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Abstract

Motivated by the problem of learning to detect and recogmizgcts

with minimal supervision, we develop a hierarchical prdlistic model

for the spatial structure of visual scenes. In contrast withst existing
models, our approach captures the intrinsic uncertairttygmumber and
identity of objects depicted in a given image. Our scene rhisdeased
on the transformed Dirichlet process (TDP), a novel extansi the hi-

erarchical DP in which a set of stochastically transforméxtume com-

ponents are shared between multiple groups of data. Foahdsenes,
mixture components describe the spatial structure of Vfsatures in an
object—centered coordinate frame, while transformatiooslel the ob-
ject positions in a particular image. Learning and infeeeimcthe TDP,
which has many potential applications beyond computeoniss based
on an empirically effective Gibbs sampler. Applied to a dataof par-
tially labeled street scenes, we show that the TDP’s inctusif spatial
structure improves detection performance, and allows persised dis-
covery of object categories.

1 Introduction

In this paper, we develop methods for analyzing the featooasposing avisual sceng
thereby localizing and categorizing the objects in an im#&y4r goal is to design learning
algorithms that can not only detect interesting objectsafbich we provide training, but
also lead to unsupervised discovery of new objects. Wortangrds this goal, we propose
a hierarchical probabilistic model for the expected spdtieations of objects, and the
appearance of visual features corresponding to each oje&n a new image, our model
provides a globally coherent explanation for the obsereeds, including estimates of the
location and category of aapriori unknown number of objects.

This generative approach is motivated by the pragmatic feedearning algorithms which
require little manual supervision and labeling. While disgnative models often produce
accurate classifiers, they typically require very larg@ntrg sets even for relatively sim-
ple categories [1]. In contrast, generative approacheglismover large, visually salient
categories (such as foliage and buildings [2]) without suig®n. Partial segmentations
can then be used to learn semantically interesting caeg(such as cars and pedestrians)
which are less visually distinctive, or present in feweinirsg images. Moreover, gen-
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Figure 1: A scene with faces as described by three generative mo@elsstellation: Fixed parts
of a single face in unlocalized cluttdrDA: Bag of unlocalized face and background featuiedP:
Spatially localized clusters of background clutter, and one or more fatekis case, the sample
contains one face and two background clustexg)e: The LDA and TDP images are sampled from
models learned from training images, while the Constellation image is a lmarstracted illustration.

erative models provide a natural framework for learningtertual relationships between
objects, and transferring knowledge between related, ibtihdt, visual scenes.

The principal challenge in developing hierarchical mod@scenes is specifying tractable,
scalable methods for handling uncertainty in the numbetb@ais. This issue is entirely
ignored by most existing models. We address this problenmgusirichlet processes [3], a
tool from nonparametric Bayesian analysis for learningtorex models whose number of
components is not fixed, but instead estimated from dataaitticplar, we extend the re-
cently proposethierarchical Dirichlet procesgHDP) [4, 5] framework to allow more flex-
ible sharing of mixture components between images. Thdtimeguransformed Dirichlet
procesgTDP) is naturally suited to our scene understanding agfidin, as well as many
other domains where “style and content” are combined toygredhe observed data [6].

We begin in Sec. 2 by reviewing several related generativéetsdor objects and scenes.
Sec. 3 then introduces Dirichlet processes and developeElRemodel, including MCMC
methods for learning and inference. We specialize the TDRsteal scenes in Sec. 4, and
conclude in Sec. 5 by demonstrating object discovery anoprgtion in street scenes.

2 Generative Models for Objects and Scenes

Constellation model§7] describe single objects via the appearance of a fixed tyied
cally small, set of spatially constrained parts (see FigAldhough they can successfully
recognize objects in cluttered backgrounds, they do nettir provide a mechanism for
detecting multiple object instances. In addition, it seefifficult to generalize the fixed
set of constellation parts to problems where the number jeictdbis uncertain. A recently
proposed extension of constellation models [8] addresses rmomputational issues, but
retains the assumption that each image contains a singetatgscribed by fixed parts.

Grammars and related rule—based systems, were one of the earlipgiaaghes to scene
understanding [9]. More recently, amage parsing10] framework has been proposed
which explains an image using a set of regions, each of whiaiy be generated by a
generic or object-specific process. While this framewoidvadluncertainty in the number
of regions, and hence the number of objects, the high diraeakiy of the model state
space requires good bottom—up proposal distributionsdoeatable MCMC performance.
As these proposals are generated by discriminative metlarde labeled training sets are
required, and unsupervised discovery of new objects is osgiple within the model pro-
posed in [10]. We also note that the BLOG language [11] presia promising framework
for reasoning about unknown objects. As of yet, howeverctivaputational tools needed
to apply BLOG to large—scale applications are unavailable.



Inspired by techniques from the text analysis literatuggesal recent papers analyze scenes
using a spatially unstructureldag of featuresextracted from local image patches (see
Fig. 1). In particularjatent Dirichlet allocation(LDA) [12] describes the features;; in
image; using ak component mixture model with parametérs Each image reuses these
same mixture parameters in different proportians(see the graphical model of Fig. 2).
By appropriately defining these shared mixtures, LDA may $eduto discover object cat-
egories from images of single objects [2], categorize mhtoenes [13], and (with a slight
extension) parse presegmented captioned images [14].

While these LDA models are sometimes effective, their neglespatial structure ignores
valuable information which is critical in challenging objedetection tasks. Furthermore,
while they provide a categorization of individual featyréeey do not model the number or
identity of the objects depicted in the scene. Tiamsformed Dirichlet proces& DP) ad-
dresses these issues by explicitly modeling the spatiatading inherent in natural scenes.
As detailed in Sec. 4 and illustrated in Fig. 1, the TDP effety provides aexturalmodel

in which locally unstructured clumps of features are givésbgl spatial structure by the
inferred set of objects underlying each scene.

3 Hierarchical Modeling using Dirichlet Processes

In this section, we review Dirichlet process mixture mod&sc. 3.1) and previously pro-
posed hierarchical extensions (Sec. 3.2). We then intethetransformed Dirichlet pro-
cesqTDP) (Sec. 3.3), and discuss Monte Carlo methods for lagriDPs (Sec. 3.4).

3.1 Dirichlet Process Mixture Models

Let # denote a parameter taking values in some sgacend H be a measure 068. A
Dirichlet procesgDP), denoted bydP(~, H), is then a distribution over measures @n
where the concentration parametecontrols the similarity of sample§ ~ DP(~, H)
to the base measuig. Samples from DPs are discrete with probability one, a ptgpe
highlighted by the followingstick—breaking constructiof#]:

oo k—1
G(0) = Bd(0,64) B ~Beta(1,7)  Bu=06[[a-8) @
k=1 =1

Each parametél;, ~ H is independently sampled, while the weigBts= (51, 32, .. .) use
Beta random variables to partition a unit—length “stick’pobbability mass.

In nonparametric Bayesian statistics, DPs are commonlg aseprior distributions for
mixture models with an unknown number of components [3]. E&) denote a family
of distributions parameterized W GivenG ~ DP(y, H), each observation; from
an exchangeable data seis generated by first choosing a paraméter G, and then
samplingz; ~ F(6;). Computationally, this process is conveniently descriined setz of
independently sampled variables~ Mult(3) indicating the component of the mixture
G(0) (see eq. (1)) associated with each data pejnt F'(4,,).

Integrating ovel, the indicator variableg demonstrate an important clustering property.
Letting n;, denote the number of times componépis chosen by the firgi — 1) samples,

1

p(zi| 21, 2im1,7) = m

> nkb(zi, k) +70(zi, k) 2)

k
Here,k indicates a previously unused mixture componarirfori, all unused components
are equivalent). This process is sometimes described Hg@nto a Chinese restaurant
in which the (infinite collection of) tables correspond te timixture component, and
customers to observations [4]. Customers are social, tending to sit at tables with many
other customers (observations), and each table sharegla dish (parameter).
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Figure 2:Graphical representations of the LDA, HDP, and TDP models for spaninture compo-
nentsfy,, with proportionsr;, among.J groups of exchangeable data = (xz;1,. .., n,). LDA

directly assigns observations; to clusters via indicators;;. HDP and TDP models use “table” in-
dicatorst;; as an intermediary between observations and assignmgritsan infinite global mixture
with weights3. TDPs augment each tablewith a transformatiorr;, sampled from a distribution
parameterized by, . Specializing the TDP to visual scenes (right), we model the posjtipand
appearance;; of features using distributiong, indexed by unobserved object categories

3.2 Hierarchical Dirichlet Processes

In many domains, there are several groups of data produceetlated, but distinct,
generative processes. For example, in this paper’s afiplsaeach group is an im-
age, and the data are visual features composing a scenen Gigeoups of data, let
x; = (xj1,...,%;n,;) denote ther; exchangeable data points in group

Hierarchical Dirichlet processe@HDPs) [4, 5] describe grouped data with a coupled set of
mixture models. To construct an HDP, a global probabilityesweeGy, ~ DP(v, H) is
first chosen to define a set of shared mixture components. Aurne@; ~ DP(«, Gy) is
then independently sampled for each group. Becélsis discrete (as in eq. (1)), groups
G; will reuse the same mixture componefitsin different proportions:

Gi(0) = mrd(0,0%) m; ~ DP(a, B) 3)
k=1

In this construction, shared?:omponents improve genatadiz when learning from few
examples, while distinct mixture weights capture differenbetween groups.

The generative process underlying HDPs may be understdedhirs of an extension of the
DP analogy known as th&hinese restaurant franchigd]. Each group defines a separate
restaurant in which customers (observationg)sit at tables ;;. Each table shares a single
dish (parameterd, which is ordered from a ment, shared among restaurants (groups).
Letting k;; indicate the parametéy,;, assigned to tablein group;j, we may integrate over
Go andG (asin eq. (2)) to find the conditional distributions of thesgicator variables:

P (ti [ tns s, @) 0 > ni6(tyist) + ad(ty, 0) 4)
t

p(kje | ki, o ko1, kjr, oo kjem1,y) o kafS(kjt, k) + 8 (kj¢, k) %)
%

Here,my, is the number of tables previously assignedto As before, customers prefer
tablest at which many customers;, are already seated (eq. (4)), but sometimes choose a
new tablet. Each new table is assigned a dish according to eq. (5). Popular dishes are
more likely to be ordered, but a new digh~ H may also be selected.

The HDP generative process is summarized in the graphicdehad Fig. 2. Given the
assignments; andk; for group j, observations are sampled ag ~ F(6.,,), where

i

zji = kji,;, indexes the shared parameters assigned to the table dsdogitnz ;.



3.3 Transformed Dirichlet Processes

In the HDP model of Fig. 2, the group distributio6§ are derived from the global distri-
butionG, by resampling the mixture weights from a Dirichlet procesee(eqg. (3)), leaving
the component parametels unchanged. In many applications, however, it is difficult to
defined so that parameters may be exactly reused between groupsidé€nrior example,

a Gaussian distribution describing the location at whicjecifeatures are detected in an
image. While the covariance of that distribution may stagtie¢ly constant across ob-
ject instances, the mean will change dramatically from ienfgimage (group to group),
depending on the objects’ position relative to the camera.

Motivated by these difficulties, we propose thensformed Dirichlet Proces@DP), an
extension of the HDP in which global mixture components ugde set of random trans-
formations before being reused in each group./Lé¢note a transformation of the param-
eter vectord € ©, n € Q) the parameters of a distributi@p over transformations, ani

a measure of2. We begin by augmenting the DP stick—breaking construaifaeg. (1) to
create a global measure describing both parameters arsfldrarations:

Go(0,7) = Brd(0,01)q(r | i) O ~H  m~R (6)
k=1
As before 3 is sampled from a stick—breaking process with parameté&or each group,
we then sample a measute ~ DP(«a, Gy). Marginalizing over transformations G, (¢)
reuses parameters frafy (0) exactly as in eq. (3). Because samples from DPs are discrete,
the joint measure for groupthen has the following form:

G(0,r) = mrd(0,6%) [Z pjzcz5(7“,7“ju)] > pipe=1 (7)
k=1 =1 =1

Note that within thejt* group, each shared parameter veéiomay potentially be reused
multiple times with different transformations,. Conditioning ondy, it can be shown
thatG (r | 01) ~ DP(afB, Q(nx)), SO that the proportions;, of features associated with
each transformation &, follow a stick—breaking process with parametgt; .

Each observatiorn ;; is now generated by sampling,;,7;;) ~ G;, and then choosing
xji ~ F(0;;,7;) from a distribution which transformg;; by 7;;. Although the global
family of transformation distribution®(n) is typically non—atomic, the discretenessbf
ensures that transformations are shared between obsevatithin group;.

Computationally, the TDP is more conveniently describedan extension of the Chinese
restaurant franchise analogy (see Fig. 2). As before, mest® (observations);; sit at
tablest;; according to the clustering bias of eq. (4), and new tablesstdishes according
to their popularity across the franchise (eq. (5)). Now, &wesv, the dish (parametet)

at tablet is seasoned (transformed) according o~ ¢(rj; | nx,;,). Each time a dish is
ordered, the recipe is seasoned differently.

3.4 Learning via Gibbs Sampling

To learn the parameters of a TDP, we extend the HDP Gibbs samigtailed in [4]. The
simplest implementation samples table assignmentfuster assignments, transforma-
tionsr, and parametei®, n). Lett~7% denote all table assignments excluding and define
k7%, r—7* similarly. Using the Markov properties of the TDP (see Fig.\2e have

ptii=t|t77" k,r 0,x)ocp(t|t™7) f (2| O, rjt) ®)
The first term is given by eq. (4). For a fixed set of transfoiamtr, the second term is
a simple likelihood evaluation for existing tables, whilewntables may be evaluated by
marginalizing over possible cluster assignments (eq. (5))

Because cluster assignmehis and transformations;; are strongly coupled in the poste-
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Figure 3: TDP results for 30 synthetic images containing two categories (green )& Hlipses
are covariance estimates, with intensity proportional to the number ofwattems assigned to that
cluster.Left: Three globally shared clusters, and two sample imageght: Estimated global cluster
Gy following 100 Gibbs sampling iterations, and transformed clusggrfor the same two images.

rior, we achieve much faster convergence by resampling thegrarallel:
p(kje =k, | k700790 4,0,m,%) ocp (k| k7Y q(rje | me) [ £ ()i | Oyrie)

tj;=t

For the models considered in this pap£ris conjugate ta? for any fixed observation

value. We may thus analytically integrate over and, combined with eq. (5), sample a

new cluster assignmehyj,. Conditioned orik;;, we again use conjugacy to sample. We

also choose the parameter priégfsand R to be conjugate t@) and F', respectively, so that

standard formulas may be used to resanipig.

4 Transformed Dirichlet Processes for Visual Scenes
4.1 Context—Free Modeling of Multiple Object Categories

In this section, we adapt the TDP model of Sec. 3.3 to desthibespatial structure of
visual scenes. Groupsnow correspond to training (or test) images. For the moment,
we assume that the observed data = (o;;,y;:), Wherey;; is the position of a feature
corresponding to object categasy;, and the number of object categori@ds known (see
Fig. 2). We then choose cluster parametkrs= (o, ik, A) to describe the meam, and
covariance\, of a Gaussian distribution over feature positions, as veethasingleobject
categoryoy, assigned tall observations sampled from that cluster. Although thistelus
parameterization does not capture contextual relatipsaetween object categories, the
results of Sec. 5 demonstrate that it nevertheless proeaidedfective model of the spatial
variability of individual categories across many differenenes.

To model the variability in object location from image to ig&a transformation parameters
rj; are defined téranslatefeature position relative to that cluster’s “canonical”’ang:

p (Ojia Yji | tji = t, kj, rj, 0) = 5(0]‘1‘, 6k_jt) X N(y]17 My + Tjt, Akjf,) (9)
We note that there is a different translatiop associated with each tableallowing the
same object cluster to be reused at multiple locations wighsingle image. This flexi-
bility, which is not possible with HDPs, is critical to acetiely modeling visual scenes.
Density models for spatial transformations have been pusly used to recognize isolated
objects [15], and estimate layered decompositions of vidgmences [16]. In contrast, the
proposed TDP models the variability of object positionsoasrscenes, and couples this
with a nonparametric prior allowing uncertainty in the nienbf objects.

To ensure that the TDP scene model is identifiable, we defing | k;,n) to be a zero-
mean Gaussian with covariangg,. The parameter prioR is uniform across object cat-
egories, whileR and H both use inverse—Wishart position distributions, weakbsed
towards moderate covariances. Fig. 3 shows a syntheticpggamhich provides intuition
about the types of spatial structure captured by the TDPyarifies the Gibbs sampler.

4.2 Detecting Objects from Image Features

To apply the TDP model of Sec. 4.1 to images, we must learndlaionship between
object categories and visual features. As in [2], we obt&ordte features by vector quan-
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Figure 4:TDP car detection resultkeft: For four testimages, we show the transformed car category
clusters used in that image (left), and the features assigned to each @lightg. Right: Feature
categorization ROC curves for the TDP, and an LDA model based saldigature appearance.

Figure 5: TDP street scene segmentatioriseft: Visualization of the global@,) TDP clusters
assigned to cars (red), and two other object categories, learned wdhpervision, that seem to
represent buildings (yellow) and roads (greeR)ght: Six test images (top), inferred transformed
clusters (middle), and corresponding feature segmentations (bottom).

tizing SIFT descriptors [17] computed over locally adapadightical regions. To improve
discriminative power, we divide these elliptical regionsoi three groups (roughly circu-
lar, and horizontally or vertically elongated) prior to qizing SIFT values, producing a
discrete vocabulary with800 appearance “words”. Given the density of feature detegction
these descriptors essentially provide a multiscale oegmentation of the image.

We assume that the appearange of each detected feature is independently sampled con-
ditioned on the underlying object categary; (see Fig. 2). Placing a symmetric Dirichlet
prior, with parametei, on each category’s multinomial appearance distributign

p(wji:b| ojizo,w*ji,t,k,a) X Mpo + A (10)
wheren,, is the number of times featuieis currently assigned to objeot Because a
single object category is associated with each clusteGthbs sampler of Sec. 3.4 may be
easily adapted to this case by incorporating eq. (10) ire@ssignment likelihoods.

5 Analyzing Street Scenes

We would like a model of visual scenes which detects objetiaterest given training
data, and also discovers new objects in an unsupervisebfiastWe examine the TDP’s
effectiveness for this task using 140 training and 248 testgies from the MIT-CSAIL
dataset. In the training set, we manually labeled the feataorresponding to cars, and
provided three additional categories for unsupervisedailgiscovery. Partial labeling is
necessary because cars are too small and variable in appedoa unsupervised learning
from still images. We hope, however, that larger, more \ligusalient objects will be
automatically determined to be a useful explanation forotheerved features.



Following 50 iterations of the Gibbs sampler, we use thdsties of the assignment vari-
ables to estimate the object category corresponding to femthre. Fig. 4 summarizes
results for the segmentation of car features, showing tte@DP compares favorably to
an LDA model which neglects feature locations. Countingftequency at which trans-
formed car clusters fall within the boundaries of true ctrsre is roughly one false alarm
per image at &0% detection rate. Note that these detections, which are restifple using
LDA, are based on a single global parsing of the scene, iniwthie cluster locations best
explaining the image are automatically inferred withoutséiding window” [1]. Fig. 5
shows the globally shared clusters from the final Gibbs segjteration, and feature seg-
mentations indicating that two categories have learneétea building and road features.
The fourth category, which is not shown, seemed to modelrigehackground clutter.

Interestingly, the TDP spatial model can smoothly traosifrom discrete, isolated objects
to textural regions containing many objects (from carsd#iitr). For example, in one image
in Fig. 4, there are two cars, each explained by its own toansfd cluster. However,

because cars are often adjacently parked in street scér@e3DiP also learns a single
elongated cluster which explains multiple cars (three iimgzemge from Fig. 4). The model

also, incorrectly, learns a vertically aligned car clustéis cluster, which is never used in
the training set, sometimes generates false alarms inshedg(see Fig. 5).

6 Discussion

We have developed the transformed Dirichlet process, atuieical model which shares a
set of stochastically transformed clusters among groupt. Applied to visual scenes,
TDPs provide a model of spatial structure which allows thmber of objects generating
an image to be automatically inferred, and lead to improwetgation performance. We
are currently investigating extensions of the basic TDReerodel presented in this paper
which describe the internal structure of objects, and @sorporate richer contextual cues.
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