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Abstract—Interpreting real-world images requires the ability distinguish the different characteristics of the scene that lead to its final

appearance. Two of the most important of these characteristics are the shading and reflectance of each point in the scene. We present

an algorithm that uses multiple cues to recover shading and reflectance intrinsic images from a single image. Using both color

information and a classifier trained to recognize gray-scale patterns, given the lighting direction, each image derivative is classified as

being caused by shading or a change in the surface’s reflectance. The classifiers gather local evidence about the surface’s form and

color, which is then propagated using the Generalized Belief Propagation algorithm. The propagation step disambiguates areas of the

image where the correct classification is not clear from local evidence. We use real-world images to demonstrate results and show how

each component of the system affects the results.

Index Terms—Computer vision, machine learning, reflectance, shading, boosting, belief propagation.
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1 INTRODUCTION

THE appearance of a scene depends on many character-
istics, such as the illumination of the scene, the shape of

the surfaces in the scene, and the reflectance of each surface.
Each of these characteristics contains useful information
about the objects in the scene. Barrow and Tenenbaum [1]
proposed using intrinsic images to represent these character-
istics. For a given intrinsic characteristic of the scene, the pixel
of the corresponding intrinsic image would represent the
value of that characteristic at that point. The intrinsic image
representation may be useful as a stepping-stone to higher
level analysis.

In this paper, we describe a system for decomposing a
single image into two intrinsic images—a shading image (the
illumination at each point) and a reflectance image (the
albedo at each point). In setting up the problem this way, we
make the implicit assumption that the surfaces are Lamber-
tian, so that the observed image is the product of the shading
and reflectance image. Fig.1 shows how the image in Fig.1a
would be decomposed into an image representing the
shading of each point and an image representing each
point’s reflectance. For many real-world surfaces, this model
does not capture everything about the image; for example,
there is no correct way to describe a specular highlight as
belonging to a reflectance or shading image.Nonetheless, the
Lambertian assumption offers a tractable starting point from
which we can develop techniques for image decomposition.

Future work with more sophisticated models should offer
improved performance.

The shading and reflectance intrinsic images are found by
classifying each derivative in the image as either being
caused by shading or a reflectance change. The derivative
classifiers are found by training on a set of example shading
and reflectance images. Our system uses classifiers that take
advantage of both color image information and gray-scale
patterns. In addition, the classification of each derivative is
propagated to neighboring derivatives. Once the derivatives
have been correctly classified, the intrinsic images can be
recovered.

In Section 2, we relate this work to previous work,
particularly in the area of lightness recovery. Our basic
method for decomposing an image into intrinsic images is
described in Section 3. Section 4 describes the classifiers
separate from the effects of shading from reflectance changes.
Section 5 describes how these classifications can be improved
by using aMarkov Random Field to incorporate information
about the classifications of neighboring derivatives.

2 PRIOR WORK

Much of the early work on decomposing an image into
shadingandreflectance imageswasmotivatedby thestudyof
human lightness perception. When viewing a scene, the
human visual system may attempt to remove the effects of
illumination in order to accurately judge the reflectance of a
surface.

An early algorithm which attempted to recover the
reflectance and illumination of a scene is the Retinex
algorithm [14]. Retinex originally described lightness percep-
tion for “Mondrian” images. AMondrian image consists of a
collage of patches, each with a different reflectance. The
patches are lit with a slowly varying illumination. The true
reflectance of eachpatch,within a constant scale factor, canbe
found by examining the derivatives of the log of the observed
image. Since the illumination varies slowly, a large derivative
likely indicates a reflectance change at the border of two
patches. On the other hand, a derivative with a small
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magnitude is probably caused by the illumination. The
reflectance of each patch is recovered by reintegrating the
reflectance derivatives. Retinex was originally proposed to
work on lines in the image; however, Horn [12] proposed a
method for implementing this on 2D images. A similar
strategy was also used by Finlayson et al. [4] to remove
shadows from images. Color cues were used to find
derivatives that were caused by shadows. After setting these
derivatives to zero, the shadow-free imagewas reconstructed
using the remaining derivatives.

Retinex and related algorithms rely on the assumption that
the changes in the reflectance of a surface will lead to large
derivatives, while illumination, which varies slowly, causes
small derivatives. However, this assumptionmay not hold in
real images. Freeman and Viola [6] used a smoothness prior
on the inferred shape in an image to classify the image as
either entirely created by shading or all due to reflectance
changes. Instead of relying on just the magnitudes of the
derivatives, Bell andFreeman [2] trained a classifier to use the
magnitude of the output of a set of linear features. The
classifier was trained to label the coefficients of a steerable
pyramid [20] as caused by either shading or a reflectance
change. Using steerable pyramid coefficients allowed the
algorithm to classify edges at multiple orientations and
scales. However, the steerable pyramid decomposition has a
low-frequency residual component that cannot be classified.
Without classifying the low-frequency residual, only band-
pass filtered copies of the shading and reflectance images can
be recovered. In addition, low-frequency coefficientsmaynot
have a natural classification as either shading or reflectance.

A second heuristic, which is related to Retinex, is that the
shading and reflectance images can be found by filtering the
log of the input image [17]. This approach assumes that the
shading component is concentrated in the low spatial
frequency bands of the log input, while the reflectance
image can be found from the high spatial frequencies. Like
the assumption underlying Retinex, this assumption also
tends not to be true in real images. Fig. 2 shows a high and
low-pass filtered version of the log of the image shown in
Fig. 1a. Shading and reflectance changes appear in both
images because neither are band-limited. This makes it
impossible for band-pass filtering to isolate either shading
or reflectance changes.

An alternative to these discriminative approaches, which
attempt to distinguish the effects of shading and reflectance,
are generative approaches, which create possible surfaces
and reflectance patterns that explain the image, then use a
model to choose the most likely surface. Previous generative

approaches include modeling worlds of painted polyhedra
[21] or constructing surfaces from patches taken out of a
training set [5].

In a different direction, Weiss [23] proposed using
multiple images where the reflectance is constant, but the
illumination changes. This approach was able to create full
frequency images, but required multiple input images of a
fixed scene. Images with varying illumination are also used
in [16] to eliminate shadows from surveillance images.

Our system takes a discriminative approach by classify-
ing the derivatives of the image using both classifiers based
on color information in the image and classifiers trained to
recognize local image patterns to distinguish derivatives
caused by reflectance changes from derivatives caused by
shading. We also address the problem of ambiguous local
evidence by using a Markov Random Field to propagate the
classifications of those areas where the evidence is clear into
areas of ambiguous classification.

3 SEPARATING SHADING AND REFLECTANCE

The input image at each spatial position x and y, Iðx; yÞ, is
modeled as the product of the shading image, Sðx; yÞ, and
the reflectance image, Rðx; yÞ:

Iðx; yÞ ¼ Sðx; yÞ � Rðx; yÞ: ð1Þ

Our goal is to recover Sðx; yÞ and Rðx; yÞ from Iðx; yÞ.
Instead of estimating Sðx; yÞ andRðx; yÞ directly, we attempt
to estimate their derivatives, which localizes the estimation.
Consider the point marked with a white “X” in Fig. 3a. There
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Fig. 1. Example of shading and reflectance intrinsic images. (a) Image of a scene. (b) The reflectance intrinsic image. This image contains only the
reflectanceof eachpoint. (c) Shading intrinsic image. This image results from the interactionof the illumination of the sceneand the shapeof the surface.

Fig. 2. These high and low-pass filtered versions of the log of Fig. 1a

show the infeasibility of solving this problem with simple filtering. Neither

the shading nor the reflectance changes in this image are band-limited,

so band-pass filtering cannot isolate one or the other.



are clearly no changes in the reflectance pattern of the surface
at this point, but correctly recovering the reflectance at this
point requires understanding that the point is contained in a
dark patch that reflects less light. This information is
contained at the edges of the patch, which are relatively
distant from the point being estimated. In the derivative
images, showninFigs. 3band3c, thepoints insideandoutside
the patch have the same intensity. Correctly recovering the
shading and reflectance components of the whole patch only
requires correctly decomposing the derivatives along the
border of the patch. Correctly decomposing the derivatives at
the edge of the patch is amore localized problem because the
information inthe imageneededtoproperlydecomposethose
derivatives is likely located along the edge.

Instead of trying to estimate the shading and reflectance
component of each image derivative, we assume that it is
unlikely that significant shading boundaries and reflectance
edges occur at the same point. This allows us to treat every
image derivative as either caused by shading or reflectance
which reduces the problem of specifying the shading and
reflectance derivatives to binary classification of the image’s
x and y derivatives. The derivatives of the shading and
reflectance images are estimated by labeling each derivative
as either shading or a reflectance change.

Once the derivatives of the shading and reflectance
images are estimated, they can be used to recover the actual
images. Each derivative represents a set of linear constraints
on the image and using both derivative images results in an
overconstrained system. We recover each intrinsic image
from its derivatives with the same method used by Weiss in
[23] to find the pseudoinverse of the overconstrained system
of derivatives. If fx and fy are the filters used to compute the
x and y derivatives and F x and F y are the estimated
derivatives of shading image, then the solution for the
shading image, Sðx; yÞ is:

Sðx; yÞ ¼ g � ðfxð�x;�yÞ � F xÞ þ ðfyð�x;�yÞ � F yÞ
� �

; ð2Þ

where � is convolution, fð�x;�yÞ is a reversed copy of
fðx; yÞ, and g is the solution of

g � ðfxð�x;�yÞ � fxðx; yÞÞ þ ðfyð�x;�yÞ � fxðx; yÞÞ
� �

¼ �:

ð3Þ

In this work, fx and fy are [-1 1] filters.
The reflectance image is found in the same fashion. One

nice property of this technique is that the computation can
be done using the efficiently FFT.

This model assumes that the final image is created by
adding the shading and reflectance images. In reality, the
images combine multiplicatively, so our system would
ideally operate on the log of the input images. However, for
the real-world images examples shown, the results are
computedwithout first computing the log of the input image.
This is because ordinary photographic tone-scale is very
similar to a log transformation. Errors from not taking log of
the input image first would cause one intrinsic image to
modulate the local brightness of the other. We found that
these brightness artifacts do not occur in the results when
processing typical images without the log transformation.

4 CLASSIFYING DERIVATIVES

Our system for recovering shading and reflectance images
from a single image has three basic steps:

1. Compute derivatives of the input image.
2. Classify each derivative as being caused by either

shading or a reflectance change.
3. Invert derivatives classified as shading to find

shading images. The reflectance image is found in
a similar fashion.

Themost difficult of these steps is correctly classifying the
derivatives. Classification is accomplished using two forms
of local evidence to classify the image derivatives: color and
intensity patterns. Section 4.1 describes how color informa-
tion is used to classify image derivatives. Next, Section 4.2
describes how the statistical regularities of surfaces can be
used to classify derivatives from gray-scale patterns.
Section 4.3 shows how these two cues can be combined.

4.1 Using Color Information

The color classifier takes advantage of the property that a
change in color between pixels often indicates a reflectance
change [19]. When surfaces are diffuse and all of the
illumination has the same color, any changes in a color image
due to shading should affect all three color channels
proportionally. Denote two adjacent pixels in the image as
c1 and c2, where c1 and c2 are RGB triplets. If the change
between the two pixels is caused by shading, then only the
intensity of the pixels’ color changes and c2 ¼ �c1 for some
scalar �. If c2 6¼ �c1, the chromaticity of the colors has
changed and the color change must have been caused by a
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Fig. 3. It is easier to first estimate the derivatives of shading and reflectance images than directly estimate the actual pixel values. To classify the
point marked with an “X” in (a), the estimator must use the information from the borders of the patch. If the derivatives are used instead, the
derivatives on the borders of the patch can be estimated instead, likely using information in a local area around each derivative. (a) Original image.
(b) Vertical derivatives. (c) Horizontal derivatives.



reflectance change. Thus, a chromaticity change in the image

indicates that the reflectancemust have changedat that point.
To find chromaticity changes, we treat each RGB triplet

as a vector and normalize them to create ĉc1 and ĉc2. We then

use the angle between ĉc1 and ĉc2 to find local evidence for

reflectance changes. Ideally, when the change is caused by

shading, ðĉc1 � ĉc2Þ should equal 1. In practice, if ðĉc1 � ĉc2Þ is

below a threshold, then the derivative associated with the

two colors is classified as a reflectance derivative. In our

implementation, this threshold, which was set to cos(0.01),

was chosen manually. Using only the color information, this

approach is similar to that used by Funt et al. [9]. The

primary difference is that our system classifies the vertical

and horizontal derivatives independently.
Images previously compressed with the JPEG standard

frequently contain noticeable chromaticity artifacts. If the

image has been processed with the JPEG standard, we

alleviate these artifacts by first smoothing the images with a

5� 5 Gaussian filter.

Fig. 4 shows an example of the results produced by the
algorithm on an image of a shampoo bottle. The classifier
marked all of the reflectance areas correctly and the text is
cleanly removed from the bottle. This example also
demonstrates the high quality reconstructions that can be
obtained by binary classification of image derivatives.

Fig. 5 shows an example where color information alone
is insufficient. The mouth and eyes of the pillow are formed
by a black-to-white intensity change. When only the color
classifier is used, intensity changes must be classified as
shading since shading can only cause intensity changes.
However, an intensity change, such as the eyes and mouth
on the pillow, could also be a change in reflectance. This
causes the eyes in Fig. 5 to be incorrectly classified and
appear in the shading image shown in Fig. 5b.

The toy shown in Fig. 6 also demonstrates the same
ambiguity. The black line is incorrectly placed in the
shading image. This image also shows the effect of a
specular, non-Lambertian surface on the color classifier. The
specularities on the hat of the toy figure are placed in the
reflectance image.
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Fig. 4. The shading and reflectance images computed using (a) as input. Only color information is used to classify derivatives. To facilitate printing,
the intrinsic images have been computed from a gray-scale version of the image. The color information is used solely for classifying derivatives in the
gray-scale copy of the image. (a) Original image. (b) Shading image. (c) Reflectance image.

Fig. 5. Intrinsic images created using only color image information to classify the derivatives. The pink cheek patches are correctly placed in the
reflectance image. However, the black face is incorrectly placed in the shading image because areas where only the intensity of the color changes,
not the chromaticity, are ambiguous based on color alone. (a) Input image. (b) Shading image. (c) Reflectance image.

Fig. 6. Intrinsic images created using only color image information to classify the derivatives. This image demonstrates how non-Lambertian surfaces

are treated by the color classifier. The specularities on the hat of the figure are placed in the reflectance image. (a) Input image. (b) Shading image.

(c) Reflectance image.



4.2 Using Gray-Scale Information

The ambiguity inherent in color data can be reduced by
examining the structure of patterns in the image. The regular
properties of surfaces and illumination in the real world give
shading patterns a unique appearance that can be discrimi-
nated frommost common reflectance patterns. The ripples on
the surface of the pillow in Fig. 5b have a much different
appearance than the face pattern that has been painted on the
pillow. This regular appearance of shading patterns should
allow us to use the local gray-scale image pattern surround-
ing a derivative to classify that derivative.

The basic feature of the gray-scale classifier is the
absolute value of the response of a linear filter. We refer
to a feature computed in this manner as a nonlinear filter.
The output of a nonlinear filter, F , given an input patch Ip is

F ðIpÞ ¼ jIp � wj; ð4Þ

where � is convolution and w is a linear filter. The filter, w is
the same size as the image patch, I, and we only consider the
response at the center of Ip. This feature could also be viewed
as theabsolutevalueof thedotproduct of Ip andw.Weuse the
responses of linear filters as the basis for our feature, in part,
because they have been used successfully for characterizing
[15] and synthesizing [11] images of textured surfaces.

Before choosing to use these nonlinear filters as features,
we also evaluated the features used by Bell and Freeman to
classify wavelet coefficients [2]. Bell and Freeman used
cascaded, nonlinear filters as the basic feature for their
classifier, similar to the cascaded filters used by Tieu and
Viola [22]. A cascaded, nonlinear filter consists of a nonlinear
filter, similar to (4), with a second filtering and absolute value
operation added. In addition, the output of the first filtering
stage is down-sampled before it is filtered again. After
evaluating both classifiers, we found that using a cascaded,
nonlinear filter, rather than just a nonlinear filter, did not
improve the performance of the classifier. In addition, taking
the absolute value between filtering steps makes it more
difficult to interpret the featureschosen; leadingus toonlyuse
a single filtering step followedbyanabsolutevalueoperation.
Wealso found that removing thedown-sampling stepdidnot
affect the classifier’s performance on the training set.

4.2.1 Learning a Classifier

Training the classifier actually involves two tasks: 1) choos-
ing the set of nonlinear filters to use as features for the
classifier and 2) training a classifier based on those features.

Similar to [22], we accomplish these two tasks simulta-
neously using the AdaBoost algorithm [7]. Given a set of
weak classifiers, the AdaBoost algorithm is used to combine
those weak classifiers into a single strong classifier. The
output of the strong classifier, given an input sample, is a
weighted combination of the classifications produces by
applying each of the weak classifiers to the input sample.

To train the system, all derivatives in the training set
caused by shading are assigned the label 1 and derivatives
caused by a reflectance change are labeled -1. A weak
classifier, hðIpÞ, where Ip is an image patch surrounding the
derivative to be classified, consists of a single non-linear
filter and a threshold. An example is classified by
comparing the response of the filter to a threshold:

hðIpÞ ¼ � � h0ðIpÞ; ð5Þ

where � 2 f�1; 1g and

h0ðIpÞ ¼
�1 if F ðIpÞ < T
1 Otherwise;

�
ð6Þ

where T is some threshold. As described above, F ð�Þ is a
nonlinear filter defined by some linear filter w.

The AdaBoost algorithm is used to choose both the weak
classifiers and the weight that should be assigned to each of
them. The first step in the algorithm is to choose a weak
classifier. For the classifier described in (5), this involves
choosing a linear filter w, �, and a threshold T . The filter w is
chosen from a set of 17� 17 pixel derivative filters. To
maximize the number of filters evaluated as possible weak
classifiers, each candidate filter was formed from the
combination of two smaller filters taken from a set of
9� 9 filters. This set consists of nine derivative of Gaussian
filters andnine second-derivative ofGaussian filters oriented
every22.5degreesbetween0and180degrees. In addition, the
set included an impulse filter and four Gaussian filters with
different widths. The actual candidate set of filters that the
classifiers are chosen from consists of every possible
combination of the smaller filters, with the requirement that
each combination contain at least one derivative filter.

The candidate weak classifiers are evaluated against a
weighted training set. Throughout the training process, the
AdaBoost algorithm maintains a distribution, Dt, on the
training samples. DtðiÞ can also be thought of as the weight
of training example i. These weights are updated depend-
ing on the performance of the weak classifier. When
selecting a classifier, AdaBoost only requires that the
selected weak classifier classify the reweighted training
set with better than 50 percent accuracy. For iteration t, the
goal is to find a classifier ht such that

Pr
i�Dt

½htðxiÞ ¼ yi� > 0:5; ð7Þ

where xi is training example i and yi is its true label. The
notation i � Dt denotes that i is chosen according to the
probability distributionDt. Similar to [22], we use this step to
perform feature selection. At each iteration, the next classifier
chosen is the classifier that has the highest probability of
being correct on theweighted training set. Because eachweak
classifier consists of a single nonlinear filter and a threshold,
greedily choosing theweak classifier is equivalent to greedily
choosing the best filters.

Once the weak classifier has been chosen, the next step is
to calculate the weight to assign to the weak classifier. This
weight, �t, is

�t ¼
1

2
ln

1� �t
�t

� �
; ð8Þ

where �t is the probability of error, Pri�Dt
½htðxiÞ 6¼ yi�, when

the training examples are drawn with probability distribu-
tion Dt. This essentially weights the errors according to Dt.

Once �t has been computed, the weight for each training
example in the next iteration, Dtþ1 is computed as

Dtþ1ðiÞ ¼
DtðiÞ expð��tyihtðxiÞÞ

Zt
; ð9Þ

where Zt is a normalization factor needed to makeDt a valid
distribution. In this step, training examples that were
incorrectly classified will receive more weight, while those
correctly classified by the weak classifier will receive less
weight.
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Once the desired number of iterations has run, the
output of the strong classifier on a new sample is computed
by having each of the weak classifiers independently
classify the sample. Given a sample, x, each weak classifier
casts a vote to classify the sample as -1 or 1. The final
classification output of the combined classifier, HðxÞ is the
weighted average of the votes

HðxÞ ¼ sign
X
t¼1

N�thtðxÞ
 !

; ð10Þ

where N is the number of weak classifiers used.

4.2.2 Generating a Training Set

The training set for learning the gray-scale classifier is taken
from synthetic images. In order to generate a training set that
captures the statistics of shading, the examples of shading are
createdwith threemethods. Approximately 63 percent of the
set is generated by creating random surfaces with ellipsoids,
then rendering them with Lambertian shading. The surfaces
are created by randomly placing ellipsoids throughout the
image. At points where ellipsoids overlap, the maximum of
the height of every ellipsoid at that point is used. Before being
rendered, each surface is smoothedwith aGaussian filter. An
example image is shown in Fig. 7a. The remaining 37 percent
of the examples of shading was taken from the set created by
Bell and Freeman for their work on producing intrinsic
images [2]. Half of the Bell and Freeman training set was also
created with random surfaces created with ellipses, except
the surfaces are rendered using linear shading, an approx-
imation to the true Lambertian shadingwhen the angle of the
illumination is oblique to the surface [18]. An example of this
part of the training set is shown in Fig. 7b. The rest of the Bell
and Freeman training set comes from rendered fractal
surfaces, such as Fig. 7c. Each example image is created by
using the midpoint displacement method to create a surface,
then rendering it using linear shading.

Every shading image was lit from the same direction. In
the training set, the illumination comes from the top of the
image.We assume that for every input image, the direction of
illumination is roughly known. Before classifying an input
image, the image is rotated so that the dominant illumination
in the image also comes from the top side of the image. The
requirement that the illumination come from the top could be
removed using a strategy similar to that used in [2]. This
strategy finds the dominant direction of the illumination by
evaluating multiple rotated copies of the image, then
choosing the rotation with the largest number of steerable
pyramid coefficients classified as shading.

The examples of reflectance changes were generated in
two fashions. Approximately 37 percent of the reflectance
exampleswere generated by randomly placing ellipses in the
image, then rendering them as reflectance changes. Fig. 8a
shows an example of an image produced in this fashion. The
remaining 63 percent of the training set is generated by
randomly rendering lines. In order to create images with
corners andanti-aliased lines,weuse ellipsoid images similar
to those used as shading examples. To create the lines, we
mask the darkest portions of the ellipsoid image, then set the
rest of the image towhite. The intensity of each line is then set
randomly. An examples of an image of rendered lines is
shown in Fig. 8b.

The training set had 2,200 total samples, evenly divided
between examples of shading and examples of reflectance
changes. While these images are only a small subset of the
possible shading or reflectance images, we find that the
classifiers trained from these images generalize well in
classifying the image derivatives from real images.

4.2.3 Examining the Filters Learned

Fortheresultsshown,oursystemused10weakclassifiers.The
columns of Fig. 9 shows the filters associated with the weak
classifiers chosen by the AdaBoost algorithm. Each column
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Fig. 7. Examples of shading from the training set. (a) Random ellipses
rendered with Lambertian shading. (b) Random ellipses rendered with
linear shading. (c) Fractal surface rendered with linear shading.

Fig. 8. Examples of reflectance changes from the training set. (a) Random

ellipses rendered as reflectance changes. (b) Random lines.

Fig. 9. An example of the filters selected by AdaBoost for classifying vertical derivatives when the illumination is from the top of the image. Each column
contains one nonlinear filter. The reflectance change threshold row describes the threshold test for labeling a derivative as a reflectance change.



contains the filter for oneweak classifier. The filters shown in
Fig. 9 are classifiers trained for vertical derivatives when the
illumination is from the top of the image. The reflectance
change threshold row shows the threshold usedwhen testing
whether to labeladerivativeasareflectancechange.Forallbut
the filter number 7 in Fig. 9, the AdaBoost algorithm has
chosen to label responses with a magnitude above the
threshold as a reflectance change. These values assume the
input intensity image is normalized between 0 and 1.

The percentage of weight allocated to each classifier is
shown beneath the corresponding filter in Fig. 9. The votes
from weak classifiers with larger percentages influence the
final classification more strongly. It is interesting to note that
the filter with the greatest weight distinguishes shading and
reflectance changes in fashion very similar to Retinex. In
Retinex and its derivatives, derivatives with a large magni-
tude are assumed to be reflectance changes, while small
derivatives indicate shading. The filter with the most weight
effectively smoothes the image, then classifies derivatives
with a largemagnitude as reflectance changes. This validates
that Retinex is a good heuristic for accomplishing this task.

Another interesting aspect of the AdaBoost classifier is
that seven of the 10 filters chosen to classify vertical
derivatives are horizontally oriented. This is related to the
fact that in the training set, each image is illuminated from
the top of the image. The choice of these filters indicates that
it is unlikely that edges caused by shading will be oriented
perpendicular to the illumination.

4.2.4 Evaluating Classifier Performance

As a baseline for comparison, we also created a classifer
based on the basic assumption of Retinex. This assumption
is that image derivatives with a large magnitude corre-
spond to reflectance changes, while small derivatives are
most likely caused by shading. The Retinex classifer was
implemented as a simple threshold test. If �I is an image
derivative, then �I will be classified as a reflectance change
if k1 � j�Ij þ k0 > 0. Otherwise, �I will be classified as
shading. The constants k0 and k1 were found using logistic
regression. This classifier was trained on the same training
set as our gray-scale classifier.

To compare the two methods, we used the method
described in Section 4.2.2 to draw a new set of 1,000 samples.
Our gray-scale classifier correctly classified 89 percent of the
test samples correctly, while the Retinex classifier correctly
classified 60 percent of the samples.

Because these resultswere found using synthetic data, it is

difficult to use them to predict each classifier’s performance

on real images. However, Figs. 10, 11, 12, and 13 show

empirical evidence that given real images, our classifier will

still perform better than a simple Retinex classifier. One

reason for this superior performance is that our classifier is

able to both take advantage of the same heuristic as the

Retinex classifier. As mentioned in Section 4.2.3, the weak

classifier with themost weight uses a smoothed derivative to

distinguish between shading and reflectance changes. In

addition, our gray-scale classifier is able to use information

from the additional weak classifiers.
Figs. 10b and 10c show the shading and reflectance images

generated by our gray-scale classifier, using Fig. 10a as input.

For comparison, the shading and reflectance images created

using the simple Retinex classifier are shown in Figs. 10d and

10e. The results can be evaluated by thinking of the shading

imageashow the scene should appear if itweremadeentirely

of gray plastic. The reflectance image should appear very flat,

with the three-dimensional depth cues placed in the shading

image. In thisexample, thesystemperformswell.Theshading

image, shown in Fig. 10b, has a very uniform appearance. In

addition, almost all of the effects of the reflectance changesare

correctly placed in the reflectance image, shown in Fig. 10c.

The Retinex classifier is able to produce a good reflectance

image, but the shading image still contains many reflectance

changes that should have been removed.
When applied to the graffiti image in Fig. 11a, the gray-

scale classifier successfully separates the paint from the
shading of the wall, shown in Fig. 11b. Some of the ridges of
the surface are misclassified and appear in the reflectance
image shown in Fig. 11c. The most significant cause of these
misclassifications is that ridges such as these did not appear
in the training set. In addition, a majority of weak classifiers,
shown in Fig. 9, have learned to classify edges with a strong
contrast as reflectance changes. In this example most of the
misclassified edges have a strong contrast. The results from
the simple Retinex classifier, shown in Figs. 11d and 11e,
again show that it fails to prevent many reflectance edges
from appearing in the shading image.

InFig. 13, our classifierplacesmostof the lineson the jersey
in the reflectance image, while some of the lines are
incorrectly shown in the shading image. These lines are
caused by ambiguities in the local evidence used by
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Fig. 10. Intrinsic images created from (a) using only gray-scale image information to classify the derivatives. (b) and (c) show the shading and
reflectance images created using our method. The shading image created by our method is shown in (b). The 3D structure of the truck is properly
placed in the shading image, which should appear as if the entire object is made of one matte material. The reflectance image is shown in (c). (d) and
(e) show the intrinsic images created using the Retinex classifier for comparison. The Retinex classifier produces a good reflectance image, but
many reflectance changes that should have been removed from the shading image still remain in (d).



classifiers. The reason for this type of error and our method
for fixing these types of errors are discussed in Section 5.

The intensity classifiers also fix many of the errors in the
decomposition of the pillow example generated using the
color-only algorithm of Section 4.1. In Fig. 13, our form-based
classifier correctly identifies the eyes and most of the mouth
as reflectance changes. It also correctly identifies the right and
left edges of the cheek patch. Themost significant errormade
by our classifier is that the top and bottom edges of the check
patches are incorrectly classified as shading. This is partly
due to the fact that the top and bottom edges of the cheek are

locally ambiguous. They are edges that could have been
produced by either shading or a reflectance change.

4.2.5 Classifier Limitations

The pillow shown in Fig. 13 shows one of themost significant
limitations of both our gray-scale classifier and the Retinex

classifier. Besides local ambiguity, the othermain cause of the
misclassification of the derivatives around the cheek patches

is lowcontrast edges. The borders of the cheeks are created by
low contrast edges. Both our classifier and the Retinex

classifier base their predictions on the response of a linear
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Fig. 11. Intrinsic images created from (a) usingonly gray-scale image information to classify the derivatives. (b) and (c) show the shadingand reflectance
images created using our method. The shading image, (b), is missing some edges that have beenmisclassified as reflectance changes because edges
such as these did not appear in our training set. The paint is correctly removed from the surface and placed in the reflectance image, (c). (d) and (e) show
the intrinsic images created using the Retinex classifier for comparison. Again, many reflectance changes are incorrectly placed in (d).

Fig. 12. Intrinsic images created from (a) using only gray-scale image information to classify the derivatives. (b) and (c) show the shading and
reflectance images created using our method. (d) and (e) show the intrinsic images created using the Retinex classifier for comparison. Again, many
reflectance changes are incorrectly placed in (d).

Fig. 13. Intrinsic images created from the pillow image from Fig. 5 using only gray-scale form image information to classify the derivatives. (b) and
(c) show the shading and reflectance images created using our method. The weak gradient of the cheek patches leads them to be incorrectly placed in
the shading image, (b). The face is correctly placed in the reflectance image, (c). (d) and (e) show the intrinsic images createdusing theRetinex classifier
for comparison. Again, many reflectance changes are incorrectly placed in (d).



filter. This biases the classifier toward classifyingweak edges

as shading.

The gray-scale classifier is also trained to only distinguish

between reflectance changes and shading. Its behavior on

other common visual events, such as occluding edges,

shadows, and specularities is undefined. Typically, deriva-

tives caused by these events are classified as reflectance

changes by the classifier.

4.3 Combining Color and Gray-Scale Information

Neither the color nor the gray-scale classifier is able to

classify the entire pillow image correctly. However, by

combining the results of the two classifiers, the quality of

the classifications can be enhanced significantly.

Color and gray-scale information can be used simulta-

neously by requiring the classifiers to assign probabilities to

the classification of each derivative. To combine the results

of the color and gray-scale classifiers, let D be the

classification of some derivative. We denote Ds as the event

that the derivative should be labeled shading and denoteDr

as the event that the derivative should be labeled a

reflectance change. From the color classifier, we obtain

Pr½DsjC� and Pr½DrjC�, the probabilities of the derivative

being caused by shading or a reflectance change, given the

local color information C. The gray-scale classifier returns

Pr½DsjG� and Pr½DrjG�, the probabilities of the derivative’s

classification, given the local gray-scale information G.

We assume that the outputs of the color and gray-scale

classifiers are statistically independent variables. Using

Bayes’ rule, this enables the probability of the derivative

being caused by shading, Pr½DsjG;C�, to be expressed as

Pr½DsjG;C� ¼
Pr½DsjG�Pr½DsjC�

ðPr½DsjG�Pr½DsjC� þ Pr½DrjG�Pr½DrjC�Þ
:

ð11Þ

The probability that the derivative is caused by a reflectance
change is found by

Pr½DrjG;C� ¼
Pr½DrjG�Pr½DrjC�

ðPr½DsjG�Pr½DsjC� þ Pr½DrjG�Pr½DrjC�Þ
:

ð12Þ

To obtain Pr½DsjG�, the probability of a derivative being

caused by shading from the gray-scale classifier, we used the

method suggested by Friedman et al. to transform the output

of anAdaBoost classifier into the probability of each label [8].

Given a sample, x, the AdaBoost classifier, HðxÞ, returns a

valuebetween -1 and1.Theprobability that the true label ofx,

denoted as y, has the value 1 is well approximated by

Pr½y ¼ 1� � eHðxÞ

eHðxÞ þ e�HðxÞ : ð13Þ

In our system, the AdaBoost classifier usesGði; jÞ, a patch
of local image information around location ði; jÞ, to classify

the derivative at location ði; jÞ. Using this approximation, the

probability that the derivative is cause by shading is

Pr½DsjGði; jÞ� ¼
eHðGði;jÞÞ

eHðGði;jÞÞ þ e�HðGði;jÞÞ : ð14Þ

Theprobabilities of each label, given the color information,

are obtained in a different fashion because the color-based

classifier is not anAdaBoost classifier. The output of the color

classifier is transformed into a probability by setting

Pr½DsjCði; jÞ�, the probability that a derivative is caused by

shading, given the color information, to be some constant

probability wherever the color classifier finds a reflectance

change. For the results shown, we use the value 0.1 for the

constant. The probabilities associated with chromaticity

information are assigned thiswaybecausewithout calibrated

color images, themeasurements of chromaticity changesmay

be flawed. Using a threshold test for the classifier and setting

theprobabilities of the classifications in thismannermakeour

algorithm robust to situations where our assumptions about

chromaticity changes may not hold.

As explained in Section 4.2, intensity changes are

ambiguous so the probability that derivative should be

labeled shading is set to 0.5 at locations where the color

classifier does not indicate a reflectance change.

Fig. 14 shows the results on the pillow image when both

color and gray-scale information are used. Using the two

cues, the cheeks and eyes that are painted on the pillow are

now correctly removed. However, there are some portions

of the mouth that still appear in the shading image. In these

areas, the local evidence available to the classifiers is not

sufficient. These errors can be resolved by propagating the

local evidence spatially.
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Fig. 14. Intrinsic images created from the pillow image using both color and gray-scale image information to classify the derivatives. Almost the entire

image is classified correctly. Portions of the mouth remain in the shading image because those areas are locally ambiguous. (a) Input image.

(b) Shading image. (c) Reflectance image.



5 PROPAGATING EVIDENCE

While the combined color and gray-scale classifier works

well, there are still areas in the image where the local

information is ambiguous. An example of this is shown in

Fig. 15. When compared to the example shading and

reflectance change in Figs. 15c and 15d, the center of the

mouth in Fig. 15b is equally well classified with either label.

However, the corners of the mouth can be classified as being

causedby a reflectance changewith little ambiguity. Since the

derivatives in the corner of themouth and the center all lie on

the same imagecontour, it seemsnatural they shouldhave the

same classification. A mechanism is needed to propagate

information from the corners of the mouth, where the

classification is clear, into areas where the local evidence is

ambiguous. This will allow areas where the classification is

clear to disambiguate those areas where it is not clear. The

propagation step is based on the heuristic that derivatives

corresponding to the same image contour should have the

same labels.

In order to propagate evidence,we treat each derivative as

a node in aMarkovRandomField, orMRF,with two possible

states, indicatingwhether the derivative is causedby shading

or caused by a reflectance change. Setting the compatibility

functions between nodes correctly will force nodes along the

same contour to have the same classification. SeparateMRF’s

are used for the horizontal and vertical derivatives.

5.1 Model for the Potential Functions

Each node in the MRF corresponds to the classification of a
derivative. The compatibility functions for two neighboring
nodes in the MRF, xi and xj, have the form

 ðxi; xjÞ ¼
� 1� �

1� � �

� �
ð15Þ

with 0 � � � 1.

The term � controls how much the two nodes should

influence each other. An MRF such as this, where the

compatibility functions depend on the observed image

information, is often referred to as a Conditional Random

Field [13]. The derivatives along an image contour should

have the same classification, so � should be close to 1 when

two neighboring derivatives are along a contour and should

be 0.5 when no contour is present.

Since � depends on the image at each point, we denote it

as �ðIxyÞ, where Ixy is the image information at some point.

To ensure �ðIxyÞ between 0 and 1, it is modeled as

�ðIxyÞ ¼ gðzðIxyÞÞ, where gð�Þ is the logistic function and

zðIxyÞ is a function that should have a large response when

two adjacent nodes should have the classification.

5.2 Learning the Potential Functions

The function zðIxyÞ is based on two local image features, the

magnitude of the image and the difference in orientation

between the gradient and the orientation of the graph edge.

These features reflect our heuristic that derivatives along an

image contour should have the same classification. For

simplicity,we constrain zð�Þ to be a linear functionof the form:

zð�̂�; jrIjÞ ¼ a � �̂�þ b � jrIj þ c; ð16Þ

where jrIj is the magnitude of the image gradient and the

constants a, b, and c are to be found by minimizing (17).

Both �̂� and jrIj are normalized to be between 0 and 1.

The difference in orientation between a horizontal graph

edge and image contour, �̂�, is found by constraining the

image gradient, �, to be in the range ��=2 � � � �=2,

making �̂� ¼ j�j. To assign the compatibilities for vertical

graph edges, �̂� ¼ j�j � �=2.

To find the values of zð�Þ, we maximize the probability of

a set of the training examples over the parameters of zð�Þ.
The examples are taken from the same set used to train the

gray-scale classifiers. The probability of training samples is

P ¼ 1

Z

Y
ði;jÞ

 ðxi; xjÞ; ð17Þ

where all ði; jÞ are the indices of neighboring nodes in the

MRF and Z is a normalization constant. Note that each  ð�Þ
is a function of zðIxyÞ.

The constants, a, b, and c, are found by maximizing (17)

over a set of training images similar to those used to train the

local classifier. In order to simplify the training process, we

train using a pseudolikelihood to approximate the true

probability of eachMRF [3]. The pseudolikelihood is formed
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Fig. 15. An example of where propagation is needed. The smile from the pillow image in (a) has been enlarged in (b). (c) and (d) contain an example

of shading and a reflectance change, respectively. Locally, the center of the mouth in (b) is as similar to the shading example in (c) as it is to the

example reflectance change in (d).



by assuming that Z is constant. Doing so, leads to the

following values for a, b, and c: a ¼ �1:2, b ¼ 1:62, c ¼ 2:3.

Thesemeasures breakdown in areaswith aweakgradient, so

we set zð�Þ to 0 for regions of the image with a gradient

magnitude less than 0.05. Combined with the values learned

for zð�Þ, this effectively limits � to the range 0:5 � � � 1.

Larger values of zð�Þ correspond to a belief that the

derivatives connected by the edge should have the same

value, while negative values signify that the derivatives

should have a different value. The values found in (16) lead

to our desired result; two derivatives are constrained to

have the same value when they are along an edge in the

image that has a similar orientation to the edge in the MRF

connecting the two nodes.

5.3 Inferring the Correct Labeling

Weused theGeneralizedBelief Propagation algorithm [24] to

infer the best label of each node in theMRF because ordinary

Belief Propagation performedpoorly in areaswith bothweak

local evidence and strong compatibility constraints.

The addition of the propagation step improves the

results on the pillow image, shown in Fig. 16 and removes

the stray mouth markings seen in Fig. 14, where no

propagation was used. In Fig. 16, the ripples on the pillow

are correctly identified as being caused by shading, while

the face is correctly identified as having been painted on.
The propagation step also cleans up many of edges in the

graffiti image, shown in Fig. 17, which have been mis-

classified as reflectance changes by the gray-scale classifier.

Fig. 18 shows how the propagation step can improve

image quality for ambiguous contours in an image. The local

ambiguity of the stripes on the chest of the toy lead to both

blotchy image artifacts in Fig. 18d and a stripe incorrectly

being placed in the shading image. After propagation, the

lines are removed from the shading image, shown in Fig. 18c.
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Fig. 16. The pillow from Fig. 15. This is found by combining the local evidence from the color and gray-scale classifiers, then using Generalized Belief

Propagation to propagate local evidence. The propagation step has placed the mouth totally in the reflectance image. (a) Original image. (b) Shading

image. (c) Reflectance image.

Fig. 17. Intrinsic images created with the addition of the propagation step. Adding the propagation step reduces the number of edges in the surface

that are misclassified as reflectance changes. (a) Original image. (b) Shading image without the propagation step. (c) Reflectance image without the

propagation step. (d) Shading image with the propagation step. (e) Reflectance image with the propagation step.



The improvement provided by the propagation step

depends on the performance of the local color and gray-scale

classifiers. If the classifiers are overconfident in a derivative’s

label, then the propagation step will not improve the results.

6 ADDITIONAL EXAMPLES

In this section, we present additional examples of how our

system performs on a variety of images.

In another real-world example, shown in Fig. 19, the

algorithm correctly identifies the change in reflectance

between the sweatshirt and the jersey and correctly identifies

the folds in the clothing as being causedby shading. There are

some small shading artifacts in the reflectance image,

especially around the sleeves of the sweatshirt, caused by

inadequate generalization to shapes not present in the

training set.

In Fig. 20a, we have recreated a demonstration in

Gibson’s classic 1966 vision book [10] that describes how

both shading and reflectance changes can create structure in

the image. The results of applying our algorithm to this

image is shown in Figs. 20b and 20c.

In the next example, shown in Fig. 21, we applied our

system to the imageused in Section 1 to introduce the concept

of intrinsic images. Overall, the image is decomposed

correctly. Themost noticeable errors in the image are around

the occluding contours of the lumps in the surface. It is

reasonable that our systemmisclassifies these lumps because

our training set does not include occluding contours.

In Fig. 22, we apply our system to a unique real-world

image. In Fig. 22a, the embossing of the sign is rotated with

respect to how the sign has been painted. The sign has a

shiny, metallic surface that is not modeled well by the color

classifier, so these results are produced using the gray-scale

classifier and the propagation step. The system performs

well, in this case, the embossing is correctly placed in the

shading image, while the painting is correctly placed in the

reflectance image.
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Fig. 18. An example of how propagation can improve image quality. Before propagation, the lines on the jersey appear in both the shading and

reflectance images. After propagation, the lines are solely in the reflectance image. (a) Input image. (b) Shading image without propagation.

(c) Shading image with propagation. (d) Reflectance image without propagation. (e) Reflectance image with propagation.

Fig. 19. Example generated by combining color and gray-scale information, along with using propagation. (a) Original image. (b) Shading image.

(c) Reflectance image.



7 CONCLUSION

We have presented a system that is able to estimate shading

and reflectance intrinsic images from a single real image,

given the direction of the dominant illumination of the

scene. Although some properties of real-world scenes are

not modeled directly, such as occlusion edges, the system

produces satisfying image decompositions. The basic

strategy of our system is to gather local evidence from

color and intensity patterns in the image. This evidence is

then propagated to other areas of the image. This same

strategy can be applied to other vision problems.
The most computationally intense steps for recovering

the shading and reflectance images are computing the local

evidence, which takes about six minutes on a 700MHz

Pentium 3 for a 256� 256 image, and running the General-

ized Belief Propagation algorithm. Belief propagation was

used on both the x and y derivative images and took around

6 minutes to run 200 iterations on each 256� 256 image. The

pseudoinverse process took under 5 seconds.

One of the primary limitations of this work was the use

of synthetic training data. This limited both the perfor-

mance of the system and the range of algorithms available

for designing the classifiers. We expect that performance

would be improved by training from a set of intrinsic

images gathered from real data. In addition, a set of labeled

training examples would enable different types of deriva-

tive classifiers to rigorously compared against each other.
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Fig. 20. The results from decomposing a recreation of a demonstration

created by Gibson to show shading and reflectance changes [10] create

structure in images. (a)Original image. (b)Shading image. (c)Reflectance

image.

Fig. 21. The results of our system applied to the image used in Section 1 to describe intrinsic images. The most noticeable errors are along the

occluding contours of the surface. This is understandable because no occluding contours are included in the training set. (a) Original image.

(b) Shading image. (c) Reflectance image.

Fig. 22. Our system applied to a unique real-world image. In this image, the embossing of the sign does not correspond to how the sign has been

painted. The shiny surface of the sign is not Lambertian, so we did not use the color classifier for this image. The embossing is correctly placed in the

shading image, while the painting is correctly placed in the reflectance image. (a) Original image. (b) Shading image. (c) Reflectance image.
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