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Abstract

Motivated by the problem of learning to detect and recognizeobjects
with minimal supervision, we develop a hierarchical probabilistic model
for the spatial structure of visual scenes. In contrast withmost existing
models, our approach captures the intrinsic uncertainty inthe number and
identity of objects depicted in a given image. Our scene model is based
on the transformed Dirichlet process (TDP), a novel extension of the hi-
erarchical DP in which a set of stochastically transformed mixture com-
ponents are shared between multiple groups of data. For visual scenes,
mixture components describe the spatial structure of visual features in an
object–centered coordinate frame, while transformationsmodel the ob-
ject positions in a particular image. Learning and inference in the TDP,
which has many potential applications beyond computer vision, is based
on an empirically effective Gibbs sampler. Applied to a dataset of par-
tially labeled street scenes, we show that the TDP’s inclusion of spatial
structure improves detection performance, and allows unsupervised dis-
covery of object categories.

1 Introduction

In this paper, we develop methods for analyzing the featurescomposing avisual scene,
thereby localizing and categorizing the objects in an image. Our goal is to design learning
algorithms that can not only detect interesting objects forwhich we provide training, but
also lead to unsupervised discovery of new objects. Workingtowards this goal, we propose
a hierarchical probabilistic model for the expected spatial locations of objects, and the
appearance of visual features corresponding to each object. Given a new image, our model
provides a globally coherent explanation for the observed scene, including estimates of the
location and category of ana priori unknown number of objects.

This generative approach is motivated by the pragmatic needfor learning algorithms which
require little manual supervision and labeling. While discriminative models often produce
accurate classifiers, they typically require very large training sets even for relatively sim-
ple categories [1]. In contrast, generative approaches candiscover large, visually salient
categories (such as foliage and buildings [2]) without supervision. Partial segmentations
can then be used to learn semantically interesting categories (such as cars and pedestrians)
which are less visually distinctive, or present in fewer training images. Moreover, gen-
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Figure 1: A scene with faces as described by three generative models.Constellation:Fixed parts
of a single face in unlocalized clutter.LDA: Bag of unlocalized face and background features.TDP:
Spatially localized clusters of background clutter, and one or more faces(in this case, the sample
contains one face and two background clusters).Note: The LDA and TDP images are sampled from
models learned from training images, while the Constellation image is a hand-constructed illustration.

erative models provide a natural framework for learning contextual relationships between
objects, and transferring knowledge between related, but distinct, visual scenes.

The principal challenge in developing hierarchical modelsfor scenes is specifying tractable,
scalable methods for handling uncertainty in the number of objects. This issue is entirely
ignored by most existing models. We address this problem using Dirichlet processes [3], a
tool from nonparametric Bayesian analysis for learning mixture models whose number of
components is not fixed, but instead estimated from data. In particular, we extend the re-
cently proposedhierarchical Dirichlet process(HDP) [4, 5] framework to allow more flex-
ible sharing of mixture components between images. The resulting transformed Dirichlet
process(TDP) is naturally suited to our scene understanding application, as well as many
other domains where “style and content” are combined to produce the observed data [6].

We begin in Sec. 2 by reviewing several related generative models for objects and scenes.
Sec. 3 then introduces Dirichlet processes and develops theTDP model, including MCMC
methods for learning and inference. We specialize the TDP tovisual scenes in Sec. 4, and
conclude in Sec. 5 by demonstrating object discovery and recognition in street scenes.

2 Generative Models for Objects and Scenes

Constellation models[7] describe single objects via the appearance of a fixed, andtypi-
cally small, set of spatially constrained parts (see Fig. 1). Although they can successfully
recognize objects in cluttered backgrounds, they do not directly provide a mechanism for
detecting multiple object instances. In addition, it seemsdifficult to generalize the fixed
set of constellation parts to problems where the number of objects is uncertain. A recently
proposed extension of constellation models [8] addresses many computational issues, but
retains the assumption that each image contains a single object described by fixed parts.

Grammars, and related rule–based systems, were one of the earliest approaches to scene
understanding [9]. More recently, animage parsing[10] framework has been proposed
which explains an image using a set of regions, each of which may be generated by a
generic or object–specific process. While this framework allows uncertainty in the number
of regions, and hence the number of objects, the high dimensionality of the model state
space requires good bottom–up proposal distributions for acceptable MCMC performance.
As these proposals are generated by discriminative methods, large labeled training sets are
required, and unsupervised discovery of new objects is not possible within the model pro-
posed in [10]. We also note that the BLOG language [11] provides a promising framework
for reasoning about unknown objects. As of yet, however, thecomputational tools needed
to apply BLOG to large–scale applications are unavailable.



Inspired by techniques from the text analysis literature, several recent papers analyze scenes
using a spatially unstructuredbag of featuresextracted from local image patches (see
Fig. 1). In particular,latent Dirichlet allocation(LDA) [12] describes the featuresxji in
imagej using aK component mixture model with parametersθk. Each image reuses these
same mixture parameters in different proportionsπj (see the graphical model of Fig. 2).
By appropriately defining these shared mixtures, LDA may be used to discover object cat-
egories from images of single objects [2], categorize natural scenes [13], and (with a slight
extension) parse presegmented captioned images [14].

While these LDA models are sometimes effective, their neglect of spatial structure ignores
valuable information which is critical in challenging object detection tasks. Furthermore,
while they provide a categorization of individual features, they do not model the number or
identity of the objects depicted in the scene. Thetransformed Dirichlet process(TDP) ad-
dresses these issues by explicitly modeling the spatial clustering inherent in natural scenes.
As detailed in Sec. 4 and illustrated in Fig. 1, the TDP effectively provides atexturalmodel
in which locally unstructured clumps of features are given global spatial structure by the
inferred set of objects underlying each scene.

3 Hierarchical Modeling using Dirichlet Processes

In this section, we review Dirichlet process mixture models(Sec. 3.1) and previously pro-
posed hierarchical extensions (Sec. 3.2). We then introduce thetransformed Dirichlet pro-
cess(TDP) (Sec. 3.3), and discuss Monte Carlo methods for learning TDPs (Sec. 3.4).

3.1 Dirichlet Process Mixture Models

Let θ denote a parameter taking values in some spaceΘ, andH be a measure onΘ. A
Dirichlet process(DP), denoted byDP(γ,H), is then a distribution over measures onΘ,
where the concentration parameterγ controls the similarity of samplesG ∼ DP(γ,H)
to the base measureH. Samples from DPs are discrete with probability one, a property
highlighted by the followingstick–breaking construction[4]:

G(θ) =

∞
∑

k=1

βkδ(θ, θk) β′

k ∼ Beta(1, γ) βk = β′

k

k−1
∏

`=1

(1 − β′

`) (1)

Each parameterθk ∼ H is independently sampled, while the weightsβ = (β1, β2, . . .) use
Beta random variables to partition a unit–length “stick” ofprobability mass.

In nonparametric Bayesian statistics, DPs are commonly used as prior distributions for
mixture models with an unknown number of components [3]. LetF (θ) denote a family
of distributions parameterized byθ. Given G ∼ DP(γ,H), each observationxi from
an exchangeable data setx is generated by first choosing a parameterθ̄i ∼ G, and then
samplingxi ∼ F (θ̄i). Computationally, this process is conveniently describedby a setz of
independently sampled variableszi ∼ Mult(β) indicating the component of the mixture
G(θ) (see eq. (1)) associated with each data pointxi ∼ F (θzi

).

Integrating overG, the indicator variablesz demonstrate an important clustering property.
Lettingnk denote the number of times componentθk is chosen by the first(i−1) samples,

p (zi | z1, . . . , zi−1, γ) =
1

γ + i − 1

[

∑

k

nkδ(zi, k) + γδ(zi, k̄)

]

(2)

Here,k̄ indicates a previously unused mixture component (a priori, all unused components
are equivalent). This process is sometimes described by analogy to a Chinese restaurant
in which the (infinite collection of) tables correspond to the mixture componentsθk, and
customers to observationsxi [4]. Customers are social, tending to sit at tables with many
other customers (observations), and each table shares a single dish (parameter).
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Figure 2:Graphical representations of the LDA, HDP, and TDP models for sharing mixture compo-
nentsθk, with proportionsπj , amongJ groups of exchangeable dataxj = (xj1, . . . , xjnj

). LDA
directly assigns observationsxji to clusters via indicatorszji. HDP and TDP models use “table” in-
dicatorstji as an intermediary between observations and assignmentskjt to an infinite global mixture
with weightsβ. TDPs augment each tablet with a transformationrjt sampled from a distribution
parameterized byηkjt

. Specializing the TDP to visual scenes (right), we model the positionyji and
appearancewji of features using distributionsψo indexed by unobserved object categoriesoji.

3.2 Hierarchical Dirichlet Processes

In many domains, there are several groups of data produced byrelated, but distinct,
generative processes. For example, in this paper’s applications each group is an im-
age, and the data are visual features composing a scene. Given J groups of data, let
xj = (xj1, . . . , xjnj

) denote thenj exchangeable data points in groupj.

Hierarchical Dirichlet processes(HDPs) [4, 5] describe grouped data with a coupled set of
mixture models. To construct an HDP, a global probability measureG0 ∼ DP(γ,H) is
first chosen to define a set of shared mixture components. A measureGj ∼ DP(α,G0) is
then independently sampled for each group. BecauseG0 is discrete (as in eq. (1)), groups
Gj will reuse the same mixture componentsθk in different proportions:

Gj(θ) =

∞
∑

k=1

πjkδ(θ, θk) πj ∼ DP(α,β) (3)

In this construction, shared components improve generalization when learning from few
examples, while distinct mixture weights capture differences between groups.

The generative process underlying HDPs may be understood interms of an extension of the
DP analogy known as theChinese restaurant franchise[4]. Each group defines a separate
restaurant in which customers (observations)xji sit at tablestji. Each table shares a single
dish (parameter)θ, which is ordered from a menuG0 shared among restaurants (groups).
Lettingkjt indicate the parameterθkjt

assigned to tablet in groupj, we may integrate over
G0 andGj (as in eq. (2)) to find the conditional distributions of theseindicator variables:

p (tji | tj1, . . . , tji−1, α) ∝
∑

t

njtδ(tji, t) + αδ(tji, t̄) (4)

p (kjt | k1, . . . ,kj−1, kj1, . . . , kjt−1, γ) ∝
∑

k

mkδ(kjt, k) + γδ(kjt, k̄) (5)

Here,mk is the number of tables previously assigned toθk. As before, customers prefer
tablest at which many customersnjt are already seated (eq. (4)), but sometimes choose a
new tablēt. Each new table is assigned a dishkjt̄ according to eq. (5). Popular dishes are
more likely to be ordered, but a new dishθk̄ ∼ H may also be selected.

The HDP generative process is summarized in the graphical model of Fig. 2. Given the
assignmentstj andkj for group j, observations are sampled asxji ∼ F (θzji

), where
zji = kjtji

indexes the shared parameters assigned to the table associated withxji.



3.3 Transformed Dirichlet Processes

In the HDP model of Fig. 2, the group distributionsGj are derived from the global distri-
butionG0 by resampling the mixture weights from a Dirichlet process (see eq. (3)), leaving
the component parametersθk unchanged. In many applications, however, it is difficult to
defineθ so that parameters may be exactly reused between groups. Consider, for example,
a Gaussian distribution describing the location at which object features are detected in an
image. While the covariance of that distribution may stay relatively constant across ob-
ject instances, the mean will change dramatically from image to image (group to group),
depending on the objects’ position relative to the camera.

Motivated by these difficulties, we propose theTransformed Dirichlet Process(TDP), an
extension of the HDP in which global mixture components undergo a set of random trans-
formations before being reused in each group. Letr denote a transformation of the param-
eter vectorθ ∈ Θ, η ∈ Ω the parameters of a distributionQ over transformations, andR
a measure onΩ. We begin by augmenting the DP stick–breaking constructionof eq. (1) to
create a global measure describing both parameters and transformations:

G0(θ, r) =

∞
∑

k=1

βkδ(θ, θk)q(r | ηk) θk ∼ H ηk ∼ R (6)

As before,β is sampled from a stick–breaking process with parameterγ. For each group,
we then sample a measureGj ∼ DP(α,G0). Marginalizing over transformationsr, Gj(θ)
reuses parameters fromG0(θ) exactly as in eq. (3). Because samples from DPs are discrete,
the joint measure for groupj then has the following form:

Gj(θ, r) =

∞
∑

k=1

πjkδ(θ, θk)

[

∞
∑

`=1

ρjk`δ(r, rjk`)

]

∞
∑

`=1

ρjk` = 1 (7)

Note that within thejth group, each shared parameter vectorθk may potentially be reused
multiple times with different transformationsrjk`. Conditioning onθk, it can be shown
thatGj(r | θk) ∼ DP(αβk, Q(ηk)), so that the proportionsρjk of features associated with
each transformation ofθk follow a stick–breaking process with parameterαβk.

Each observationxji is now generated by sampling(θ̄ji, r̄ji) ∼ Gj , and then choosing
xji ∼ F (θ̄ji, r̄ji) from a distribution which transforms̄θji by r̄ji. Although the global
family of transformation distributionsQ(η) is typically non–atomic, the discreteness ofGj

ensures that transformations are shared between observations within groupj.

Computationally, the TDP is more conveniently described via an extension of the Chinese
restaurant franchise analogy (see Fig. 2). As before, customers (observations)xji sit at
tablestji according to the clustering bias of eq. (4), and new tables choose dishes according
to their popularity across the franchise (eq. (5)). Now, however, the dish (parameter)θkjt

at tablet is seasoned (transformed) according torjt ∼ q(rjt | ηkjt
). Each time a dish is

ordered, the recipe is seasoned differently.

3.4 Learning via Gibbs Sampling

To learn the parameters of a TDP, we extend the HDP Gibbs sampler detailed in [4]. The
simplest implementation samples table assignmentst, cluster assignmentsk, transforma-
tionsr, and parametersθ,η. Lett−ji denote all table assignments excludingtji, and define
k
−jt, r−jt similarly. Using the Markov properties of the TDP (see Fig. 2), we have

p
(

tji = t | t−ji,k, r,θ,x
)

∝ p
(

t | t−ji
)

f
(

xji | θkjt
, rjt

)

(8)
The first term is given by eq. (4). For a fixed set of transformationsr, the second term is
a simple likelihood evaluation for existing tables, while new tables may be evaluated by
marginalizing over possible cluster assignments (eq. (5)).

Because cluster assignmentskjt and transformationsrjt are strongly coupled in the poste-



Figure 3: TDP results for 30 synthetic images containing two categories (green & red). Ellipses
are covariance estimates, with intensity proportional to the number of observations assigned to that
cluster.Left: Three globally shared clusters, and two sample images.Right: Estimated global cluster
G0 following 100 Gibbs sampling iterations, and transformed clustersGj for the same two images.

rior, we achieve much faster convergence by resampling themin parallel:

p
(

kjt = k, rjt | k
−jt, r−jt, t,θ,η,x

)

∝ p
(

k | k−jt
)

q (rjt | ηk)
∏

tji=t

f (xji | θk, rjt)

For the models considered in this paper,F is conjugate toQ for any fixed observation
value. We may thus analytically integrate overrjt and, combined with eq. (5), sample a
new cluster assignmentk̄jt. Conditioned on̄kjt, we again use conjugacy to sampler̄jt. We
also choose the parameter priorsH andR to be conjugate toQ andF , respectively, so that
standard formulas may be used to resampleθ,η.

4 Transformed Dirichlet Processes for Visual Scenes
4.1 Context–Free Modeling of Multiple Object Categories

In this section, we adapt the TDP model of Sec. 3.3 to describethe spatial structure of
visual scenes. Groupsj now correspond to training (or test) images. For the moment,
we assume that the observed dataxji = (oji, yji), whereyji is the position of a feature
corresponding to object categoryoji, and the number of object categoriesO is known (see
Fig. 2). We then choose cluster parametersθk = (ōk, µk,Λk) to describe the meanµk and
covarianceΛk of a Gaussian distribution over feature positions, as well as thesingleobject
categoryōk assigned toall observations sampled from that cluster. Although this cluster
parameterization does not capture contextual relationships between object categories, the
results of Sec. 5 demonstrate that it nevertheless providesan effective model of the spatial
variability of individual categories across many different scenes.

To model the variability in object location from image to image, transformation parameters
rjt are defined totranslatefeature position relative to that cluster’s “canonical” meanµk:

p (oji, yji | tji = t,kj , rj ,θ) = δ(oji, ōkjt
) ×N

(

yji; µkjt
+ rjt,Λkjt

)

(9)
We note that there is a different translationrjt associated with each tablet, allowing the
same object cluster to be reused at multiple locations within a single image. This flexi-
bility, which is not possible with HDPs, is critical to accurately modeling visual scenes.
Density models for spatial transformations have been previously used to recognize isolated
objects [15], and estimate layered decompositions of videosequences [16]. In contrast, the
proposed TDP models the variability of object positions across scenes, and couples this
with a nonparametric prior allowing uncertainty in the number of objects.

To ensure that the TDP scene model is identifiable, we definep (rjt | kj ,η) to be a zero–
mean Gaussian with covarianceηkjt

. The parameter priorR is uniform across object cat-
egories, whileR and H both use inverse–Wishart position distributions, weakly biased
towards moderate covariances. Fig. 3 shows a synthetic example which provides intuition
about the types of spatial structure captured by the TDP, andverifies the Gibbs sampler.

4.2 Detecting Objects from Image Features

To apply the TDP model of Sec. 4.1 to images, we must learn the relationship between
object categories and visual features. As in [2], we obtain discrete features by vector quan-
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Figure 4:TDP car detection results.Left: For four test images, we show the transformed car category
clusters used in that image (left), and the features assigned to each cluster (right). Right: Feature
categorization ROC curves for the TDP, and an LDA model based solely on feature appearance.

Figure 5: TDP street scene segmentations.Left: Visualization of the global (G0) TDP clusters
assigned to cars (red), and two other object categories, learned without supervision, that seem to
represent buildings (yellow) and roads (green).Right: Six test images (top), inferred transformed
clusters (middle), and corresponding feature segmentations (bottom).

tizing SIFT descriptors [17] computed over locally adaptedelliptical regions. To improve
discriminative power, we divide these elliptical regions into three groups (roughly circu-
lar, and horizontally or vertically elongated) prior to quantizing SIFT values, producing a
discrete vocabulary with1800 appearance “words”. Given the density of feature detection,
these descriptors essentially provide a multiscale over–segmentation of the image.

We assume that the appearancewji of each detected feature is independently sampled con-
ditioned on the underlying object categoryoji (see Fig. 2). Placing a symmetric Dirichlet
prior, with parameterλ, on each category’s multinomial appearance distributionψo,

p
(

wji = b | oji = o,w−ji, t,k,θ
)

∝ n̄bo + λ (10)
wheren̄bo is the number of times featureb is currently assigned to objecto. Because a
single object category is associated with each cluster, theGibbs sampler of Sec. 3.4 may be
easily adapted to this case by incorporating eq. (10) into the assignment likelihoods.

5 Analyzing Street Scenes

We would like a model of visual scenes which detects objects of interest given training
data, and also discovers new objects in an unsupervised fashion. We examine the TDP’s
effectiveness for this task using 140 training and 248 test images from the MIT-CSAIL
dataset. In the training set, we manually labeled the features corresponding to cars, and
provided three additional categories for unsupervised object discovery. Partial labeling is
necessary because cars are too small and variable in appearance for unsupervised learning
from still images. We hope, however, that larger, more visually salient objects will be
automatically determined to be a useful explanation for theobserved features.



Following 50 iterations of the Gibbs sampler, we use the statistics of the assignment vari-
ables to estimate the object category corresponding to eachfeature. Fig. 4 summarizes
results for the segmentation of car features, showing that the TDP compares favorably to
an LDA model which neglects feature locations. Counting thefrequency at which trans-
formed car clusters fall within the boundaries of true cars,there is roughly one false alarm
per image at a70% detection rate. Note that these detections, which are not possible using
LDA, are based on a single global parsing of the scene, in which the cluster locations best
explaining the image are automatically inferred without a “sliding window” [1]. Fig. 5
shows the globally shared clusters from the final Gibbs sampling iteration, and feature seg-
mentations indicating that two categories have learned to detect building and road features.
The fourth category, which is not shown, seemed to model generic background clutter.

Interestingly, the TDP spatial model can smoothly transition from discrete, isolated objects
to textural regions containing many objects (from cars to traffic). For example, in one image
in Fig. 4, there are two cars, each explained by its own transformed cluster. However,
because cars are often adjacently parked in street scenes, the TDP also learns a single
elongated cluster which explains multiple cars (three in animage from Fig. 4). The model
also, incorrectly, learns a vertically aligned car cluster. This cluster, which is never used in
the training set, sometimes generates false alarms in the test set (see Fig. 5).

6 Discussion

We have developed the transformed Dirichlet process, a hierarchical model which shares a
set of stochastically transformed clusters among groups ofdata. Applied to visual scenes,
TDPs provide a model of spatial structure which allows the number of objects generating
an image to be automatically inferred, and lead to improved detection performance. We
are currently investigating extensions of the basic TDP scene model presented in this paper
which describe the internal structure of objects, and also incorporate richer contextual cues.
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