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Abstract

We propose Recursive Compositional Models (RCMs)

for simultaneous multi-view multi-object detection and

parsing (e.g. view estimation and determining the posi-

tions of the object subparts). We represent the set of ob-

jects by a family of RCMs where each RCM is a probability

distribution defined over a hierarchical graph which corre-

sponds to a specific object and viewpoint. An RCM is con-

structed from a hierarchy of subparts/subgraphs which are

learnt from training data. Part-sharing is used so that dif-

ferent RCMs are encouraged to share subparts/subgraphs

which yields a compact representation for the set of objects

and which enables efficient inference and learning from a

limited number of training samples. In addition, we use

appearance-sharing so that RCMs for the same object, but

different viewpoints, share similar appearance cues which

also helps efficient learning. RCMs lead to a multi-view

multi-object detection system. We illustrate RCMs on four

public datasets and achieve state-of-the-art performance.

1. Introduction

This paper aims at the important tasks of simultaneous

multi-view multi-object detection and parsing (e.g. object

detection, view estimation and determining the position of

the object subparts). A variety of strategies have been pro-

posed for addressing these tasks separately which we now

briefly summarize. There have been several successful part-

based methods for multi-object detection – e.g. [17, 2] and

Latent-SVM [7] – or multi-view object detection (e.g. im-

plicit shape model [15], LayoutCRF [9] and 3D part-based

model [12]).

In order to perform simultaneous multi-view/object de-

tection/parsing efficiently we must overcome the complex-

ity challenge which arises from the enormous variations of

shape and appearance as the number of objects and view-

points becomes large. This is a challenge both for inference

– to rapidly detect which objects are present in the images

Figure 1. This figure is best viewed in color. Each object template is represented by

a graph, associated with a shape mask which labels the pixels as background (white),

object body (grey), parts (colors). The leaf nodes correspond to the localizable parts

(10 oriented boundary segments in this example) on the object boundary. The root

models the body appearance. The subgraphs may share the same structure (see the

two dotted boxes). We show two examples including input images, probabilistic car

body maps and boundary maps which are calculated by the body and boundary ap-

pearance potentials respectively.

and to label their parts– and for learning, because standard

machine learning methods require large amounts of training

data to ensure good generalization.

In this paper, we represent object at different viewpoints

by a family of Recursive Compositional Models (RCMs).

These are constructed by composition from a dictionary

of more elementary RCMs which represent flexible sub-

parts of the object/viewpoints This dictionary is automat-

ically learnt from datasets of object/viewpoints where the

boundary of the shape is known but the object and view-

point are not. This gives a hierarchical representation of ob-

ject/viewpoints which enables us both to detect objects but

also to parse them by estimating the positions of their parts

and the spatial relationships between them. Part-sharing

occurs if two object/viewpoints share similar RCMs from

the dictionaries. The appearance cues of RCMs are of two

types. Firstly, body appearance cues which capture the tex-

ture and material properties of an object and which are com-
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mon between viewpoints (e.g., the colour of a car is in-

dependent of the viewpoint), which we call appearance-

sharing. Secondly, boundary appearance potentials which

are used at the bottom levels of the hierarchies for different

contours.

Part-sharing and appearance-sharing (see figure 1) are

key ingredients of our approach since they not only yield a

compact representation of many object/viewpoints but also

make inference and learning more efficient. Inference is

done by extending the compositional inference algorithm

[19] so that inference is done over the dictionaries and hence

is only performed once for each flexible part and is inde-

pendent of the number of times that the part appears in

the object/viewpoint models. Similarly part-sharing and ap-

pearance sharing simplify learning by requiring less train-

ing data (e.g., if we have already learnt the flexible parts to

model a horse then we only need a little more data to learn

a model of a cow).

We tested our approach on four challenging public

datasets. We obtain strong performance when tested on

multi-view multi-object detection. When evaluated on re-

stricted tasks – single object or single viewpoint – we

achieve state-of-the-art results when compared to alterna-

tive methods. We emphasize that we only used limited

training data – by exploiting shape-sharing and appearance-

sharing – but succeeded in learning a multi-level dictionary

of RCMs which capture the meaningful shape parts shared

between different objects and viewpoints.

1.1. Related work

Multi-view object detection can be considered as a spe-

cial case of multi-object detection, although there is a

small difference caused by appearance-sharing. But there

have been few attempts to address simultaneous multi-view

multi-object detection. Part sharing has been studied, but

usually for two-layer structures such as [15] and [12]. We

argue that hierarchies with more layers are needed because

objects have deformations and shared parts at several ranges

of scale. Fidler and Leonardis [8] have used hierarchical

structures and part sharing, but they do not use multi-view

appearance sharing which is very useful when training data

from rare viewpoints is not easy to collect. The hierarchi-

cal sharing used in [10] has no latent position variables to

model deformation explicitly, and no discriminative appear-

ance learning. Torralba el al. [16] have used feature sharing

in boosting, but they have not considered multi-view and

multi-objects simultaneously. Our work is closest techni-

cally to [19] which has used hierarchical models, but this

work did not address multi-objects and multi-viewpoints.

Bai et al. [3] use shared skeleton to model varied poses of

objects. It is worth noting that stochastic grammars of Zhu

and Mumford [20] offer a principled framework for the rep-

resentation of images with sharing.

2. RCMs and Families of RCMs

In this section we first describe an RCM model for a sin-

gle object. Then we describe how we can construct fami-

lies of RCMs which can simultaneously model multiple ap-

pearances and viewpoints and how inference and learning

of RCMs can be performed.

2.1. An RCM for a Single Object

An RCM represents an object recursively as a compo-

sition of parts. These parts are deformable and are rep-

resented in turn by RCMs. More formally, an RCM with

root node R is specified by a graph (V , E) where V are the

nodes which represent object parts. E are the graph edges

which encode the parent-child relations of parts, see fig-

ure (1), where ν ∈ ch(µ) specifies that node ν is a child

of node µ. Vleaf denotes the set of leaf nodes. State vari-

ables wµ = (xµ, θµ, sµ) are defined at each node µ ∈ V of

the graph, where xµ, θµ, sµ represent the position, orienta-

tion, and size of the parts respectively, wch(µ) denotes the

states of all the child nodes of µ.

The conditional distribution over the state variables is

given by P (W |I) = 1
Z(I) exp{−E(W, I)} where I refers

to the input image, W denotes all state variables, Z(I) is

the partition function and E(W, I) is defined as:

E(W, I) =
∑

µ∈V/Vleaf

ψµ(wµ, wch(µ))+

∑

µ∈Vleaf

φµ(wµ, I) + φR(wR, I) (1)

where the shape potentials ~ψ = {ψµ(wµ, wch(µ)) : µ ∈
V/Vleaf} (the black lines in figure (1)) encode the spatial

pairwise relationships between the states of the parent nodes

and those of their children. These are similar to those used

in [19].

The appearance potentials which relate the states of the

nodes to the input image are defined at the leaf nodes and

the root node. The boundary potentials ~φ = {φµ(wµ, I) :
µ ∈ Vleaf} at leaf nodes (the red lines in figure (1)) account

for the part of the object appearance which is easily local-

izable on the corresponding boundary segments. There are

10 oriented generic boundary segments (10 colored panels

on the extreme right of figure 1) which can be composed to

form varied contours.

The body potential φR at the root node (the blue

lines in figure (1)) is defined by φR(wR, I) =
(1/|R(Ω, wR)|)

∑
x∈R(Ω,wR) φ(x, I) where φ(x, I) de-

scribes the non-localizable appearance cues such as the tex-

ture/material properties of image patches at locations x in-

side the body of the object. The region R(Ω, wR) of the

body is specified by an object mask Ω which can be lo-

cated, scaled, and rotated by the state wR of the root node.



We will describe how to learn the appearance potentials in

section (4.2).

Hence an RCM can be specified by its graph and poten-

tials: (V , E , ~ψ, ~φ, φR). Figure (1) shows two examples of

RCMs for cars seen from two viewpoints. Next we will dis-

cuss how the RCMs for multiple objects can be merged to

form a compact representation.

2.2. Sharing RCMs

Suppose we want to model a large number of objects

seen from different viewpoints. One option is to provide

separate RCMs for each object/viewpoint as shown in fig-

ure (1), but this is a redundant representation, since it ig-

nores the fact that objects can share parts, and is not effi-

cient computationally. A better strategy is to represent the

objects/viewpoints in terms of shared parts and shared ap-

pearance properties.

It is reasonable to expect that two objects may share

common parts which have same spatial layout even though

their bounding contours may differ greatly. For example, in

figure (1), the two cars are seen from different viewpoints

but have similar roofs (the dotted rectangles) and so can be

encoded by the same horizontal segments. This means that

the RCMs for the two objects can share an RCM for this part

with the same shape potential ~ψ. It will only be necessary to

keep one copy of this RCM, hence reducing the complexity.

Part sharing can also be allowed between different object

categories which simplifies the representation for multiple

objects and makes inference (parsing) and learning much

more efficient. We will describe the mechanisms for part

sharing and learning in sections (2.3,4.1).

Sharing can be applied to appearance as well. It is rea-

sonable to assume that the appearance of the body of each

object remains fairly similar as the viewpoint varies. In

other words, certain image properties encoded by the ap-

pearance potentials such as color and image gradients will

only depend on the identity of object classes, but not their

poses. For example, the RCMs for two cars seen from dif-

ferent viewpoints share the same body appearance φR (blue

lines) because they are made from similar materials. Sim-

ilarly, the appearances of the local boundary segments en-

coded by ~φ (red lines) are independent of the global shape

of the object boundary. We use one body potential and 10

boundary potentials for one object category, no matter how

many viewpoints are considered. The model complexity of

RCMs for appearance is linear in size of object classes, but

invariant to the number of viewpoints.

Figure (1) shows the probabilistic maps of the body and

the boundary which are obtained from the appearance po-

tentials φR and ~φ, respectively. It is clear that the two types

of appearance potentials (body and boundary) give strong

cues for detecting the body and boundary of the object, de-

spite variations in viewpoint and background. Appearance

Figure 2. An object A can be represented by an RCM (left) which is specified

in terms of parts a, b which are more elementary RCMs. A second object B is also

represented by an RCM (middle) but it is more efficient to represent A and B together

(right) making their shared part b explicit. The family of objects A, B is specified by

the dictionaries T 3 = {A, B}, T 2 = {a, b, p}, T 1 = {c, d, e, f, q, r}.

sharing means that we can learn the body appearance model

even though there are only a few training images from each

viewpoint. We will describe the details of appearance learn-

ing in section (4.2).

2.3. RCM Dictionaries and Shared Parts

We now extend the representation of single graph model

described in section 2.1 to a family of graphs (RCMs) for

different object/viewpoints. We start with some toy exam-

ples illustrated in figure (2). The left and middle panels

show three-layer RCMs for two objects A and B. Each

object separately can be described in terms of a hierarchi-

cal dictionary of the RCMs which are used to compose it –

e.g., for objectA the dictionary is T 3 = {A}, T 2 = {a, b},

and T 1 = {c, d, e, f} (where i indexes the level of the

RCM). Because objects A and B share a common sub-part

b their dictionaries overlap and it is more efficient to repre-

sent them by a family of RCMs (right panel) with dictionary

T 3 = {A,B}, T 2 = {a, b, p}, and T 1 = {c, d, e, f, q, r}.

We will show in sections (3,4) that this family structure

makes inference and learning far more efficient.

More formally, we define a hierarchical dictionary T =
∪L

l=1T
l where T l is the dictionary of RCMs with l levels.

A dictionary is of form T l = {tla : a = 1, ..., nl} where

each tla is a RCM with l levels, described by a quadru-

plet (V l
a, E

l
a,
~ψl

a,
~φl

a) which define a probabilistic distribu-

tion on graph (see equation 1). nl is the number of RCMs

at that level. The dictionaries are constrained, as described

above, so that any RCM in T l must be a composition of

three RCMs in T l−1. For simplicity, we require that every

level-l RCM must be used in at least one level-(l+1) RCM

(we can prune the dictionaries to ensure this). The RCMs

at the top level L will represent the objects/viewpoints

and we call them object-RCMs. An object-RCM can be

specified by a list of its elements in the sub-dictionaries –

(aL−1, bL−1, cL−1), (aL−2, ....) – together with its poten-

tial ψ(., .) giving the relations of its root node to the roots

nodes of (aL−1, bL−1, cL−1) and its body potential φR(.).
Shared-RCMs are elements of the dictionaries which are

used in different object-RCMs. Note that if an l-level RCM

is shared between two, or more, object RCMs then all its

sub-RCMs must also be shared between them. Clearly the

most efficient representation for the set of object/viewpoints



is to share as many RCMs as possible which also leads to

efficient inference algorithms and reduces the amount of

training data required.

3. Inference

We can perform efficient inference on a family of RCMs

simultaneously. First observe that we can perform inference

on a single RCM by exploiting the recursive formulation of

the energy defined in equation (1):

E(Wµ, I) = ψµ(wµ, wch(µ)) +
∑

ν∈ch(µ)

E(Wν , I). (2)

Here Wµ denotes the state of the sub-graph with µ as root

node. For the leaf nodes ν ∈ Vleaf , we define E(Wν , I) =
φν(wν , I) (for a leaf node Wν = (wν)). At the root node,

we must add the body potential φR(wR, I) on the right-

hand side of equation (2), see section (4.2).

To perform inference for an entire family we work di-

rectly on the hierarchical dictionaries. For example in fig-

ure (2), when we seek to detect objects A and B, we search

for probable instances for the elements {c, d, e, f, q, r} of

the first level dictionary T 1, then compose these to find

probable instances for the second level dictionary T 2, and

then proceed to find instances of the third level T 3 – which

detects the objects. By comparison, performing inference

on objects A and B separately, would waste time detecting

part b for each object separately. If we only seek to detect

one object, then the inference algorithm here reduces to the

compositional inference algorithm described in [19].

More precisely, for each RCM t1a in dictionary T 1 we

find all instances whose energy is below a threshold (cho-

sen to provide an acceptably small false negative rate) and

whose states are sufficiently different by selecting the state

with locally minimal energy, see [19] for more details of the

inference algorithm. Next we form compositions of these to

obtain instances of the RCMs from the next level directory

T 2 and proceed in this way until we reach the object-RCMs

at the top level. At each stage of the algorithm we exploit

the recursive equation (2) to compute the energies for the

“parent” RCMs at level l in terms of their “child” RCMs

at level l − 1. It should be emphasized that this dictionary

inference algorithm directly outputs the objects/viewpoints

which have been detected as well as their parses – there is

no need for a further classification stage.

It is interesting that this inference algorithm incorporates

aspects of perceptual grouping in a natural manner. The first

few levels of the dictionaries require searching for compo-

sitions which are similar to those suggested by Gestalt the-

orists (and the perceptual grouping literature). But note that

unlike standard perceptual grouping rules these composi-

tions are learnt from natural data and arise naturally because

of their ability to enable us to detect many objects simulta-

neously.

The inference described above is performed at different

scales of an image pyramid with scaling factor 1.5 (four

layers in our experiments). The range of image features (i.e.

the resolution of the edge features) are initialized relative to

the scales of image pyramid. The inference at one scale of

the image pyramid only detects objects within the range of

size constrained by the scaling factor.

4. Learning

There are two types of learning involved in this paper.

The first type involves inducing the families of RCMs (the

dictionaries and shared parts) and learning all the shape po-

tentials ψµ(wµ, wch(µ)). The second type includes learn-

ing the object/viewpoint masks Ω, the boundary potentials
~φ and the body potentials φR. The first type of learning is

the most difficult and requires the use of novel techniques.

The second type of learning is standard and relies on the use

of standard techniques such as logistic regression.

The input to learning is a set of bounding boxes of

different objects/viewpoints and the boundaries of the ob-

jects themselves (specified by polygons and line segments).

These are all obtained from the LabelMe dataset [11].

4.1. Learning the dictionaries of RCMs

We learn the family of RCMs by learning the sub-

dictionaries {T l} recursively. The input is the set of bound-

aries of the objects/viewpoints specified by LabelMe [11].

To ensure that we learn re-usable subparts, we proceed on

the entire set of boundary examples and throw out the la-

bels which specify what object/viewpoint the boundaries

correspond to. At first sight, throwing out this label infor-

mation seems to make the learning task really difficult be-

cause, among other things, we no longer know the number

of object-RCMs that we will want at levelL (and, of course,

we do not know the value of L) but, as we will show, we are

able to learn the dictionaries and families automatically in-

cluding the number of levels.

The algorithm starts by quantizing the orientation of lo-

cal segments (three pixels) of the boundaries into six orien-

tation bins. We define a dictionary of level-1 RCMs consist-

ing of six elements tuned to these orientations – i.e. T0 con-

sists of six models where each model has a single node with

state w and a potential φa(wa, I) where a = 0, ..., 5 and the

potential for model a favors (energetically) boundary edges

at orientations aπ/6. Then we proceed using the follow-

ing five steps. Step 1: perform inference on the datasets

to detect all instances of the level-1 RCMs. Step 2: for

each triplet a, b, c of RCMs in T 1, find all the composite

instances {wRa i}, {wRbj} and {wRc k} (i, j, k label de-

tected instances of RCMs a, b, c respectively). Reject those

compositions which fail a spatial test for composition (Two

circles, a minimum and a maximum, are draw round the



centers of the three child instances. If all of the child in-

stances lie within the maximum circle of any of the child

nodes, then the instances are consider close. But they are

too close if this happens for the minimum circle). Step 3:

cluster the remaining compositions in triplet space to ob-

tain a set of prototype triplet clusters. Step 4: estimate the

parameters – i.e. the potentials ψ(wR, (wRa
, wRb

, wRc
))

– of these triplet clusters to produce a new set of RCMs

at level-2 and thereby form a dictionary T 2. Step 5: prune

the dictionary T 2 to remove RCMs whose instances overlap

too much in the images (this requires detecting the instances

of these RCMs in the image – performing an overlap test,

which puts rectangles enclosing the child RCM instances

and evaluates the overlap of these rectangle with those of

different RCMs). Output the pruned dictionary T 2 and re-

peat the procedure to learn a hierarchy of dictionaries. The

procedure automatically terminates when it ceases to find

new compositions (step 2).

This algorithm is related to the hierarchical learning al-

gorithm which was described in [19]. This algorithm also

learnt RCMs by a hierarchical clustering approach which

involved learning a hierarchy of sub-dictionaries. But there

are some major differences in the applications and tech-

niques since the goal of [19] was to learn a model of a sin-

gle object from images with cluttered backgrounds. Hence

the algorithm relied heavily on the suspicious coincidence

principle and a top-down stage, neither of which is used

in this paper. In this paper, by contrast the goal is to learn

multiple object/viewpoints simultaneously while finding re-

usable parts. Moreover, in this paper the number of ob-

ject/viewpoints was determined automatically by the algo-

rithm. We did have a discrepancy for one experiment when

the algorithm output 119 RCMs at the top level while in fact

120 were present. This discrepancy arose because one ob-

ject looked very similar from two different viewpoints (in

our applications the viewpoints were typically very widely

separated).

4.2. The Mask and Appearance Potentials

We now describe how to learn the mask Ω and the

appearance potentials ~φ and φR. We know the ob-

ject/viewpoint labels so the learning is supervised.

The object/viewpoint masks are learnt from the bound-

ing boxes (and object boundaries) specified by LabelMe

[11]. This is performed by a simple averaging over the

boundaries of different training examples (for fixed object

and viewpoint). The body and boundary potentials are

learnt using standard logistic regression techniques [1] with

image features as input (see below). The boundary poten-

tials are the same for all objects and viewpoints. The body

potentials are specific to each object but are independent of

viewpoint. To achieve good performance, the appearance

potentials ~φ and φR used in equation 1 are weighted by two

Figure 4. This figure shows the detection results (green boxes) of RCMs on several

public datasets, see section (5), compared to groundtruth (yellow boxes). This illus-

trates that RCMs are able to deal with different viewpoints, appearance variations,

shape deformations and partial occlusion.

scalar parameters set by cross validation.

The image features include the greyscale intensity, the

color (R,G, B channels), the intensity gradient, Canny

edges, the response of DOG (difference of Gaussians) fil-

ters at different scales and orientations (see [18] for more

details). A total of 55 spatial filters are used to calculate

these features (similar to [14])). The scales of these features

are small for the boundary and larger for the body (which

need greater spatial support to capture texture and material

properties). Two types of boundary features were used de-

pending on the quality of the groundtruth in the applica-

tions. For single objects, we use features such as edges and

corners – see the probabilistic maps calculated by the body

and boundary potentials in figure 1. For multiple objects

applications we had poorer quality groundtruth and used

simpler edge-based potentials similar to [19] based on the

log-likelihood ratio of filter responses on and off edges.

5. Experimental Validation

We evaluated RCMs on four challenging public datasets

(see detection results in figure 4): (1) 3D motorbike dataset

(PASCAL 05 [6]). (2) Weizmann Horse dataset [4]. (3)

LabelMe multi-view car dataset (from [11]). (4) LabelMe

multi-view multi-object dataset (collected from [11]). Some

typical images from these datasets are shown in figure (6).

The first three experiments address multi-view single-class

object detection while the last one addresses multi-view

multi-object detection for 120 different objects/viewpoints.

Table1 summarizes the dataset characteristics (e.g. the

numbers of objects/viewpoints and the size of the training

and test images). We used a computer with 3.0Ghz cpu and

8GB memory for all experiments. We provide performance

comparison with the best previously published results us-

ing standard experimental protocols and evaluation crite-

ria. The performance curves were obtained by varying the

threshold on the energy (see section 3).



Figure 3. This figure shows the mean shapes of sub-RCMs at different levels. RCMs learn 5-level dictionary from 120 object templates (26 classes).
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Figure 5. RCMs (blue curves) show competitive performance compared with state-of-the-art methods on several datasets, see section (5).

Datasets Motorbike Horse Car 26 classes

Objects/Viewpoints 16 5 12 120

Training Images 458 100 160 843

Test Images 179 228 800 896

Table 1. The four datasets. The number of viewpoints for each

object varies depending on the dataset. All viewpoints are distinct.

Figure 6. Examples of the images used to train RCMs.

5.1. Multiview Single Object Detection, View Esti
mation and Shape Matching

Multi-view Motorbike Detection. For this PASCAL

dataset we learn RCMs from the training set (12-16 view-

points) and use the same test images as in [15]. We compare

RCMs with the best results reported on this dataset by us-

ing precision-recall curves. As can been seen in figure 5(a)

RCMS are comparable with [12] and much better than [15]

(who do not report the exact average precisions).

Deformable Horse Detection. We applied RCMs (5

viewpoints) to the Weizmann horse dataset which was split

into 50, 50, 228 images for training, validation and test-

ing respectively. The Precision-Recall curves in figure 5(b)

shows that RCMs have average precision of 98% (almost

perfect) on this dataset and outperform the state-of-art

method (AP=93%) [13].

Multi-view Car Detection and View estimation. We

created a new view-annotated multi-view car dataset by col-

lecting car images from the LabelMe datasets. We learnt

RCMs (12 viewpoints) for this dataset and also trained

HOG-SVM [5] for comparison. The basic characteris-

tics of the dataset are shown in figure 8 and observe that

RCMs require significantly less training data (because of

reusable parts). Figure 5(c) plots the precision-recall curves

of RCMs and HOG+SVM ’s evaluated on 800 test images

which contain 1729 car instances (an average of 2.2 per im-

age). Observe that the average precision of RCMs is 66.6%
which is better than the 63.2% of HOG+SVMs. At the point

of (recall=70%), RCMs find 1210 cars together with 0.8

false alarms per image. The processing time of RCMs for

detection and viewpoint estimation is about 1.5 minutes per

image (of size 1200 × 900). Figure 7 shows the viewpoint

confusion matrix for RCMs. The miss detection rate per

view are less than 10%, as shown in the last column in fig-

ure 7). The viewpoint is estimated correctly 29.1% of the
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Figure 7. We evaluate the viewpoint classification performance of RCMs for 12

views (with angle range of 30 degrees) by the 12 × 12 confusion matrix (first 12

columns) and the miss rate of detection for each view (last column).
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cars. Observe that RCMs require much less training data than HOG+SVM. The total

numbers of car instances are 660, 284, 108, 1175 for HOG+SVM training, RCMs

training, validation, and testing respectively.
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Figure 11. Each curve plots the proportion of parts to object/viewpoints as a func-

tion of the levels of the parts (for five families containing different numbers of ob-

ject/viewpoints). The overall representation cost can be quantified by the size of area

under the curves. Observe that the larger the families then the lower the cost and the

more the amount of part sharing.

time, but most of the errors are either adjacent viewpoints

or symmetric viewpoints (i.e. 180 degrees). By comparing

to figure (8) observe that the error rate of each viewpoint is

relatively insensitive to the amount of training data.

5.2. Multiview MultiObject Detection

For the most challenging task of simultaneous multi-

view multi-object detection, we create a new dataset from

LabelMe which contains 26 object classes – including

screen, keyboard, mouse, speaker, bottle, mug, chair, can,

sofa, lamp – from different viewpoints to give a total of 120

objects/viewpoints.

For this application the most impressive results was our

ability to automatically learn the hierarchical dictionar-

ies including the object models. Without using the ob-

ject/viewpoint label our learning procedure output 5 levels

where the top level consisted of 119 RCMs, which corre-

sponded to the 120 object/viewpoints (with one model be-

ing shared between two different viewpoints). We illustrate

the RCMs in figure (3) which shows their mean shapes (we

cannot easily display their variations). Observe that level-

5 (the top-level) has discovered 119 RCMs for the objects

while level-4 has discovered structures which are clearly

object specific. By contrast, the low-level (levels 2 and 3)

show generic structure – such as oriented straight lines, par-

allel lines, Y-junctions, and T-junctions – which have often

been discussed in the perceptual grouping and gestalt psy-

chology literature (but not learnt in this way from real data).

The results for detecting these different view-

point/objects from real images is reasonable considering

the difficulty of this task but not spectacular, as shown by

the precision-recall curves of multiple classes evaluated on

the test images in figure (10). It shows proof of concept of

our approach but needs to be supplemented by additional

appearance cues and, probably discriminative learning, to

produce a system with high performance on this task.

To understand how well we are learning to share parts,

we compute a matrix which plots the objects/viewpoint

against the subparts (RCMs) in the different sub-

dictionaries, see figure (9). This shows, not surprisingly,

that many RCMs in the lower level dictionaries are shared

by all objects/viewpoints but that sharing becomes less fre-

quent for higher level sub-dictionaries. To further illus-

trate this point we consider RCM families containing dif-

ferent numbers of object/viewpoints. For each family, we

plot in figure 11 the proportion of parts used normalized by

the total number of object/viewpoints as a function of the

level of the part. If the family contains only a single ob-

ject/viewpoint then this simply plots the number of parts at

different levels of the hierarchy (e.g, six parts at the bottom

level). But as the number of object/viewpoints in the family

increases then the proportion of parts to object/viewpoints

decreases rapidly for the low level parts. For families with

many object/viewpoints, the proportion increases monoton-

ically with the number of levels. All these plots start con-

verging at level four since these high level parts tend to be

very object/viewpoint specific.

6. Conclusions

This paper describes a family of recursive compositional

models which are applied to multi-view multi-object detec-

tion. The decomposition of the appearance and part ap-



Figure 9. In this part sharing matrix the horizontal axis represents the different object and viewpoint models (120) and the vertical axis represents some of the sub-dictionary

subparts at the different levels – level 1 is at the bottom followed by levels 2,3,4. Black squares indicate that a specific sub-part (vertical axis) is used in a specific object/viewpoint

model (horizontal axis). Observe that the subparts in the lowest level sub-dictionary are used by almost all the objects/viewpoints. In general, subparts in the lower level

sub-dictionaries are frequently shared between objects and viewpoints but this sharing decreases for higher levels where the sub-dictionaries become more object specific.

pearance cues and the use of part-sharing and appearance-

sharing enables us to represent a large number of object

templates in a compact way. Moreover, part-sharing and

appearance-sharing enables efficient learning and inference.

We demonstrated the effectiveness of RCMs by the evalua-

tions on four public challenging datasets. Our results show

that RCMs achieve state-of-the-art detection performance.
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