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We present an example-based method for translating line drawings into different styles. We fit each line as a linear combination of
similar lines in a training set, and interpolate between the corresponding training examples in the output style. The synthesized
lines preserve the desired stylistic features of the output style.
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1. INTRODUCTION

An important task of pattern recognition is identifying or synthesizing stylistic variations on a signal
independently of its underlying content [Omohundro 1995; Hofstadter 1995; Tenenbaum and Freeman
2000; Brand and Hertzmann 2000; Rose et al. 1998]. For example, one may want to differentiate stylis-
tic variations in handwriting from the underlying content, or letters. We study this problem for the
particular task of rendering line drawings. We want to allow the user of a drawing program to apply
a new style to selected lines of the drawing, while keeping the “content,” or the overall shape of those
lines, constant.

Present systems typically provide such style control through parametric or interactive manipula-
tions. For example, the thickness of the line can be adjusted, or the Fourier spectrum of the x–y
coordinates of the line can be modified to yield a different line character [Finkelstein and Salesin
1994; Unama et al. 1995; Bruderlin and Williams 1995; Hsu and Lee 1994]. User guidance is re-
quired in the rendering or font appearance models of Winkenbach and Salesin [1994] and Zongker
et al. [2000]. 3D object properties are used for the line-rendering methods of Hamel and Strothotte
[1999]. But even advanced parametric manipulations represent a small subset of the possible stylis-
tic variations that a designer might consider. Figure 1 shows a set of line strokes each made in
a range of different line styles. This range of styles would be very difficult to describe paramet-
rically. We would like to build a system that supports content-preserving translation across such
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Fig. 1. Training data. An artist drew the same lines in several different line styles, which we call generic, jaggy, and brushy.
123 lines were in the training set, in each style. These were scaled in size by computer over 6 scales, ranging from 0.3 to 2.0, over
4 angles, and flipped left/right. All possible combinations of such manipulations (6× 4× 2 = 48) applied to the 123 hand-drawn
lines yielded a training set of 5904 line elements.

different styles of lines. See, for example, Borgman [1977], for examples of lines drawn in different
styles.

We propose a learning-based approach to this problem. The system designer collects examples of
many different lines, each drawn in the various styles that the system is to contain (the “training
data”). An artist, not a programmer, decides what it means to render a particular line over a range of
styles. The system refers to these training data in order to automatically translate lines made by a user
into a particular desired style.

Our system has similarities to the interpolation-based style-modification system of Rose et al. [1998].
Their “adverbs and verbs” correspond to what we call “style and content.” However, we emphasize
automatic operation at run-time; given new lines, the system must both identify the corresponding
content (training line), as well as translate to a novel style. Our example-based approach in the domain
of line modification is analogous to example-based texture transfer methods [Hertzmann et al. 2001;
Efros and Freeman 2001].

2. THE TRANSLATION ALGORITHM

We process drawings that are represented as a collection of lines. Each line follows some path on the
page, with a thickness that can vary along the length of the line. We represent each line as a vector
ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.
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Fig. 2. Line drawing traced from photograph of Einstein.

describing spline control points, with three numbers for each control point, indicating the x and y posi-
tions relative to the line origin, and a local thickness parameter. During a training phase, an artist draws
a collection of line strokes, each in some number of different styles. We had an artist draw a training set
of 123 lines, each in three different styles. Some elements of this training set T are shown in Figure 1.

The user makes a drawing of lines in a style that we assume is represented as one of the styles in the
training set, say style 1. Here is the crucial problem we need to solve at run-time: how should we use
the training data to translate that line to style 2, the desired output style? The algorithms we discuss
all involve two steps: fitting, describing the input image in terms of the strokes in a similar training
set style (style 1); and translation, converting that description to one involving the lines of the output
style (style 2, in this case).

Consider first a very simple algorithm, the nearest neighbor algorithm. In the fitting step, from all the
lines in the training set for style 1, we look for the one closest to the input line. (We measure distance
between lines by the Euclidean distance in a vector representation of the line’s spline control points and
thicknesses, described below.) Call the closest training example the ith line. The training set includes
line i in each of the styles, and so, for the translation step, we simply output the training example of line i
in style 2. (Note this is not the same as outputting the line in style 2 that is most similar to the input line.)

Figure 2 shows a test image we wish to translate to a different style. Figure 3(a) shows the nearest
neighbor fit of the input drawing in a “generic” style of the training set. (In this and all subsequent
examples, each line segment of the drawing is fit and translated separately.) Figure 3(b) shows the
drawing translated into a “jaggy” style using the nearest neighbor algorithm. This algorithm translates
style well (i.e., the output lines (b) look like jaggy versions of the nearest neighbor fits (a)), because the
nearest neighbor fit to each input line is represented explicitly in the artist-designed training set in
both styles. But it doesn’t fit the content of the input drawing well (compare Figure 3(a) with Figure 2),
because the algorithm is only able to use lines that are already in the training set. Thus nearest neighbor
is too limited to support content-preserving style translation.

To be of practical use, an algorithm must have the expressiveness to represent lines not explicitly
put into the training data. Consider a second algorithm, the linear combination algorithm. In order to
fit a broader range of lines, this algorithm fits the input line with the best linear combination of all the
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Fig. 3. (a) Nearest neighbor fit of original image to style 1. The fit does not describe the original image very well. (b) Nearest
neighbor algorithm translation to style 2. The style translation is very good, being a lookup into the line strokes that the artist
deemed were the style 2 translations of the best-fitting style 1 lines.

Fig. 4. (a) Linear algorithm fit of original image to style 1. The optimum linear combination of all training lines yields a high-
fidelity fit. (b) Linear algorithm translation to style 2. Taking a linear combination of the 5904 content elements in style 2 yields
an unintelligible result; the translation is very poor.

training lines in style 1. Define the matrix As to have as its columns each of the training lines of style
s. If the input line is the vector y, then we find the coefficients x yielding the least squares solution to
y = A1x, or x = pinv(A1) ∗ y. This pseudoinverse solution (pinv) can be overdetermined, if the number
of linearly independent lines in the linear combination exceeds the number of line parameters to be
estimated, or underdetermined, if the converse is true. For each case, there is a standard least squares
solution; in Matlab, these are both incorporated into the function pinv. To render this input line in
style 2, we simply output A2x, a linear combination of lines in style 2 weighted by the same coefficients
used to describe the input line in style 1. We expect that other regression methods, such as radial basis
functions (e.g., Rose et al. [1998]) could also be applied.
ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.
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Even with a small training set, the linear combination algorithm can fit an input line y quite well.
Figure 4(a) shows the linear fit to our test image for style 1 of the training set T . The fit is very good;
the result is almost indistinguishable from the original image, Figure 2. However, the translation is
terrible. Rendering A2xi using the coefficients xi found for each line of the test image gives Figure 4(b).
In general, linear combinations of a large set of the style-translated training lines will not maintain
their style, because characteristic features such as inflections or loops are scrambled when averaged
together across many lines.

These simple experiments demonstrate a tension between “goodness-of-fit” and “goodness-of-
translation” that confronts any example-based approach to content-preserving style translation. This is
similar to the “overfitting” problem in machine learning [Bishop 1995]. The nearest neighbor algorithm
focuses on one extreme, achieving excellent style translation on a very limited set of lines which in
general cannot fit the content of the input drawing. The linear combination algorithm goes to the other
extreme, achieving an excellent fit to the content of input lines but in a form that cannot be generically
translated across style.

Our solution to this dilemma is based on the observation that linear combinations of sufficiently
similar lines often do maintain their style. This is particularly true if the vector representation of lines
appropriately models their salient features, as discussed below in the section on representation. Then,
if we only take linear combinations of similar lines, we may be able to both fit the input image, as well
as translate those fit lines well to the desired output style.

This intuition is the basis for the algorithm we present here, the K-nearest neighbor algorithm for
style translation. For an input line y in style 1, we find the K examples in the training set of style 1 that
are most similar (in Euclidean distance) to that line. Let these K examples be the columns of a matrix
Ay

1 . We then find the least squares solution x to y = Ay
1 x, which describes the linear combination of the

K training examples that best explains the input line. We translate this fit into style 2 by taking the
same linear combination of the style-translated training examples. That is, we generate a matrix Ay

2
by replacing each column of Ay

1 with the style-translated version of that example found in the training
set. Then Ay

2 x describes the original input line y translated into style 2.
The K-nearest neighbor algorithm interpolates between the two extreme approaches presented above.

When K = 1, it reduces to simple nearest neighbor. When K equals the size of the training set, it
reduces to a simple linear combination. As we show below, intermediate values of K find an acceptable
balance between goodness-of-fit and goodness-of-translation, yielding good style translations of an input
drawing. In practice, it is easy to find a value of K that achieves this balance by starting at K = 1
and increasing K until a satisfactory fit is obtained. For the training set sizes we use here, we have
typically set K between 3 and 8. In general, the optimal values of K will increase with the size of the
training set. Figure 5 illustrates the fitting and translation trade-offs with varying K for this drawing.
We used K = 6 for all the results shown in this article.

Figure 6 shows the results of K-nearest neighbor style translation for K = 6. Panel (a) shows the
fit of the Einstein image using a linear combination of the closest 6 lines in the style 1 training set
to each line of the original image. Taking a linear combination of several nearby examples allows us
to fit the input data well. Panels (b) and (c) show the Einstein drawing translated into “jaggy” and
“brushy” styles, styles 2 and 3, respectively. Combining only nearby examples allows the resynthesized
output lines to maintain their styles well. The fitting and translation took four seconds in a Matlab
implementation on a 1 GHz PC.

Our algorithm is an application of a general learning method known as locally weighted regression
[Cleveland and Loader 1995; Atkeson et al. 1997], where a weighting function that decays with distance
restricts over which examples regression is performed. In the context of shape synthesis, Darrell [1999]
used a related local learning approach to learn a mapping from endpoint position to the rendered

ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.



38 • W. T. Freeman et al.

Fig. 5. Effect of parameter K in the K -nearest neighbor fitting algorithm on fitting to style 1 (generic), translation to style 2
(jaggy), and translation to style 3 (brushy). The fitting accuracy increases with increasing K since linear combinations of more
lines are used to synthesize the fitted lines. The translation accuracy decreases with increasing K , since linear combinations are
taken of more and more disparate lines.

image of an articulated linkage. In his work, as in this, simple methods are used to synthesize high-
dimensional data from training examples, with care taken to only interpolate over the relevant training
examples. The K-nearest neighbor approach can also be viewed as a locally adaptive generalization of
the bilinear models used in Tenenbaum and Freeman [2000] to separate style and content for various
synthesis and analysis problems.

The remaining sections present the vector representation of lines that we use, how we generated the
training set, more results of the K-nearest neighbor algorithm, and conclusions and future work.

3. LINE REPRESENTATION

The K-nearest neighbor algorithm requires a vector representation of lines, and in particular, one that
encourages a linear combination of similar lines in a certain style to maintain the stylistic quality of
those component lines. We first fit an open uniform cubic b-spline to a set of finely sampled points along
each line [Rogers 1990]. (The origin of this coordinate system is the mean position of all the finely
sampled points on the line). This allowed us to adjust the amount of data used to represent each line
by fitting to fewer or more numerous control points. Because an open uniform cubic b-spline can be
described as a sequence of connected cubic Bezier curves, this representation can be easily translated
into Postscript format, readable by many drawing tools. The K-nearest neighbor algorithm sees each
stroke as a point in a vector space with one dimension for each component of each control point. If each
stroke were represented as a spline with 20 control points, each an [x, y, thickness] triple, then the
K-nearest-neighbor algorithm would see that stroke as a point in a 60-dimensional space. We subtract
the mean position, averaged over the line, of the control points before fitting the lines to the training
database (also mean zero lines). After style translation, we add back in the original means for each
line.
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Fig. 6. Style translation using the K-NN algorithm: (a) original line drawing; (b) 6-NN algorithm fit to image data in style 1.
Although not exactly the same as the original, the fit is quite faithful; (c) 6-NN algorithm image translation to style 2. In addition
to fitting well, this algorithm translates well to the new style; (d) image data translated to style 3, where the line quality of the
training data in that style is still maintained.

The shape of a spline fit to data can be tuned by appropriately selecting the parametric value t
assigned to each datapoint [Rogers 1990]. To best preserve the shape of each curve, we distributed
t in a nonuniform fashion, such that greater intervals of t were clustered around areas of higher
curvature. Denoting arclength by s, the function relating dt/ds to the local curvature had the form of a
saturating (sigmoidal) nonlinearity. Defining τ as the angular difference between sequential line seg-
ments, we used (dt/ds)= 1+π/2+ atan(2.2 ∗ (3.5+ |τ |)), for τ in degrees. Splines fit with t distributed
in this manner tend to have control points clustered around bends and corners, and thus the salient fea-
tures of a line are represented more accurately than would be possible with an even control point spacing.

Ideally, to maintain style, stylistic features such as bends or loops should be put in register from one
line to the next, and then averaged. If they are misregistered, their average will blur and distort each
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Fig. 7. Left: two lines in the same style that are similar to each other. We would like to represent them in such a way that their
vector average is another line in the same perceived style. Top: Average using a spline with equally spaced control points. The
features of the two lines are blurred. Bottom: The average using a spline with adaptively spaced control points. This tends to
place the interesting feature points into similar dimensions.

Fig. 8. Effect of the number of scale replications of the database on fitting and style translation (style 1→2 and style 1→3). The
multiplicative scale factors by which the position and thickness parameters in the line representation were scaled are shown in
brackets: 1-rep(lication), no scale replications: [1]; 2-rep: [ 0.7 1 ]; 4-rep: [ 0.5 0.7 1 1.4]; 6-rep: [0.3 0.5 0.7 1 1.4 2].

feature. Adaptively placed control points will tend to devote the same number of control positions to an
uneventful straight segment, independent of its length. Thus the stylistic features will be more nearly in
register with one another between two perceptually similar lines. Figure 7 illustrates this. The average
of the two similiar lines, using evenly spaced control points, loses a stylistic feature, the sharp corner.
Averaging with more control points devoted to the corner region maintains the stylistic characteristic
of the line. In order for this averaging to work, the number of bends should be the same in both
lines. However, if the number of bends were different, then the distance between the two lines would, in
general, be large and the lines would not be selected for averaging by the K-nearest neighbors algorithm.
ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.
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Fig. 9. 6-NN style translation example: (a) a tracing of the lines of Picasso’s “Mother and Child”; (b) fit to style 1; (c) translation
to style 2; and (d) to style 3, both using the 6 nearest neighbor algorithm, and fitting assuming the original was in style 1.

4. TRAINING SET

It is not realistic to expect an artist to draw enough examples to span the diversity of lines expected in
the input image. We amplified the training set by taking into account operations, such as scale change,
over which we expected the style translations to be invariant.

Simard et al. [1994] use a modified distance metric, the tangent distance, to impose classification
invariances in a classifier. Another approach could be to rotate every line to a canonical position and
scale, both during training and during processing before comparing lines. However, this can introduce
problems for curving lines that have no canonical orientation.
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Fig. 10. 6-NN style translation example: (a) original drawing; (b) fit to generic training style (style 1); (c) translation from style 1
to style 2 (jaggy); (d) translation from style 1 to style 3 (brushy).

We selected a different approach that allows for more explicit manipulation of line orientation and
scale. Our approach to imposing invariances is to replicate the initial training set over all the desired
invariances. In this case, we replicated each of the 123 hand-drawn training examples over 6 spatial
scales, 4 rotation angles, and a mirror reflection, yielding a training set of 5904 line elements. Figure 8
shows the benefits both in fitting and style translation of replicating the training dataset over several
ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.
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Fig. 11. 6-NN style translation example: (a) original drawing; (b) fit to generic training style (style 1); (c) translation from style 1
to style 2 (jaggy); (d) translation from style 1 to style 3 (brushy).

different size scales. (A particularly large or small input drawing may require uniform rescaling of its
lines for them to be within the sizes of the training set lines.)

5. RESULTS

Figure 6 shows the result of the K-NN style translation algorithm applied to the Einstein drawing.
Figures 9 through 12, show four other line drawings, their fits to the “generic” style of the the training
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Fig. 12. 6-NN style translation example: (a) original drawing; (b) fit to generic training style (style 1); (c) translation from style 1
to style 2 (jaggy); (d) translation from style 1 to style 3 (brushy).

set, and their translation into the “jaggy” and “brushy” styles, using the same training set and value
of K = 6. In general, the style translation is good, balancing the goals of fitting the original with
translating to the target style.

Some insight into the limitations of the algorithm can be obtained by examining what appear to be
mistakes in the human figures of Figures 6 and 9. Because the algorithm does not know anything about
the shapes of fingers, noses, or other real-world objects depicted in these drawings, it may inadvertently
distort the contours of these objects in ways that are stylistically consistent but physically unrealistic.
Because each line is modeled independently, relational properties between lines such as parallelism or
perpendicularity may not be preserved. In addition, this method cannot convert between a thick line
and many cross-hatched lines, or utilize notions of 3D shape in the style translation. Dramatic changes
in line style may require more information about the context of the line within the drawing. Such
limitations would be expected with any low-level approach to style translation that treats a drawing as
just a set of lines with no additional structure, and are not a distinctive problem with learning-based
approaches.

6. CONCLUSIONS AND FUTURE WORK

We have described a system for learning-based style translation in the domain of line drawings. The
system is based on a simple and fast K-nearest neighbor algorithm, which is expressive enough to
fit new input data, but constrained enough to translate that fit to different styles. Successful style
ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.
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translation also depended on finding an appropriate representation for the input lines, which allowed
linear combinations of similar lines to maintain the consistent stylistic quality.

Our example-based approach has a number of advantages over conventional parameteric approaches.
First, it can handle new styles drawn by the user, regardless of how difficult it may be to describe para-
metrically. A standard parametric approach to style translation such as power spectrum modification
[Finkelstein and Salesin 1994] would have difficulty with the style translations presented here, because
crucial shape information encoded in the phase component of the frequency signal is ignored.

Second, the repertoire of an example-based system can be easily extended by the user at any time.
Although our system produces good results with manageable training set sizes (around 100 user-entered
examples per style), these results can certainly be improved with more training data. To add a new
style, a user only needs to draw examples of the basic set of training lines in that style. A user who works
mainly with drawings of a certain class of objects (e.g., faces or mechanical parts) can supplement the
default training set with contours from these objects, in order to encourage the system to more faithfully
preserve their essential shape under style translations.

Finally, the example-based approach may be generalized to modify the style of other kinds of graphics
objects, such as the font of a letter or the movement style of an animated character. The problem of
having to compromise between quality of fit to a wide range of signals and quality of style translation is
just as crucial in these domains, and the simplicity and generality of the K-nearest neighbor algorithm
makes it a promising approach in these other domains. Of course, as in the domain of line drawing,
successful example-based style translation in these other domains will also require a representation of
the input signals that allows linear combinations of similar inputs to maintain their style.
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