicity, we start with the
case of a Gaussian prior an For a Gaussian prior, the co-
variance can be computed in closed form, resulting in the
Gaussian blind deconvolution algorithm of [15].
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inverting the diagonal elements of the weighted deconvolu-

tion systemA,,.
Given u, C, one employs the M-step described in the

previous section, and solves for the kernel as a quadratic

programming problem. This is again a standard step in
MAP,, ;. algorithms with the important difference that one
accounts for the covariance and not only the singleo-
lution. However, including the covariance can be done at
no extra computational complexity. We usually iterate step
1&2 (solving forz) of Algorithm 1 three times before pro-
ceeding to step (solving fork).

For completeness, we provide below a formal derivation
of the variational free-energy algorithm. Similar derivat
can be found in [17, 1]. The reader who is interested in
experimental evaluation can directly read Sec. 3.

Algorithm 1 Blind deconvolution using free-energy
Iterate:

1. Update weights:

_Ellfi 4 @13

T 202
U#e Jo
Wingg = — ~ Ellfi, @2 (2)
Tige
with B[] f; - (x)|*] given byp, C
SetW, to be a diagonal matrix with:
Wi(i,i) =S % (23)
7 J
2. Updater: set
A, = QTng—l-Z Tf VVTJ{Y (24)
solve: A, = b,.
set diagonal covariancéi(i, i) = m
3. Updatek: set
Aplini) =3, pli+inpl+i) +Cl+iyi+iy). (26)
bi i) =22; pli+i)y (). (27)
solve the quadratic program
ming %kTAkk 45Tk st k>0 (28)

2.2.1 Hidden mixture component variables

Before introducing the variational framework, we rewrite
the MOG prior of Eq. (7) with a slight change. We associate
with each derivative a hidden variablg - indicating the

mixture component from which it arisek; -, can take each
of J discrete valueg € {1,...,J}. Then
hi, My,

Z —gazlfi @)
J
V2 UJ

whereh; - ; is a short notation fos(h; , — j). The prior on
the hidden variables is the mixture component prior

p(fL ¥ |hL ¥ (29)

p(hiy,j) = 5. (30)
Therefore
p(fi,’y(x)) = Zp zv,g fz,'y( )l ,’y,j)
B Z C,nglfi,v(z)ll (31)

vV 27T07

which is exactly the original prior definition in Eq. (7).

The main advantage in introducing the hidden variables
is that given their values, things become Gaussian. In par-
ticular, with h included, the joint distribution of Eq. (9) sim-
plifies to:

Ik ®z —y]
2 2

S b (IIfm (@)

(250

—logp(y,x, h|k) =

+ g log(o?) —log(rm) ) e
@2)

2.2.2 The free energy

The idea behind the variational framework is to search for a
distributiong(x) approximatingy(x|y, k). While p(z|y, k)
cannot be computed in closed form, the trick is to select
g(x) from some simpler parametric family, which allows
for tractable computation. In our case we chogse be a
distribution on both: andh, of the form

— q(@) [T athir)

q(z) is chosen to be a Gaussian distribution, character-
ized by a mearu and covarianc&’. q(h;.) is just a.J-
dimensional vector whose elements sum {@o be a valid
distribution), thej’th element of this vector ig(h;, = j).
To fully expressq(h) we need to define a separafe
dimensional vector for each image pixel.

The variational optimization attempts to minimizes the
free energy:

(33)

— [q(z,

+ [a(z,
A standard result reviewed in [16] states that

F(q)=Dxkr (q(z, h)|[p(=, hly, k)) —log p(y|k)

Since the KL-divergence is non-negative, minimizing the
free energy minimizes an upper bound on the term

h)log p(y, z, h|k)dhdx

h)log q(x, h)dhdx (34)
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—log p(y|k) we wish to minimize. If the family o distri-

For the specific case of a Gaussian prior the, filter

butions include(x, h|y, k) such as in the Gaussian case, weights are uniform and one can solve foefficiently in

andk is fixed, the besq in the family is exacthyp(x, hly, k).

the frequency basis. Otherwise, we would like to employ a

If the ¢ family is not expressive enough, the best approxi- fast numerical solver, and our implementation uses the con-

mation should be chosen.

jugate gradient algorithm. One can also consider the fast

To minimize the free energy we use an alternate opti- solver of [9], but we found that for this application, con-

mization over the parameteksy, C, q(h; ~). In each step

jugate gradient converges faster. Another solver disclisse

it selects the optimal value for one of the parameters while below is the simple Gauss-Seidel solver, which is employed
holding the others fixed. The update equations are derivedby the classical mean-field approach [5, 17].

below.

2.2.3 Update equations

To derive the update equations, let us substitute Egs. (32)A, !

Updating C: In [16], we also differentiate Eq. (39) with
respect taC and show that it is minimized by settig =
. However, inverting aiV x N matrix is impractical for

and (33) in Eq. (34) and express the blind deconvolution large images. To simplify computation, one can search for

free energy explicitly:
Flg)=
fq(m)okem 4 (o) L )dx

+31, 4(hing) (5 10g(07) —log(m;) + log(q(hi,5)))
—11log|C| +c.

(35

We now attempt to minimize Eq. (35) with respect to each

of its variables while fixing the others.

Updating g(hiy): Fixing p, C, k, for eachi, v we can iso-
late from Eqg. (35) the terms which involve.:

()2
ZjQ(h@v,j)(%%M+%log(ff?)—10g(7fj)+10g(Q(hi,v,j))>
(36)
Where E[|| f; o (2)[|?] = [ q(z)|fi(z)]*dz, is the ex-
pected derlvatlve magnltude accordmg to the curgedfis-

a covariance matrix with a simpler parametric form. The
simplest choice would be a zero covariance, but ignoring
the variance around completely leads to the undesirable
MAP,, ;. solution. A more reasonable alternative is to con-
strain C to be diagonal. In [16], we show that the best
choice for a diagonal covariance is to use the inverse di-
agonal of the weighted deconvolution system

1

Cld) = 5y

(41)
This diagonal” can be updated efficiently, iR (V).

While not derived here, one could consider several other
simplified covariance forms, for example, a block diagonal
covariance, or a Toeplitz (convolution) covariance whih i
diagonal in the frequency domain.

Updating k: Given the mean and covariance computed
above, we updatk by solving the quadratic programming

tribution, which can be easily computed using the mean andproblem of Eq. (13).

covariances, C, e.g. if f, is a delta filter E[|| fi , (z)||?] =
w(@)* + C(i,1).
g(hi~) should be a unit suni-dimensional vector. By

2.3. Fergus et al.'s algorithm
Our algorithm is related to the successful Fergtigl.

writing the Lagrangian of the problem, one can show that approach [5], and our analysis is aimed to alleviate some

Eq. (36) is minimized by

_ EBllfi 4 @13 B[l fi,~ @)1
Tjo 202

T T 202
q(hiy.jo) = 5. C ooy e BE (37)

Jo — 05

Updating p:  We hold k, ¢(h; ) fixed and isolate from
Eq. (35) the terms which |nvoIv,e We can write:

F(q) = /q(a:) <%xTAzx — bf:r) dx — %log |IC| + ¢ (38)

with A, b, defined in Eq. (24). Sincg(x) is Gaussian, the
integral of Eq. (38) can be computed easily:

1 1 1
Fg) =" Aepi—by pt 5Tr(A:C) = 5 1og [Cl+c  (39)

Since Eq. (39) is quadratic in, it is minimized by the so-
lution to the linear system:

of its components and simplify extensions [22, 18]. Fergus
et al. [5] algorithm is similar to the diagonal free-energy
approach, and represents the problem in derivative space
(Eq. (5)). The main differences are summarized below.

Free energy definition: Ferguset al. [5] and the origi-

nal Miskin and MacKay [17] algorithms use a more general
free energy function, which aims to approximate the joint
distributionp(z, k|y) and not just the conditional «|%, y).

In practice, this means that they also estimate the variance
aroundk, while our approach considers a singlestimate

at each iteration. However, since Fergus’ algorithm works
in derivative domain, the: estimated by their variational
approach is an independent set of derivatives and not the
desired image. Thig derivative estimate cannot be used
directly, leading Fergust al. to a MAPR, approach. That

is, they picked only thé estimate resulting from their vari-
ationalp(z, k|y) approximation, and used it to deconvolve
the input image. Later, Leviet al. [14] showed that this
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3. Experiments

——Gaussian, img spase
——Sparse, FE, img space
——Gaussian, filt spase
[|——Sparse, FE, filt space

A mat | ab implementation of the algorithms derived in
this paper is available onliReThis unoptimized implemen-

Sparse, Smp, filt space tation processes tH&5 x 255 test images of [14] in about
—Fergus 2-4 minutes.
Cho

The MAP; algorithms described in the previous section
involve three main choices. First, whether we express the
problem in the image (Eq. (4)) or filter spaces (Eq. (5)).
Second, the type of prior used— Gaussian or sparse. And
finally, the choice of covariance approximation. To isolate
the effect of the different factors we have compared five dif-
ferent algorithmic versions. First, a Gaussian prior [1b] i
both image and filter domains. In this case the covariance
can be computed exactly and efficiently in the frequency ba-
sis. Second, we used a sparse MOG prior in the image and
filter domains. We use the free energy approach to compute
a diagonal covariance. The last algorithm used the fil-
ter domain and estimated a covariance using the sampling

MAP,, approach is actually a major reason for their success.algorithm of [10, 19].  Like most recent blind deconvolu-
In this paper we have observed that once the goal is directlytion algorithms, we used a coarse to fine approach. We also

Success percent
=
o

2 3 4 5
Error ratios
Figure 1. Evaluation results: Cumulative histogram of teeah-
volution error ratio across test examples (ifin bin counts the
percentage of test examples achieving error ratio bejow

expressed as computing MAPthe full conditional distri- ~ compare our results with Cho and Lee [2], the best available
butionp(z, k|y) is not required, which significantly simpli- ~ MAP,, ;. algorithm, and with the original implementation of
fies the update equations. Ferguset al. [5].

We used the 32 test images of [14]. To evaluate the re-
Mean field: The algorithms of [5, 17] employ a mean- suylts we used the SSD ratio test of [14], and measured the
field approach. The classical mean field approach is ba-ratio of error between deconvolution with the estimated and
sically a specific simplified choice of approximate distri- correct kernels. The idea is to normalize for the fact that
bution ¢, which factorizes as an independent product over harder kernels achieve a larger reconstruction error even
pixels g(x) = Il;q(x;), where eachy(z;) is a 1D Gaus-  \when estimated correctly. In Fig. 1 we plot the cumulative
sian, whose mean and variance should be estimated. Thigistogram of error ratios (e.g. bin = 3 counts the per-
is essentially the case if a diagonal covariance is assumedgentage of test examples with error ratio belRw Fig. 2

However, in the mean field framework, one typically up- visualizes deconvolution results for two test images, more
dates only a single(x;) at a time, holding all other pixels  yesults are included in [16].

fixed. On the other hand, since we vieMr) as a joint
distribution on all pixels, we update all of them simultane-
ously. Solving Eq. (40) with respect to a single pix¢l) at

a time is equivalent to the Gauss-Seidel linear solver, whic
is known as a slow numerical solver. If all variables can be
updated simultaneously, stronger solvers can be employed
In our implementation we have observed that, with a suffi-
cient number of iterations, the Gauss-Seidel approactslead
to good results, but stronger solvers converge much faster.

The best results are obtained by the diagonal free energy
approach in the derivative space. The original results of
Ferguset al. [5] slightly outperform Cho and Lee [2]. The
evaluation shows that the derivative-space approachlglear
outperforms the image-domain approach, and we discuss
this success below. The simple Gaussian prior performs
surprisingly well and, in the image domain, it even outper-
forms the sparse one (our Gaussian results improve over the
original results of [14]). The sampling approach is signifi-
cantly slower than the free energy approach, and produces

Noise estimate: Ferguset al. algorithm also automati- slightly less accurate results. We observe that deconwalut
cally estimates the noise variance. We have observed this ghtly '

is often a source of problems since their optimization di- results are usually visually plausible when their erroiorat

verges when the noise estimate decreases too much. odpP below 3. Thus, the error ratios in Fig. 1 shéwf suc-

. . ) : . cess for our diagonal free energy deconvolution, compared
implementation alleviates this component by assuming theWith 75% success for the original Ferges al. implemen-
noise variance is known, and we usge- 0.01 in all exper- ¢ 9 9 - 1mp

iments. However, one reason for a noise update is that gmtation and§9% for Cho and Lee. Despite the subtle differ-

algorithms are known to converge slowly at low noise levels ences, all these a!go_rl.thms perform reIatlver_ well. Most
and faster at higher ones. To speed convergence, we Stall{nportantly,_they significantly out_perform ahaie MAR
with a high noise variance and gradually reduce it during approach with no extra computational complexity.
optimization, dividing by a factor of.15, until the desired
n = 0.01 value is reached. 2ywww.wisdom.weizmann.ac.il/ levina/papers/LevinEtRR2011Code.zip
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Input Gaussian, img space Sparse, free-eng, img space i@aUdsspace
Error ratio4.75 Error ratio9.78 Error ratio6.44

Our alg: sparse, free-eng, filt space Sparse, samplingpéittes Fergus Cho
Error ratio2.06 Error ratio3.51 Error ratio10.45 Error ratio4.00

Gaussian, img space Sparse, free-eng, img space i@aUdsspace
Error ratio3.07 Error ratio2.76 Error ratio4.14

Our alg: sparse, free-eng, filt space Sparse, samplingpféittes Fergus Cho
Error ratio1.86 Error ratio2.63 Error ratio1.91 Error ratio9.21

Figure 2. Recovered images for two test examples. We erafiiricbserve that deconvolution results are visually glalesvhen the ratio
of errors between deconvolution with the estimated kerndldeconvolution with the ground truth kernel is beldw
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The success of the derivative space approach:The References

derivative space solution assumes independence betweer‘[l]
derivatives and ignores the important integrability con-
straint. Despite this problematic assumption, it largaty i 2]
proves the results in practice.

One advantage of the derivative representation is that it [3]
fits better with the variational model which considers an in-
dependent product over variables. Another advantagetis tha [4]
the deconvolution system solved in each iteration is better
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