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Abstract— This paper develops probabilistic methods for visual
tracking of a three-dimensional geometric hand model from
monocular image sequences. We consider a redundant repre-
sentation in which each model component is described by its
position and orientation in the world coordinate frame. A prior
model is then defined which enforces the kinematic constraints
implied by the model’s joints. We show that this prior has a
local structure, and is in fact a pairwise Markov random field.
Furthermore, our redundant representation allows color and
edge-based likelihood measures, such as the Chamfer distance, to
be similarly decomposed in cases where there is no self–occlusion.

Given this graphical model of hand kinematics, we may track
the hand’s motion using the recently proposed nonparametric
belief propagation (NBP) algorithm. Like particle filters, NBP
approximates the posterior distribution over hand configurations
as a collection of samples. However, NBP uses the graphical
structure to greatly reduce the dimensionality of these distribu-
tions, providing improved robustness. Several methods are used
to improve NBP’s computational efficiency, including a novel
KD-tree based method for fast Chamfer distance evaluation. We
provide simulations showing that NBP may be used to refine
inaccurate model initializations, as well as track hand motion
through extended image sequences.

I. INTRODUCTION

Accurate visual detection and tracking of three–dimensional
articulated objects is a challenging problem with applications
in human–computer interfaces, motion capture, and scene
understanding [25]. In this paper, we develop a probabilistic
method for tracking a geometric hand model from monocular
image sequences. Because articulated hand models have many
(roughly 26) degrees of freedom, which are only indirectly
related to the observed images, exact representation of the
posterior distribution over model configurations is intractable.
Extended and unscented Kalman filters [12, 14, 19] approx-
imate the posterior by a single Gaussian, and update these
approximations via a linearization of the measurement process.
However, because many different hand configurations may
approximately match a given image, the true posterior is often
multimodal, making linear approximations ineffective.

Given the ambiguities inherent in visual tracking problems,
many authors have considered nonparametric density repre-
sentations. For example, particle filters [6] approximate the
posterior distribution by a set of representative elements, and
use Monte Carlo importance sampling rules to update these
particles. However, due to the large number of degrees of
freedom in hand tracking problems, particle filters cannot hope
to accurately represent the true posterior. Instead, particles tend
to concentrate in only a few of the most significant modes,
and the tracker can suffer catastrophic failures. This problem

has motivated previous authors to consider simplified models
which only allow a limited range of object motions [11], as
well as sophisticated prior models which better predict the
object’s dynamics [16, 26].

Deterministic nonparametric approximations are also pos-
sible, as demonstrated by a recently proposed tree–based
estimator [20] which defines a multiscale discretization of
the state space. This approach achieves computational savings
by approximating image likelihoods as piecewise constant
at coarse scales of the discretization, and only recursively
evaluating those cells who’s probability is above a predefined
threshold. However, this approach is only effective when the
tree structure is constructed using prior information which
strongly constrains the hand’s configuration. If the prior is
uninformative, such pruning rules are very likely to miss
important hand configurations.

Given the difficulties in approximating high–dimensional
distributions, some authors have proposed replacing tracking
by classification [1, 15], where classes correspond to some
discretization of allowable hand configurations. These methods
are most appropriate in applications such as sign language
recognition, where only a small set of poses is of primary
interest. Also, as these methods are based on precomputed
images of the hand from all possible configurations, they
require large amounts of storage space. A recently proposed
method for interpolating between classes [22] makes no use
of the image data during the interpolation, and thus assumes
that the transition between any pair of hand pose classes is
highly predictable.

An alternative way to address the high dimensionality of
articulated tracking problems is to identify statistical struc-
ture within the posterior distribution. This structure can be
described using a graphical model, or Bayesian network.
Graphical models have been used to track view–based human
body representations [13], contour models of restricted hand
configurations [4], view–based 2.5D “cardboard” models of
hands and people [24], and a full 3D kinematic human
body model [17]. Because the variables in these graphical
models are continuous, and discretization is intractable for
three–dimensional models, most traditional graphical inference
algorithms are inapplicable. Instead, these trackers are based
on recently proposed extensions of particle filters to general
graphs: mean field Monte Carlo in [24], and nonparametric
belief propagation (NBP) [8, 21] in [17].

In this paper, we show that NBP may be used to track a
three–dimensional geometric model of the hand. To derive
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Fig. 1. Projected edges (top row) and silhouettes (bottom row) for two configurations (left and right blocks) of the 3D structural hand model. To aid
visualization, the model joint angles are set to match the images (left), and then also projected following rotations by 35◦ (center) and 70◦ (right) about the
vertical axis.

a graphical model for the tracking problem, we consider a
redundant local representation in which each hand compo-
nent is described by its own three–dimensional position and
orientation. We show that the model’s kinematic constraints,
including self–intersection constraints not captured by joint
angle representations, take a simple form in this local repre-
sentation. Furthermore, in cases where model components do
not significantly occlude each other, standard edge and color
based likelihood measures may be similarly decomposed. We
describe the implementation of NBP on this model, as well as
several methods for improving computational efficiency. These
include a novel method for fast orientation–based Chamfer
distance evaluation using KD–trees [2]. We conclude with
simulations demonstrating that NBP can refine noisy initial-
izations in single frames, as well as track hand motion over
two extended sequences.

II. GEOMETRIC HAND MODELING

A. Structural Model

Structurally, the hand is composed of sixteen approximately
rigid components: three phalanges or links for each finger and
thumb, as well as the palm [25]. As proposed by [14, 19],
we model each rigid body by one or more truncated quadrics
(ellipsoids, cones, and cylinders). These geometric primitives
are well matched to the true geometry of the hand, and
in contrast to 2.5–dimensional “cardboard” models [24, 26],
allow tracking from arbitrary viewing orientations. In addition,
because the perspective projection of a quadric surface is a
conic, one can efficiently determine the image points lying
on the boundary or silhouette of the projection of any three–
dimensional model configuration [3, 19].

Figure 1 shows the edges and silhouettes corresponding to
two different configurations of the hand model, each of which
is seen from three different viewpoints. Because our model is
designed for estimation, not visualization, precise modeling of
all parts of the hand is unnecessary. As our tracking results
demonstrate, it is sufficient to capture the coarse structural

features which are most relevant to the observation model
described in Sec. III. Note also that we do not consider model
self–occlusion when finding edges. See Sec. III-A for further
discussion of this approximation.

B. Kinematic Model

The kinematic constraints between different hand model
components are well described by revolute joints [25]. Fig-
ure 2(a) shows a graph describing this kinematic structure, in
which nodes correspond to rigid bodies and edges to joints.
The two joints connecting the phalanges of each finger and
thumb have a single rotational degree of freedom, while the
joints connecting the base of each finger to the palm have two
degrees of freedom (corresponding to grasping and spreading
motions). Thus, twenty joint angles are required to describe
the relative positions of all hand parts.

The full configuration of the hand is described by these
angles along with the palm’s global position and orientation,
giving a total of 26 degrees of freedom. Given image mea-
surements, calculation of a model configuration’s likelihood
generally requires the global position and orientation of each
component. This forward kinematics problem is easily solved
via a series of transformations derived from the position and
orientation of each joint axis, along with the corresponding
joint angles (see, for example, [12] for details).

C. Redundant Local State Representation

Most model–based hand trackers parameterize the model
state in terms of the twenty joint angles described above,
along with the palm’s global position and orientation. In
this paper, we instead explore a redundant representation in
which the ith rigid body is described by its position qi and
orientation ri (a unit quaternion). Let xi = (qi, ri) denote this
local description of each hand component’s configuration, and
x = {x1, . . . , x16} the configuration of the entire hand.

Clearly, there are dependencies among the elements of x
implied by the kinematic constraints. Let EK be the set of all
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(a) (b)

Fig. 2. Graphs describing the hand model’s physical constraints, where
nodes correspond to different hand components. (a) Kinematic constraints
corresponding to the revolute joints between neighboring components.
(b) Structural constraints which prevent the intersection of hand components
in three–dimensional space.

pairs of rigid bodies which are connected by joints, or equiv-
alently the edges in the kinematic graph of Fig. 2(a). For each
joint (i, j) ∈ EK , define an indicator function ψK

i,j (xi, xj)
which is equal to one if the pair (xi, xj) are valid rigid
body configurations associated with some setting of the angles
of joint (i, j), and zero otherwise. Viewing the component
configurations xi as random variables to be estimated, the
following prior model explicitly enforces all of the constraints
implied by the original joint angle representation:

pK(x) ∝
∏

(i,j)∈EK

ψK
i,j (xi, xj) (1)

The structure of eq. (1) shows that pK(x) is a graphical
model (in particular, a pairwise Markov random field). The
graph describing the kinematic structure (Fig. 2(a)) is the
same as the graph describing the Markov structure of pK(x).
Intuitively, this graph expresses the fact that conditioned on
the configuration of the palm, the position and orientation of
each finger is described by an independent set of joint angles,
and is thus statistically independent.

At first glance, the local representation described in this
section may seem unattractive: the state dimension has in-
creased from 26 to 96, and inference algorithms must now
explicitly deal with the prior constraints described by pK(x).
However, as we show in the following sections, local encoding
of the model state greatly simplifies many other aspects of the
tracking problem.

D. Structural Constraints

In reality, the joint angles describing hand configuration are
not independent because different fingers can never occupy
the same physical volume. The constraints that this places on
joint angles are a complex function of the hand’s geometry,
and are difficult to express compactly. However, in the local
representation of the previous section, these structural con-
straints take a simple form: the position and orientation of

t t+1

Fig. 3. Graphical model of the dynamics relating two consecutive time steps.
For clarity, edges corresponding to structural potentials are not shown.

every pair of rigid bodies must be such that their component
quadric surfaces do not intersect.

For computational efficiency, our tracking algorithm ap-
proximates this ideal constraint in two ways. First, we only
explicitly constrain those pairs of rigid bodies which are most
likely to intersect, corresponding to the edges ES of the graph
in Fig. 2(b). Furthermore, because the relative orientation
of each finger’s quadrics is implicitly constrained by the
kinematic prior pK(x), we may detect most intersections based
on the distance between object centroids:

ψS
i,j (xi, xj) =

{

1 ||qi − qj || > δi,j
0 otherwise

(2)

Here, δi,j is a threshold determined from the radii of the cones
or cylinders defining rigid bodies i and j. As for the kinematic
constraints, we define a prior model which ensures that the
structural constraints are not violated:

pS(x) ∝
∏

(i,j)∈ES

ψS
i,j (xi, xj) (3)

We have found this constraint to be important in our simula-
tions to prevent different fingers from attempting to track the
same image data.

E. Temporal Constraints

Thus far, our discussion has focused on the hand constraints
present at a single point in time. In order to track hand motion,
we must have some model of the hand’s dynamics. Let xt,i

denote the position and orientation of the ith hand component
at time t, and xt = {xt,1, . . . , xt,16}. For each component
at time t, our dynamical model adds a Gaussian potential
connecting it to the corresponding component at the previous
time step:

pT (xt | xt−1) =

16
∏

i=1

N (xt−1,i − xt,i; 0,Λi) (4)

A graphical representation of these potentials is given in Fig. 3.
Although this temporal model is factorized, the kinematic
constraints at the following time step implicitly couple the
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(a) (b)

Fig. 4. Image evidence used for tracking. (a) Intensity edges detected by a
thresholded gradient operator. (b) Likelihood ratios at each pixel for a color–
based skin detector.

corresponding random walks. These dynamics can be justified
as the maximum entropy model given observations of the
nodes’ marginal variances Λi.

III. OBSERVATION MODEL

Our hand tracking system is based on a set of efficiently
computed edge and color cues. For notational simplicity, we
focus on a single video frame for the remainder of this section.

A. Edge Matching Using the Chamfer Distance

As a hand is moved in front of a camera, it obscures the
background scene and thus tends to produce intensity edges
along the boundaries of its projection in the image plane (see
Fig. 4(a)). This edge cue is used by virtually all model–based
hand tracking systems [11, 14, 19, 20, 24, 26]. Following [20],
we use the Chamfer distance to measure discrepancies between
projected model edges and image edges detected by a simple
gradient operator. To improve accuracy, we measure distance
in terms of both edge position and orientation.

Let Π(x) denote the set of edges in the projection of
three–dimensional model configuration x, and ∆(y) the output
of an edge detector on the image y. The Chamfer distance
dE(Π(x),∆(y)) is then given by

d2
E(Π(x),∆(y)) =

∑

u∈Π(x)

[

min
v∈∆(y)

g2(u, v)

]

(5)

Here, g(u, v) determines the metric by which errors in edge
matches are measured. Letting u = (up, uθ) denote the
position up and orientation uθ of edge u, we define

g2(u, v) = min

(

||up − vp||2

σ2
+ d2

π(uθ, vθ), g0

)

(6)

where dπ(uθ, vθ) measures absolute differences in orientation
modulo π, and g0 adds robustness to edge detection failures.
Finally, we associate this distance with a likelihood function
as follows:

pE(y|x) ∝ exp
{

−λEd
2
E(Π(x),∆(y))

}

(7)

For a discussion of the generative model underlying this
likelihood function, see [23].

B. Silhouette Matching Using Skin Color Statistics

Skin colored pixels are well known to have predictable
statistics [9], and thus provide a powerful cue for hand
tracking. We model the color distribution pskin of skin pixels
by a single Gaussian in RGB space, with mean and covariance
estimated from hand–selected training patches. We assume that
non–skin pixels have a uniform color distribution pbkgd.

Let Ω(x) denote the set of pixels in the silhouette of
projected hand model configuration x, and Υ the set of
all image pixels. Assuming each pixel is independent, the
likelihood of an image y is

pC(y|x) =
∏

u∈Ω(x)

pskin(u)
∏

v∈Υ\Ω(x)

pbkgd(v)

∝
∏

u∈Ω(x)

pskin(u)

pbkgd(u)
(8)

The second equation follows by neglecting the proportionality
constant

∏

v∈Υ pbkgd(v), which is independent of x [4]. Note
that we must only evaluate the likelihood ratio over the
silhouette region Ω(x). Figure 4(b) plots these likelihood ratios
for a sample hand image.

C. Local Decomposition of Likelihoods

Suppose that the hand model is in a three–dimensional
configuration for which there is no self–occlusion. In this case,
each hand component will project to a disjoint subset of the
image pixels, and the Chamfer distance (eq. (5)) decomposes
as

d2
E(Π(x),∆(y)) =

16
∑

i=1

d2
E(Π(xi),∆(y)) (9)

This in turn implies that the edge–based likelihood (eq. (7))
factorizes into a product of terms which provide independent,
local evidence for each component:

pE(y|x) ∝
16
∏

i=1

pE(y|xi) (10)

Similarly, the skin color likelihood (eq. (8)) decomposes as

pC(y|x) ∝
16
∏

i=1

pC(y|xi) (11)

Note that this statistical decomposition does not hold for the
original joint angle representation, and is heavily dependent on
our choice of a state representation in which the relationship
between model parameters and image coordinates is local.

In cases where there is self–occlusion, the local decomposi-
tion of eq. (10, 11) will not hold. Nevertheless, we believe that
this decomposition will often provide a good approximation.
In particular, because occlusion reasoning can only reduce the
number of projected model edges, the local decomposition of
eq. (10) will always provide an upper bound on the true edge
likelihood pE(y|x).
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D. Fast Likelihood Computation

Because the nonparametric belief propagation algorithm
proposed in this paper must evaluate many different hy-
potheses for each model component, it is important that the
evaluations of our likelihood functions be computationally
efficient. For the skin color term (eq. (8)), we precompute the
cumulative sum of the log likelihood ratios along each row of
pixels. We may then quickly integrate the likelihood of each
hypothesized silhouette region, given only the boundaries of
that silhouette.

For the Chamfer distance, our inclusion of orientation in-
formation makes it difficult to use standard distance transform
methods. We instead use KD–trees [2] to exploit the geometric
structure underlying our detected edges. For low–dimensional
collections of points, KD–trees may be efficiently constructed,
and then used to find nearest neighbors in logarithmic time.

Given a set of detected edges, we precompute a KD–tree
representation of the three–dimensional vectors corresponding
to each edge’s position and orientation. To account for the
fact that orientation distance must be measured modulo π,
we also include a second, appropriately rotated copy of
each point. Then, for each hypothesized model configuration,
the minimization step of the Chamfer distance computation
(eq. (5)) can be performed via efficient nearest–neighbor
search in the KD–tree. Using KD–trees, we achieve very
fast Chamfer distance computation without requiring excess
storage or suffering from discretization artifacts.

IV. NONPARAMETRIC BELIEF PROPAGATION

A. Graphical Models and Belief Propagation

In the previous sections, we have shown that a redundant,
local representation of the geometric hand model’s configura-
tion xt allows p (xt | yt), the posterior distribution of the hand
model at time t given image observations yt, to be written as

p(xt|yt) ∝ pK(xt)pS(xt)

[

16
∏

i=1

pE(yt|xt,i)pC(yt|xt,i)

]

(12)

where pK(xt) and pS(xt) are kinematic and structural prior
models corresponding to the graphs of Fig. 2. This expression
is exact when there is no self–occlusion, and a potentially
useful approximation more generally. When T video frames
are observed, the overall posterior distribution is given by

p (x | y) ∝
T

∏

t=1

p (xt | yt) pT (xt | xt−1) (13)

Equation (13) is an example of a pairwise Markov random
field, which can more generally be written as

p(x|y) ∝
∏

(i,j)∈E

ψi,j (xi, xj)
∏

i∈V

ψi (xi, y) (14)

Here, V is a set of nodes, corresponding to the sixteen
components of the hand model at each time step, and E is
a set of edges specifying their statistical dependencies.

Given our analysis, hand tracking can be seen as a special
example of inference in a graphical model. In this paper, we

consider belief propagation (BP) [27], a method for solv-
ing inference problems via local message–passing. At each
iteration of the BP algorithm, some node i ∈ V calculates
a message mij (xj) to be sent to some neighboring node
j ∈ Γ(i) , {j | (i, j) ∈ E}:

mn
ij (xj) = α

∫

xi

ψj,i (xj , xi)ψi (xi, y)

×
∏

k∈Γ(i)\j

mn−1
ki (xi) dxi (15)

Here, α denotes an arbitrary proportionality constant. At any
iteration, each node can produce an approximation p̂(xi | y) to
the marginal distribution p (xi | y) by combining the incoming
messages with the local observation:

p̂n(xi | y) = αψi (xi, yi)
∏

j∈Γ(i)

mn
ji (xi) (16)

For tree–structured graphs, the approximate marginals, or
beliefs, p̂n(xi | y) will converge to the true marginals p (xi | y)
once the messages from each node have propagated to every
other node in the graph. On graphs with cycles, the marginal
distributions estimated by BP are only approximate, but these
approximations are often highly accurate [27].

B. Nonparametric Representations

For the hand tracking problem, the variables xi take on
continuous values. Because accurate discretization of the six
degrees of freedom at each node is intractable, and the BP
message update (eq. (15)) has no closed form for the potentials
underlying hand tracking, exact implementation of BP is
infeasible. Instead, we explore nonparametric, particle–based
approximations to these messages using the nonparametric
belief propagation (NBP) algorithm [21].

In NBP, each message is represented using either a sample–
based density estimate (a mixture of Gaussians) or an analytic
function. Both types of messages are needed for hand tracking,
as we discuss below. Each NBP message update involves
two stages: sampling from the estimated marginal, followed
by Monte Carlo approximation of the outgoing message. For
the general form of these updates, see [21]. In the following
sections, we give a high–level overview focusing on the unique
features of the hand tracking application.

The hand tracking application is complicated by the fact
that the orientation component ri of xi = (qi, ri) is an
element of the rotation group SO(3). Following [5, 17], we
represent orientations as unit quaternions, and use a lin-
earized approximation when constructing density estimates.
Any sampled orientations may be projected back to SO(3) by
normalizing the corresponding four–dimensional vector. This
approximation is most appropriate for densities with tightly
concentrated rotational components.

C. Marginal Computation

From eq. (16), we see that the BP estimate of the local
marginal distribution p̂(xi | y) is equal to the product of the
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Given input messages mji (xi) from kinematic neighbors ΓK(i),
structural neighbors ΓS(i), and temporal neighbors ΓT (i):

1) Draw M independent samples {x
(`)
i }M

`=1 from the product

x
(`)
i ∼

∏

j∈ΓT (i)

mji (xi)
∏

k∈ΓK(i)

mki (xi)

using the multiscale sampling methods of [7].
2) For each x

(`)
i = (q

(`)
i , r

(`)
i ), normalize the orientation r

(`)
i .

3) Compute an importance weight for each sample x
(`)
i :

w
(`)
i ∝ pE(y|x

(`)
i )pC(y|x

(`)
i )

∏

j∈ΓS(i)

mji(x
(`)
i )

4) Use a bandwidth selection method (see [18]) to construct a
kernel density estimate p̂(xi | y) from {x

(`)
i , w

(`)
i }M

`=1.

Alg. 1. NBP update of the estimated marginal distribution p̂(xi | y).

incoming messages from neighboring nodes with the local ob-
servation potential. Like particle filters, NBP uses importance
sampling to approximate this product. As we describe in the
following section, our NBP hand tracker employs Gaussian
mixtures for some messages (along kinematic and temporal
edges), and analytic functions for others (structural edges).
The image likelihood pE(y|xi)pC(y|xi) is an analytic function
which can be efficiently evaluated at any candidate xi using
the methods of Sec. III-D.

The importance sampling update of the marginal estimate
p̂(xi | y) is summarized in Alg. 1. First, M samples {x(`)

i }M
`=1

are drawn directly from the product of the kinematic and
temporal Gaussian mixture messages. Note that this sampling
problem is nontrivial: given d mixtures of M Gaussians, their
product is a mixture of Md Gaussians. However, in this paper
we use a recently proposed multiscale Gibbs sampler [7]
to efficiently draw accurate, albeit approximate, samples.
Following normalization of the rotational component, each
sample x

(`)
i is assigned a weight w(`)

i equal to the product
of the color and edge likelihoods with any messages along
structural edges. Finally, the computationally efficient “rule of
thumb” heuristic [18] is used to set the bandwidth of Gaussian
smoothing kernels placed around each sample, producing an
estimate of the desired marginal distribution.

The previous procedure assumes that at least one of the
incoming messages is a Gaussian mixture. For the hand
tracker, this is true except for the initial message updates on
the first frame, when the only incoming message is the local
analytic likelihood function. For the simulations presented in
this paper, we initialized the tracker by hand–specifying a
high variance Gaussian proposal distribution centered roughly
around the true starting hand configuration. In the future, we
hope to replace this manual initialization by automatic image–
based feature detectors.

D. Message Propagation and Scheduling

To derive the message propagation rule, as suggested by [10]
we rewrite the message update equation (15) in terms of the

Given M weighted samples {x
(`)
i , w

(`)
i }M

`=1 from p̂(xi | y), and the
incoming message mji (xi) used to construct p̂(xi | y):

1) Reweight each sample x
(`)
i as w̄

(`)
i ∝ w

(`)
i /mji(x

(`)
i ).

KINEMATIC EDGES:
2) Draw M samples {x̄

(`)
i }M

`=1 with replacement from the dis-
crete distribution defined by the weights {w̄

(`)
i }M

`=1.
3) For each x̄

(`)
i , sample uniformly from the allowable angles for

joint (i, j). Determine x
(`)
j via forward kinematics.

4) Use a bandwidth selection method to construct a kernel density
estimate mij (xj) from the unweighted samples {x

(`)
j }M

`=1.
TEMPORAL EDGES:

2) Construct a kernel density estimate mij (xj) with centers
{x

(`)
i }M

`=1, weights {w̄
(`)
i }M

`=1, and uniform bandwidths Λi.
STRUCTURAL EDGES:

2) For any xj = (qj , rj), let L = {` | ||q
(`)
i − qj || > δi,j}.

3) Calculate mij(xj) =
∑

`∈L
w̄

(`)
i .

Alg. 2. NBP update of the nonparametric message mij (xj) sent from node
i to node j as in eq. (17), for each of the three potential types.

marginal distribution p̂(xi | y):

mn
ij (xj) = α

∫

xi

ψj,i (xj , xi)
p̂n−1(xi | y)

mn−1
ji (xi)

dxi (17)

Our explicit use of the current marginal estimate p̂n−1(xi | y)
helps focus the Monte Carlo approximation on the most
important regions of the state space.

Consider first the case where (i, j) ∈ EK , so that ψK
j,i

corresponds to a kinematic constraint. The message prop-
agation step makes direct use of the particles {x

(`)
i }M

`=1

sampled during the last marginal estimate. We reweight each
particle x

(`)
i by 1/mji(x

(`)
i ), and then resample to get M

unweighted particles {x̄
(`)
i }M

`=1 (see Alg. 2). We must then
sample candidate xj configurations from the conditional dis-
tribution ψK

j,i(xj , x̄
(`)
i ). Because ψK

j,i is an indicator potential,
this sampling has a particularly appealing form: first sample
uniformly among allowable joint angles, and then use forward
kinmatics to find the x(`)

j corresponding to each x̄(`)
i . Finally,

the “rule of thumb” bandwidth selection method [18] is used
to construct the outgoing Gaussian mixture message.

Because the temporal constraint potentials are Gaussian,
the sampling associated with kinematic message updates is
unnecessary. Instead, as suggested by [8], we simply adjust
the bandwidths of the current marginal estimate p̂(xi | y) to
match the temporal covariance Λi (see Alg. 2). This update
implicitly assumes that the bandwidth of p̂(xi | y) is much
smaller than Λi, which will hold for sufficiently large M .

For structural constraint edges ES , a different approach is
needed. In particular, from eq. (2) we see that the pairwise
potential is one for all state configurations outside some ball,
and therefore the outgoing message will not be finitely inte-
grable. For structural edges, messages must then take the form
of analytic functions. In principle, at some point xj the mes-
sage mij (xj) should equal the integral of p̂(xi | y) /mji (xi)
over all configurations outside some ball centered at qj . We
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Fig. 5. Scheduling of the kinematic constraint message updates for NBP:
messages are first passed from fingertips to the palm, and then back to the
fingertips. Structural constraint messages (not shown) are updated as needed.

approximate this quantity by the sum of the weights of all
kernels in p̂(xi | y) outside that ball (see Alg. 2).

For NBP, the message update order effects the outcome of
each local Monte Carlo approximation, and may thus effect the
quality of the final marginal estimates. Given a single frame,
we iterate the tree–based message schedule of Fig. 5, in which
messages are passed from fingertips to the palm, and then back
to the fingertips. The structural messages, which for clarity
are not shown, are also updated whenever the source node’s
belief changes. For video, we process the frames in sequence,
updating the temporal messages to the next frame following
a fixed number of kinematic message sweeps. However, the
tracker could be easily extended to incorporate information
from future video frames using reverse–time messages.

E. Related Work

The NBP algorithm has also recently been used to develop
a three–dimensional person tracker [17]. However, this person
tracker uses a “loose–limbed” formulation of the kinematic
constraints which differs significantly from our hand tracker. In
particular, the loose–limbed tracker represents the conditional
distribution of each limb’s location given its neighbor via
a Gaussian mixture estimated from training data. For each
joint, the two needed conditional densities (for example, upper
arm given lower arm and lower arm given upper arm) are
learned independently. In general, however, there may be
no pairwise clique potential which is consistent with these
conditionals. Thus, there may be no globally consistent gen-
erative model underlying their results, making the standard
theoretical justifications of belief propagation inapplicable.
The two–dimensional tracking results of [8, 24] are also based
on explicit (and sometimes inconsistent) relaxations of the true
kinematic constraints.

In contrast, we have shown that an NBP tracker may
be built around the local structure of the true kinematic
constraints. Conceptually, this has the advantage of providing
a clearly specified, globally consistent generative model whose
properties can be analyzed. Practically, our formulation avoids
the need to explicitly approximate the kinematic constraints,
and allows us to build a functional tracker without the need
for training data.

V. SIMULATIONS

In this section, we examine the empirical performance of
the NBP hand tracker. All results are based on 720 × 480
images (or video sequences) recorded by a calibrated camera.
The physical dimensions of the quadrics composing the hand
model were measured offline. All messages were represented
by M = 200 particles, and the result figures show the
projections of the final density estimates’ five largest modes.

A. Refinement of Coarse Initializations

Given a single image, NBP may be used to progressively
refine a coarse, user–supplied initialization into an accurate
estimation of the hand’s configuration. See Fig. 6 for two ex-
amples of such a refinement. In the second example, note that
the initial finger positions are not only misaligned, but the user
has supplied no information about the grasping configuration
of the hand. By the fourth NBP iteration, however, the system
has aligned all of the joints properly. In both images, a poorly
aligned palm is eventually attracted to the proper location by
well–fit fingers. For these examples, each NBP iteration (a
complete update of all messages in the graph) requires about
1 minute on a Pentium IV workstation.

B. Temporal Tracking

Two video sequences demonstrating the NBP hand tracker
are available at http://ssg.mit.edu/nbp/. Total compu-
tation time for each video sequence, including all likelihood
calculations, is approximately 4 minutes per frame. The first
shows the hand rigidly moving in three–dimensional space.
The extrema of this motion are shown in Fig. 7. The NBP
estimates closely track the hand throughout the sequence,
but are noisiest when the fingers point towards the camera
because the sharp projection angle reduces the amount of
image evidence. Note, however, that the estimates quickly lock
back onto the true hand configuration when the hand rotates
away from the camera.

The second video sequence exercises the hand model’s
joints, containing both individual finger motions and combined
grasping motions (see Fig. 8). Our model supports all of these
degrees of freedom, and maintains accurate estimates even
when the ring finger is partially occluded by the middle finger
(bottom row of Fig. 8). This robustness to moderate occlusions
comes from our use of structural potentials to prevent self–
intersection, and is only reliable when the hand’s motion is
well predicted by the dynamical model.

VI. DISCUSSION

We have demonstrated that the geometric models commonly
used for hand tracking naturally have a graphical structure,
and exploited this fact to build an effective hand tracking
algorithm using nonparametric belief propagation. We are
currently investigating more challenging test sequences, as
well as a rigorous comparison of our algorithm to existing
methods. Preliminary results indicate that accurate tracking
through significant self–occlusion will require a more so-
phisticated local likelihood approximation, as well as richer
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Fig. 6. Two examples of refinement of a coarse hand model initialization using NBP. We show results following 1, 2, and 4 iterations of the message
schedule in Fig. 5. Plots show the projections of the most significant marginal modes.

Fig. 7. Four frames showing extrema of a hand’s rigid motion, and the position estimates produced by the NBP tracker.

dynamical models. In addition, we hope to use local hand
feature detectors to improve our method’s robustness.
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