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Figure 1: Left: Image from a standard lens showing limited depth ofl,elith only the rightmost subject in focus. Center: Inpotirour
lattice-focal lens. The defocus kernel of this lens is desiigto preserve high frequencies over a wide depth rangehtRAn all-focused
image processed from the lattice-focal lens input. Sinealdfocus kernel preserves high frequencies, we achievedargstoration over the

full depth range.

Abstract

Depth of eld (DOF), the range of scene depths that appeampsha
in a photograph, poses a fundamental tradeoff in photograph
wide apertures are important to reduce imaging noise, leytadlso
increase defocus blur. Recent advances in computatiorsagiing
modify the acquisition process to extend the DOF througtodec
volution. Because deconvolution quality is a tight funntiaf the
frequency power spectrum of the defocus kernel, desigrshigih
spectra are desirable. In this paper we study how to desfgatisk

extended-DOF systems, and show an upper bound on the maxima

power spectrum that can be achieved. We analyze defocusl&ern
in the 4D light eld space and show that in the frequency damai
only a low-dimensional 3D manifold contributes to focus. ush
to maximize the defocus spectrum, imaging systems shouid co
centrate their limited energy on this manifold. We reviewesal
computational imaging systems and show either that thaydsee-
ergy outside the focal manifold or do not achieve a high spatt
over the DOF. Guided by this analysis we introduce the lattacal
lens, which concentrates energy at the low-dimensionall foan-
ifold and achieves a higher power spectrum than previouigjoes
We have built a prototype lattice-focal lens and presentreded
depth of eld results.

Keywords: Computational camera, depth of eld, light eld,
Fourier analysis.

1 Introduction

Depth of eld, the depth range over which objects in a phoapgr
appear acceptably sharp, presents an important tradeaffisds
gather more light than a pinhole, which is critical to rednoése,
but this comes at the expense of defocus outside the focaépla
While some defocus can be removed computationally usingrdec
volution, the results depend heavily on the informationspreed
by the blur, as characterized by the frequency power spactru
of the defocus kernel. Recent advances in computationaj-ima
ing [Dowski and Cathey 1995; Levin et al. 2007; Veeraraghava
et al. 2007; Hausler 1972; Nagahara et al. 2008] modify tregen
acquisition process to enable extended depth of eld thihosigch

a deconvolution approach.

Computational imaging systems can dramatically extendhdep
eld, but little is known about the maximal frequency magre

response that can be achieved. In this paper, we use a slandar
computational photography tool, the light eld, e.g., [logvand
Hanrahan 1996; Ng 2005; Levin et al. 2008a], to address tlsese
sues. Using arguments of conservation of energy and takiiag i
account the nite size of the aperture, we present boundshen t
power spectrum of all defocus kernels.

Furthermore, a dimensionality gap has been observed betiliee
4D light eld and the space of 2D images over the 1D set of depth
[Gu et al. 1997; Ng 2005]. In the frequency domain, only a 3D
{nanifold contributes to standard photographs, which spoads

o focal optical conditions. Given the above bounds, we show that
it is desirable to avoid spending power in the othéwcal regions

of the light eld spectrum. We review existing camera desigmd

nd that some spend signi cant power in these afocal regjovisile
others do not achieve a high spectrum over the depth range.

Our analysis leads to the development of the lattice-fomas+—a
novel design which allows for improved image reconstructidt
is designed to concentrate energy at the focal manifoldefigfint
eld spectrum, and achieves defocus kernels with high spedthe
design is a simple arrangement of lens patches with diftéoeal
powers, but the patches' size and powers are carefullyelrivhe
defocus kernels of a lattice-focal lens are high over a wielettd
range, but they are not depth invariant. This both requinesem-
ables coarse depth estimation. We have constructed aypetand
demonstrate encouraging extended depth of eld results.

1.1 Depth of eld evaluation

To facilitate equal comparison across designs all systemsali-
cated a xed time budget and maximal aperture width, and éenc
can collect an equal amount of photons. All systems are ¢sgec
to cover an equal depth rande [dmin; dmax]-

Similar to previous work, we focus on Lambertian scenes aad a
sume locally constant depth. The observed imBgef an ob-
ject at depthd is then described as a convoluti®= fq |+ N,
wherel is the ideally sharp image\ is the imaging noise, and
fq is the defocus kernel, commonly referred to as the pointaghre
function (PSF). The defocus PSF is often analyzed in terms of
its Fourier transfornmfy, known as the optical transfer function
(OTF). In the frequency domain, convolution is a multiptioa
B(w) = fq(w)l(w)+ N(w) where hats denote Fourier transforms.
In a nutshell, deblurring divides every spatial frequengyhe ker-



nel spectrum, so the information preserved at a spatialiéecyw
depends strongly on the kernel spectrunjf §fw)j is low, noise is
ampli ed and image reconstruction is degraded. To captoemss
with a given depth rangé 2 [dmin; dmax], we want PSF$4 whose

modulation transfer function (MTHY 4j is as high as possible for
every spatial frequenay, over the full depth range. Noise is absent
from the equations in the rest of this paper, because whateise

is introduced by the sensor gets ampli ed as a monotonictfanc

of jfa(w)j.

In this paper, we focus on the stability of the deblurringqess to
noise and evaluate imaging systems according to the spibelya
achieve over a speci ed depth range. We note, however, thaym
approaches such as coded apertures and our new lattiddeiosa
involve a depth-dependent P$f and require a challenging depth
identi cation stage. On the positive side, such systemguua
coarse depth map of the scene in addition to the all-focusadé.
In contrast, designs like wavefront coding and focus swesp lan
important advantage: their blur kernel is invariant to tept

While the tools derived here apply to many computational -cam
eras, our focus is on designs capturing only a single inpagan

In [Levin et al. 2009a] we present one possible extensionub m
tiple measurement strategies like the focal stack and toptic
camera.

1.2 Related work

Depth of eld is traditionally increased by reducing the &pee,

but this unfortunately lowers the light collected and iras®es noise.
Alternatively, a focal stack [Horn 1968; Hasinoff and Kukibs
2008] captures a sequence of images with narrow depth of eld
but varying focus, which can be merged for extended deptlelaf
[Ogden et al. 1985; Agarwala et al. 2004]. Our new latticeafo
lens can be thought of as capturing all the images from a apeci
focal stack, shifted and summed together in a single photo.

New designs have achieved improved frequency responsthesge
with a depth invariant PSFs, allowing for deconvolution heitit
depth estimation. Wavefront coding achieves this with aaop-
tical element [Dowski and Cathey 1995]. Others use a logergph
[George and Chi 2003] and focus sweep approaches modifpthe f
cus con guration continuously during the exposure [Haug@72;
Nagahara et al. 2008].

In contrast, coded aperture approaches [Veeraraghavan?€03;
Levin et al. 2007] make the defocus blur more discriminative
depth variations. Having identi ed the defocus diametéuy lzan
be partially removed via deconvolution. One disadvantagéie
design is that some light rays are blocked. A more serioub-pro
lem is that the lens is still focused only at one particulgtieand
objects located away from the focus depth are still heaviyrbd.

Other designs [Ben-Eliezer et al. 2005] divide the aperitui@sub-
squares consisting of standard lenses, similar to ourcéaftical
lens. But while these methods involve redundant focal lesgur
analysis lets us optimize the combination of different fguavers
for improved depth of eld.

We build on previous analysis of cameras and defocus in lejtit
space [Ng 2005; Adams and Levoy 2007; Levin et al. 2008a]. A
related representation in the Fourier optics literaturdnésAmbi-
guity function [Rihaczek 1969; Papoulis 1974; Brenner e1883;
FitzGerrell et al. 1997], allowing a simultaneous analysislefo-
cus over a continuous depth range.

2 Background on defocus in light eld space

Our main analysis is based on geometric optics and the liglt,
but [Levin et al. 2009a] provides complementary derivegiosing
wave optics. We rst review how the light eld can be used to
analyze cameras [Ng 2005; Levin et al. 2008a]. It is a 4D fionct
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Figure 2: Integration surfaces in atland. Top: Ray mapping dia-
grams. Middle: The corresponding light eld and integratisur-
face qu). Bottom: The lens spectrukn The blue/red slices rep-
resent OTF-slices of the blue/red objects respectivelg Vidttical
yellow slices representy, slices discussed in Sec. 3. Left: Stan-
dard lens focused at the blue object. Right: Wavefront apdin

u;v aperture plane coordinates

Xy spatial coordinates (at focus plane)
Wiy spatial frequencies

w max spatial frequency

f(xy) point spread function (PSF)

f(m&; W) optical transfer function (OTF)
k(%Y u;v) 4D lens kernel

K(w; wy; Wy, wy) | 4D lens spectrum

A aperture width

eA hole/subsquare width

a(wxy); b(wy) | bounded multiplicative factors (Egs. (43,11))

Table 1: Notation.

*(x;y;u;v) describing radiance for all rays in a scene, where aray is
parameterized by its intersections with two parallel ptaribeuv-
plane and thay-plane [Levoy and Hanrahan 1996]. Figure 2 shows
a 2D atland scene and its corresponding 2D light eld. Welarge

the camera aperture is positioned on theplane, ancky is a plane

in the scene (e.g., the focal plane of a standard leqg)re spatial
coordinates and the v coordinates denote the viewpoint direction.

An important property is that the light rays emerging fromizeg
physical point correspond to a 2D plane in 4D of the form

x=su+(1l s)px; y=sv+(1 9)py; 1)
whose slope encodes the object's depth:
s=(d do)=d; (2)

whered is the object depth and, the distance between the; xy
planes. The offsetpy and py characterize the location of the scene
point within the plane at deptth

Each sensor element gathers light over its 2D area and th@@b a
ture. This is a 4D integral over a set of rays, and under rsteor



optics (paraxial optics), it can be modeled as a convolut[bly
2005; Levin et al. 2008a]. A shift-invariant kerri€k; y; u; v) deter-
mines which rays are summed for each element, as governée by t
lens. Before applying imaging noise, the value recordedsanaor
element is then:

2777

B(x0; Yo) = ko XYo Y, U V) (xy;uv)dxdydudv

@)

For most designs, the 4D kernel is effectively non-zero aly 2D
integration surface because the pixel area is small cordparthe
aperture. That is, the 4D kernel is of the form

kGoyuv) = d(x c(Uv)y  cy(GV))RU=AR(V=A) 5 (4)
whereR is a rect functiond denotes a Dirac delta, armu; V) !
(x;y) isa2D! 2D surface describing the ray mapping at the lens's
aperture, which we assume to be square and of AizeA. The
surfacec is shown in black in the middle row of Figure 2.

For example, a standard lens focuses rays emerging fromna poi
at the focus depth and the integration surfade linearc(u;v) =
(susv). The integration slope corresponds to the slope of the fo-
cusing distance (Fig. 2, left). When integrating a lightdetith the
same slope (blue object in Fig. 2), all rays contributing seasor
element come from the same 3D point. In contrast, when thecobj
is misfocused (e.g., red/green objects), values from plalscene
points get averaged, causing defocus. Wavefront codingvfiRio
and Cathey 1995] involves a cubic lens. Since refractionfise-
tion of the surface normal, the kernel is a parabolic surfaegin

et al. 2008b; Zhang and Levoy 2009] (Fig. 2, right) de ned by

©)

Finally, the kernel of the focus sweep is not a 2D surface et t
integral of standard lens kernels with different slopegstds.

c(u;v) = (arr;av)

Consider a Lambertian scene with locally constant deptthelio-
cal scene depth, or slope, is known, the noise-free defddusage
B can be expressed as a convolution of an ideal sharp itnagjé
aPSHs: B= fs |. Asdemonstrated in [Levin et al. 2008c¢], for a
given slopesthis PSF is fully determined by projecting the 4D lens
kernelk along the slope:

zz

fs(Xy) = k(x;y;u+ sx v+ sy)dudv: (6)
That is, we simply integrate over all rags y;u+ sx v+ sy) corre-
sponding to a given point in the~plane (see Eq. 1).

For example, we have seen that the 4D kekrfel a standard lens is
planar. If the slopes of an object and the orientation of this planar
k coincide, the object is in focus and the projected FSks an
impulse. For a different slope the projected PSF is a box, ked
the width of this box depends on the difference between theesl
of the object and that d€. For wavefront coding, the parabolic 4D
kernel has an equal projection in all directions, explainivhy the
resulting PSF is invariant to object depth [Levin et al. 20dBhang
and Levoy 2009].

Now that we have expressed defocus as a convolution, we can

analyze it in the frequency domain. L%(tvus(; Wy, Wy; W) denote
the 4D lens spectrum, the Fourier transform of the 4D lenaeter
k(x;y;u;v). Figure 2 visualizes lenses speckdn atland for a
standard and wavefront coding lenses. As the PSE obtained
from k by projection (Eq. (6)), by the Fourier slice theorem, the
OTF (optical transfer fun(:tioniS is a slice of the 4D lens spectrum
kin the orthogonal direction [Ng 2005; Levin et al. 2008c]:

Fo(wug) = k(g wy; s sw) @)
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Figure 3: Layout of the 4D lens spectrum, highlighting the focal
manifold. Each subplot representsvg,.,-slice, RWXO;VD(WU;VW).
The outer axes vary the spatial frequenay,.y,, i.e., the slicing
position. The inner axes of each subplot, i.e., of each sliagy
wyv. The entries ok along each focal segment are color coded, so
that the 2D set of points sharing the same color correspoadmt
OTF with a given depth/slope (e.g., the red points de ne af @F
the slope s 1). This illustrates the dimensionality gap: the set of
entries contributing to an OTF at any physical depth occsirly

a 1D segment in each 2., -slice. In the atland case (Fig. 2),
eachwy,-slice corresponds to a vertical column.

Below we refer to slices of this form aTF-slices because they
directly provide the OTF, describing the frequency respathse to
defocus at a given depth. OTF-slices in atland are illustdain
the last row of Figure 2 (dashed red/blue). These are slatitas
whose slope is orthogonal to the object slope in the prirght lield
domain. Low spectrum values kleads to low magnitudes in the
OTF for the corresponding depth. In particular, for a staddiens,
only the OTF-slice corresponding to the focusing distaniesijed
blue, Fig. 2 left) has high values.

Notations and assumptions: All systems in this paper are allo-
cated a xed exposure time, w.l.o.g. 1. The aperture siz isA.

D denotes a pixel width back-projected onto the foxgbplane.
In the frequency domain we deal with the rarjgeM W], where
W= 1=(2D). wy; W,y are shortcuts for the 2D vecto(sik; W),
(Wy; wy). Table 1 summarizes notations.

We seek to capture a xed depth ran@iin; dmax. To simplify the
light eld parameterization, we select the location of theplane

according to the harmonic mealg = 9% | corresponding to
the point at which one would focus a standard lens to equdkze
focus diameter at both ends of the depth range, e.g., [H&sind

Kutulakos 2008]. This maps the depth range to the symmétnes
range] S=2;S=2], whereS= m (Eg. (2)). Under this pa-
rameterization the defocus diameter (onxielane) of slopescan
be expressed simply @§g.

We also assume that scene radiance is fairly constant overath
row solid angle subtended by the camera aperture. This ge&Eum
is violated by highly specular objects or at occlusion baries.

3 Frequency analysis of depth of eld

We now analyze the requirements, strategies, and limitepfhd
of eld extension. We show that a key factor for depth of eld
optimization is the presence ofidmensionality gapn the 4D light
eld: only a manifold of the 4D spectrum, which we cdtical,



contributes to focusing at physical depths. Furthermoee show
that the energy in a 4D lens spectrum is bounded. This sugythest
to optimize depth of eld, most energy should be concenttaie

the focal manifold. We discuss existing lens designs and/ghat

many of them spend energy outside the focal manifold. In Sae

propose a novel design which signi cantly reduces this fBob

3.1 The dimensionality gap

As described above, scene depth corresponds to sliopiée light
eld. It has, however, been observed that the 4D light eldsha

a dimensionality gapin that most slopes do not correspond to a

physical depth [Gu et al. 1997; Ng 2005]. Indeed, the setI&hl
planesx= syu+ px; y= s+ py described by their slop®; sy and

offset px; py is 4D. In contrast, the set corresponding to real depth,

i.e., wheres= s, = s, is only 3D, as described by Eq. (1). This
makes sense because scene points are 3D. The dimensigaglity
is a property of the 4D light eld, and does not exist for the 2D
light eld in atland. The other slopes wherg, 6 s, are afocal
and represent rays from astigmatic refractive or re ectivefaces,
which are surfaces with anisotropic curvature [Adams aneblze
2007], e.g., the re ection from a cylindrical mirror. Sineee con-
sider scenes which are suf ciently Lambertian over the aper
afocal light eld orientations hold no interesting informian.

The dimensionality gap is particularly clear in the Fourder-
main [Ng 2005]. Consider the 4D lens spectrﬁrrand examine
the 2D incesRWxO;yo(wu; W), in which the the spatial frequencies
Wy, Wy, are held constant (Fig. 3). We call thesg,.y,-slices In
atland, w,.y,-slices are vertical slices (yellow in Fig. 2). Follow-
ing Eq. (7), we note that the set of entries in eE@Q;yO participat-
ing in the OTF for any depth is restricted to a 1D line:

Ky, ( SV SUA,) ; )]

for which wy = swk,; W = sw,. For a xed slope range 2

[ S=2;S=2] the set of entries participating in any OTFkis a 1D
segment. These segments, which we refer téoaal segmenis
are highlighted in Figure 3. The rest of the spectrumfécal This
property is especially important, because itimplies thast entries
of k do not contribute to an OTF at any depth

As an example, Figure 4(b-e) shows the 2D families ofiDy,-
slices for a variety of cameras. A standard lens has a higlonse
for an isolated point in each slice, corresponding to thei$oty
distance. In contrast, wavefront coding (Fig. 4(e)) hasaather

response that spans more of the focal segment, but also lewer t

afocal region. While the spectrum of the focus sweep (Fid))4¢
on the focal segment, its magnitude is lower magnitude thandf
a standard lens.

3.2 Upper bound on the defocus MTF

In this section we derive a bound on the defocus MTF. As intro-

duced earlier, we pose depth of eld extension as maximitirg
MTFsjfs(wy)j over all slopes2 [ S=2,S=2] and over all spatial

frequenciesiy. Since the OTFs are slices from the 4D lens spec-
trumk (Eq. (7)), this is equivalent to maximizing the spectrum on

the focal segments &t

We rst derive the available energy budget, using a diret¢esion
of the 1D case [FitzGerrell et al. 1997; Levin et al. 2008c].

Claim 1 For an aperture of size A A and exposure length the
total energy in eachw,,-slice is bounded by A

7z
g o (W W) 2wy, AZ : )

The proof, provided in the appendix, follows from the nitenaunt
of light passing through a bounded aperture over a xed expos
As a consequence of Parseval's theorem, this energy budget t
applies to everyn,.,-slice kaO:yo' While Claim 1 involves geo-
metric optics, similar bounds can be obtained with Fourjgics
using slices of the ambiguity function [Rihaczek 1969; Gitz-
rell et al. 1997]. In [Levin et al. 2009a] we derive an analago
bound under Fourier optics, with a small difference—thedaids
no longer equal across spatial frequencies, but decreageshe
diffraction-limited MTF.

As in the 1D space-time case [Levin et al. 2008c], optimalst+or
case performance can be realized by spreading the energgtoud
uniformly over the range of slopes. The key difference is fhaper

is the dimensionality gap. As shown in Figure 3, the OT Esover
only a 1D line segment, and most entries invag.y,-slice Ron:yo

do not contribute to any OTF. Therefore, the energy budgatlsh
be spread evenly over the 1D focal segment only.

Given a power budget for eaak,,-slice, the upper bound for
the defocus MTF concentrates this budget on the 1D focal segm
only. Distributing energy over the focal manifold requicsition,
however, because the segment effectively has non-zerkndss
due to its nite support in the primal domain. If a 1D focal seent
had zero thickness, its spectrum values could be made awnlitile
still obeying the norm constraints of Claim 1. As we show helo
since the primal support ¢fis nite (k admits no light outside the
aperture), the spectrum must be nite as well, so the 1D feegt
ment must have non-zero thickness. Slices from this idesdtspm
are visualized in Figure 4(a).

Claim 2 The worst-case defocus MTF for the rarjges=2; S=2] is
bounded. For every spatial frequenayy:

. o b(wy)A®
f : 2 7)/, 10
2| @2&2}1 (s )] Iy o
where the factor
) Wiy minj wj;jwg;)
b(wey= Wi 11

p_
isin the rangg >>; 1] [0:931].

Proof: For each/vxo;yO-slicek,%;yo the 1D focal segment is of length
S Wiyyoi- We st show that the focal segment norm is bounded by

A3, and then the worst-case optimal strategy is to spread ihgelbu
evenly over the segment.

To simplify notations, we consider the casg = 0 since the gen-
eral proof is similar after a basis change. For this caselEhtocal
segment is a horizontal line of the fodius@:yO(wu;O), shown in the
central row of Figure 3. For a xed value afx,, this line is the
Fourier transform of:
72727

kO y;upv)e 2P(WsoXt Oy+0V) gy dydy: (12)
By showing that the total power of Eq. (12) is boundedASy Par-
seval's theorem gives us the same bound for the focal segment

Since the exposure time is assumed to be 1, we collect uniggne
through every; v point lying within the clear apertute

yv4 . L.
1 ju  A=2 v A=2

kxyuvdxdy= 5 Giherwise 13)

1if an amplitude mask is placed at the aperture (e.g., a copeduae)
the energy will be reduced and the upper bound still holds.



Camera type Squared MTF

" . 3
a. Upper bound i s(Wiey)j? SAW;yj

b. Standard lens ifs(Wiey)i? = A%SING(A(s  so)wi)SING(A(S o) wy)

c. Coded aperture | E[jfs(wy)j?] #sin&(eA(s So)W)SINC(eA(s  so) W)
. ) 2a(usy)2
d. Focus sweep if s(Wiey)i? A ifﬂ:‘ﬁ)
. s o A2
e. Wavefront coding  jfs(wy)j P
Ny £ 2 A8:3b(Wx;y)
f. Lattice-focal E[fs(wy)j“] E=em

Table 2: Squared MTFs of computational imaging designs. See
Table 1 for notation. The optimal spectrum bound falldiofarly
as a function of spatial frequency, yet existing design$ siscthe
focus sweep and wavefront coding fall gffadraticallyand do not
utilize the full budget. The new lattice-focal lens derivbchis
paper achieves a higher spectrum, closer to the upper bound.

A phase change to the integral in Eq. (13) does not increase it

magpnitude, therefore, for every spatial frequengyy,,
7z '

k(xyuv)e 2P(WoX* MoV dxdy 1 : (14)

Using Eq. (14) and the fact that the aperture is wiltdong on the
v-axis, we obtain:
777 ' 2
k(xy,upv)e 2P O+ OVydydy  AZ: (15)
On theu-axis, the aperture has width as well. By integrating
Eq. (15) overu we see the power is bounded A

z 727 ' 2
k(xyuv)e 2P Wl dxdydv du  A3:  (16)

Since the left-hand side of Eq. (15) is the power spectrum of
kao;yo(Wu;O)’ by applying Parseval's theorem we see that the to-
tal power over the focal segment is bounded®Byas well:

z
Ty, (Ws 0)j 2wy A : 17)

Since the focal segment norm is bounded®Sy and since we aim

The MTFs for the previous designs shown in Figure 5 are lower
than the upper bound. We have analytically computed spémtra
these designs. The derivation is provided in the appendisam-
marized in Table 2. We observe that no existing spectrumhesac
the upper bound. Below we review the results in Table 2b-e and
provide some intuitive arguments. In the next section wedce

a new design whose spectrum is higher than all known dedgis,
still does not fully meet the bound.

Standard lens:  For a standard lens focused at depihwe see
in Figure 4(b) high frequency content near the isolated fgoin

If,%%( SoW,; SoW,), Which correspond to the in-focus depth

fs. The spectrum falls off rapidly away from these points, with
a sinc whose width is inversely proportional to the apertivéen
the deviation between the focus slope and the object §kgpes

is large, this sinc severely attenuates high frequencies.

Coded aperture:  The coded aperture [Levin et al. 2007; Veer-
araghavan et al. 2007] incorporates a pattern blocking liags.
The integration surface is linear, like that of a standang |®ut has
holes at the blocked areas. Compared to the sinc of a staagard
ture, the coded aperture camera has a broader spectrurd(&)ig.
but is still far from the bound. To see why, assume w.l.0.cat th
the lens is focused & = 0. The primal integration surface lies
on thex= 0,y = 0 plane anck is constant over ali.,. Indeed,
all wy.y,-slices in Figure 4(c) are equal. Since the union of focal
segment orientations from adk.y,-slices covers the plane, to guar-
antee worst-case performance, the coded aperture spestiautd
be spread over the entire 2D plane of eaghy,-slice. This implies
signi cant energy away from focal segments.

Focus sweep:  For a focus sweep camera [Hausler 1972; Naga-
hara et al. 2008], the focus distance is varied continuodshjng
exposure and the 4D lens spectrum is the average of starefeses|
spectra over a range of slopgs(Figs. 4(d) and 5(d)). In contrast
to the isolated points covered by a static lens, this spreadsgy
over the entire focal segment, since the focus varies d@xpg-
sure. This design does not spend budget away from the fogal se
ment of interest. However, as discussed in the appendige she
lens kernel describing a focus sweep camera is not a Diraa, del
phase cancellation occurs between different focus setting the
magnitude is lower than the upper bound (Fig. 4(a)).

Wavefront coding:  The integration surface of a wavefront
coding lens [Dowski and Cathey 1995] is a separable 2D
parabola [Levin et al. 2008b; Zhang and Levoy 2009]. The spec
trum is a separable extension of that of the 1D parabola fLeval.
2008c]. However, while the 1D parabola achieves an optinoastw
case spectrum, this is no longer the case for a 2D parabolB,in 4
and the wavefront coding spectrum (Table 2e, Figs. 4(e) &)y 5

is lower than the bound. Thex.,-slices in Figure 4(e) reveal

to maximize the worst-case magnitude, the best we can do is towhy. Due to the separability, energy is spread uniformiyhimithe

spread the budget uniformly over the length,.y,j focal segment,
which bounds the worst MTF power =5 Wj. In the general
case, Eq. (16) is bounded byw.) A rather tharA®, and Eq. (10)
follows. []

3.3 Analysis of existing designs

We analyze the spectra of existing imaging designs withiqdar
attention paid to the spectrum on the focal manifold sinég the
portion of the spectrum that contributes to focus at physiepths.

Figure 4 visualizesw,.y,-slices through a 4D lens spectryki for
recent imaging systems. Figure 5 shows the correspondingsMT
(OTF-slices) at a few depths. A low spectrum value at a paint o
the focal segment leads to low spectrum content at the OTReof t
corresponding depth. Examining Figures 4 and 5, we seedha s
designs spend a signi cant portion of the budget on afoagibres.

minimal rectangle bounding the focal segment. For anotker p
spective, consider the wavefront coding integration sarfa the
primal domain, which is a separable parabe(a; V) = ( al?;av?).

A local planar approximation to that surface around an apert
pointup; g is of the formc(u; V) = ( suu;syv), for sy = T = 2aup,
s, = fey _

Tu

= &L = 2av. Forug 6 vp the lens is locally astigmatic, and
as discussed in Sec. 3.1, this is&ocal surface. Thus, the only
focal part of the wavefront coding lens is the narrow strignal its
diagonal, wherely = Vvp.
Still, the wavefront coding spectrum is superior to that ofled
apertures at low-to-mid frequencies. It spreads budgst within
the minimal rectangle bounding the focal segment, but nab tipe
maximal cutoff spatial frequency. The wavefront codingctpenm
and that of a focus sweep are equajvikj = jwj. However, the
wavefront coding spectrum is signi cantly improved forgj! 0



(a) upper bound (b) standard lens, focuseshat 0:5 (c) coded aperture, focusedsat= 0
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Figure 4: 4D lens spectrum for different optical designs. Each subisl@n w,.y,-slice as described in Figure 3. In the atland case of
Figure 2, thesen,.y,-slices correspond to vertical columns. An ideal desigrs{@uld account for the dimensionality gap and spend energy
only on the focal segments. Yet, this bound is not reachechpyexgisting design. A standard lens (b) devotes energy ondyfoint in
each subplot. A coded aperture (c) is more broadband, buggéestrum is constant over akk,.y,-slices, so it cannot cover only the focal
segment in eachy,y,-slice. The focus sweep camera (d) covers only the focalesagirbut has reduced energy due to phase cancellations
and does not achieve the bound. A wavefront coding lens &parable in thew,; w, directions and spends signi cant energy on afocal
areas. Our new lattice-focal lens (f) is an improvement amdsting designs, and spreads energy budget over the fegaiants. Note that

all subplots show the numerical simulation of particularsig instances, with parameters for each design tuned taépth range (see
Sec. 5.1), approximating the analytic spectra in Table 2 iftensity scale is constant for all subplots.

< u(a)er St{g%)dar q g%) ted (?gcus V\gg\)/efmm (g ice. orjwj! O, because the rectangle becomes compact, as shown in
botnd S 05 o0 sweep codng - focal the central row and column of Figure 4(e).

In[Levin et al. 2009a] we also analyze the plenoptic camaththe
focal stack imaging models. Note that despite all the siritepas
mentioned so far, the derivation in this section and the kitians
in Figures 4 and 5 model pure geometric optics. Diffractiod a

-

0:5 wave optics effects are also discussed in [Levin et al. 2D0Ba
most cases Fourier optics models lead to small adjustmeriteet
spectra in Table 2, and the spectra are scaled by the diffract

0 limited OTF.
Having reviewed several previous computational imaging ap
proaches to extending depth of eld, we conclude that norteeri

spends the energy budget in an optimal way. In a standardtens
entire aperture area is focal, but light is focused only framin-
gle depth. A wavefront coding lens attempts to cover a futitde
range, but at the expense that most aperture area is afoctie |
] ] ] ) ) next section we propose a new lens design, the lattice-feoal
Figure 5: Spectra of OTF-slices for different optical designs over with the best attributes of both—all aperture area is fogat, it

a set of depths. The subplots represent the MTF of a givenimgag  focuses light from multiple depths. This lets our new degigh

[
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system for slope §fs(w; wy)j, where the subplot axes arg.y. closer to the upper bound compared to existing imaging syste
These OTF-slices are the 2D analog of the slanted red and blue

slices in Figure 2. Our new lattice-focal lens design begirapi- 4 The lattice-focal lens

mates the ideal spectrum upper bound. Note that all subplutss

the numerical simulation of particular design instanceghvpa- Motivated by the previous discussion, we propose a new desig

rameters for each design tuned to the depth range (see S§¢. 5. which we call the lattice-focal lens. The spectrum it acheis
approximating the analytic spectra in Table 2. higher than previous designs but still lower than the upemb.
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Figure 6: Left: Ray mapping for a lattice-focal lens in atland. The
aperture is divided into three color-coded sections, eaclu$ed on

a different depth. Right: In the 2D light eld the integraticurface
is a set of slanted segments, shown with correspondingsolor

(a) Lattice-focal lens (b) PSFs

Figure 7: (a) Toy lattice-focal lens design with only 4 subsquares.
(b) The PSF¢sin the primal domain, at two different depths. Each
subsquare (color-coded) corresponds to a box in the PSFwidité

of each box is a function of the deviation between the sulsqua
focal depth and the object depth.

In this design, the aperture is divided intee? subsquares of
size eA eA each (for O< e < 1). Each subsquare is a fo-
cal element cropped from a standard lens focused at some slop
sj 2 [ $=2,S=2]. That s, the integration surface is de ned as:

c(u;v) = (sju;sjv) for (u;v) 2 W ; (18)
whereW; denotes the area of thieth subsquare. Figure 6 visu-
alizes the integration surface of a lattice-focal lens, posed of
linear surfaces with different slopes (compare with Figyréeft).
Figure 7 illustrates a toy four-element lattice-focal lemnsl its PSF
for two different depths. In the primal domain, the PSF is jpesu
position of scaled and shifted boxes corresponding to thiews
aperture subsquares. For this example, one of the subsqadoe
cused at the correct depth for each scene depth, so the PSiBtson
of an impulse plus three defocused boxes. The box width ise fu
tion of the deviation between the lens focal depth and theabbj
depth.

The OTFfs(w;

vg) of a lattice-focal lens is a sum of sincs corre-
sponding to the di

fferent subsquares:

g A2t GyWsine eAwk(sj ) sinc eAw(s; 9
j

(19)
For a subsquare centered at aperture p@intv;), (gj:x: gjy) =
(uj(sj 9);vj(sj 9) denotes the phase shift of theh subsquare,
corresponding to its translated center. The 4D spectrunsofgie
aperture subsquare is a sinc around one point in the focalesgg
Ky, ( SjWWo;  SjW). However since each subsquare is focused
at a different slope;j the summed spectra cover the focal segment
(Figure 4(f)). In contrast to the spectrum for wavefrontiogg the
lattice-focal spectrum does not spend much budget away finem
focal manifold. This follows from the fact that the subscqualopes
in Eq. (18) are set to be equalirandv, therefore the entire aperture
area isfocal.

The lattice-focal design resembles the focus sweep in thdt b
distribute focus over the DOF—focus sweep over time, and the
lattice-focal design over aperture area. The crucial difiee is

(a) Lattice-focal lens (b) Discrete focus sweep

Figure 8: Focus sweep vs. the lattice-focal lens. (a) Lattice-focal
lens whose aperture is divided inBodifferently-focused bins. (b)
Discrete focus sweep, dividing the integration time ®itins, each
focusing on a different depth (note that an actual focus gveaen-
era varies focus continuously). Depth ranges with defocarmeter
below a threshold are colored. While in both cases each ligite
1=3 of the energy, the sub-apertures for the lattice-focal lares
narrower than the full aperture used by the focus sweep, énéme
effective DOF for each of the lattice-focal bins is larger.

that since each lattice-focal subsquarsrsallerthan the full aper-
ture, its effective DOF is larger than the DOF for the full epe
ture (Figure 8). As shown in Fig. 4(d,f) and Fig. 5(d,f), the
lattice-focal lens achieves signi cantly higher specthan focus
sweep. Mathematically, by discretizing the exposure time N
bins, each bin of the focus sweep (focused at skypeontributes

szsinc(A(s sj)w)sindA(s  sj)w) to the OTF. By contrast, by
dividing the aperture int®l bins, each bin of the lattice-focal lens
. 2 . — . —

contributesy sind AN (s sj)w)sindAN (s s ). In
both cases each bin collectsN of the total energy (and the sincs'
height isA2=N), but the lattice-focal sinc is wider. While coin-
cidental phase alignments may narrow the sincs, thesenadigts
occur in isolation and do not persist across all depths drgpatial
frequencies. Therefore, the lattice-focal lens has a higbectrum
when integrating oves;.

The w,:y,-slices in Figure 4(f), and the OTF-slices in Figure 5(f)
suggest that the lattice-focal lens achieves a higher speatom-
pared to previous designs. In the rest of this section weldpan
analytic, average-case approximation for the latticexffepectrum,
which enables order-of-magnitude comparison to othegdssiWe
then discuss the effect of window sizend show it is a critical pa-
rameter of the construction, and implies a major differemeteveen
our design and previous multi-focus designs [George an@Q08;
Ben-Eliezer et al. 2005].

Spectrum of the lattice-focal lens: The spectrum of a particu-
lar lattice focal lens can be computed numerically (Eqg. ,1@nd
Figures 4 and 5 plot such a numerical evaluation. However, to
allow an asymptotic order-of-magnitude comparison betwieas
designs we compute the expected spectrum over random shafice
the slopes; and subsquare centes;; v;) in Eq. (18) (note that to
simplify the proof, the subsquares in a generic randontkadibcal
are allowed to overlap and to leave gaps in the aperture.de&zn
suf ciently many subsquares, the law of large numbers @&gphind

a sample lattice-focal lens resembles the expected spectilnile
this analysis confers insight, the expected spectrum dhoai be
confused with the spectrum of a particular lattice-focalkle The
spectrum of any particular lattice-focal instance is natado the
expected one.

Claim 3 Consider a lattice-focal lens whose subsquare slopes
in Eq. (18) are sampled uniformly from the ranfeS=2; S=2],



and subsquares centers sampled uniformly over the apearnaa
[ A=2A=2] [ A=2,A=2]. Forjw;jwj> (eSA I, the expected
power spectrum asymptotically approaches

eAn3

Efif s(wx; w4)j?] iy () (20)

whereb is de ned in Eq. (11).

Proof: Let s denote a particular scene depth of interest anafs]et
denote the OTF of th¢-th subsquare focused at slogg so that

the lattice-focal OTF ifs = & fd. For a subsquare size eA
eA, the aperture area is covered tyy= 1=€? subsquares. Since

them random variable$d are drawn independently from the same
distribution, it follows that

E[if52 = mE[f{j2]+ mm  DiE[FL]?: (21)

The second term in Eqg. (21) is positive, and one can show it is

small relative to the rst term. For simplicity we make theneo
servative approximation [F5j?] ~ mE[jfj?], and show how to

compute Bjfdj?] below. Note that the exact lattice-focal spectrum
(Eq. (19), and the right-hand side of Eq. (21)) involvesrigence
from the phase of each subsquare. An advantage of our apmexi

tion mE[jfj?] is that it bypasses the need to model phase precisely.

Recall that the PSF from each subsquare is a box lter and e O
is a sinc. If thej-th subsquare is focusedst

iFd(uiey)i? = e*A%sind(eAny(s  s))sin@(eAw(s sj)) : (22)

Since the subsquare slopes are drawn uniformly ffoi$=2; S=2],
the expected spectrum is obtained by averaging Eq. (22)spver

4psZ s
eA siné eAwy(sj 9 sin@ eAwy(s; 9 ds;:
S2

(23)

Efdj?]=

To compute this integral we make use of the following identior
a 2D vector =(rq;rp),

Z

¥ b(iri
siné(rt)sind(rat)dt = J(‘r;‘) : (24)

¥

If S=2< s< S=2 andSis large, we can assume that the integration

boundaries of Eq. (23) are suf ciently larfeand asymptotically
approximate Eq. (23) with the unbounded integration of 24):(

Apd Z 52
= % siné eAm(s; 9 siné eAwy(s; 9 ds;
s2

etat Z 5045

S s2+s

e Asb(Wx:y) .
Wy

sind eAws;j sin® eAws; ds;

(25)

Eqg. (20) now follows from Eq. (25), after multiplying by theim-
ber of subsquaresp= . ]

’Note that the approximation in Eq. (25) is reasonablej ej; jwyj >
(SeA) 1. The approximation is crude at the low frequencies but besom
accurate at higher frequencies, for which the MTF appraache desired
fall off. Furthermore, note that at the exact integratiorurdaries ¢ =

S=2) one gets only half of the contrast. Thus, in practice, dwoeikl setS
a bit higher than the actual depth range to be covered.
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Figure 9: The lattice-focal lens with varying window sizes. Left:
Woiyo-Slice atwg = 0:9W, wy, = 0:9W, through theexpectedspec-
trum. Middle: w,.y,-slice from aparticularlattice-focal lens in-
stance. Right: The defocus diameter over the depth of elde T
expected spectrum improves when the windows number isagduc
but every particular lattice-focal lens becomes underdah@and
does not cover the full depth range.

Optimal subsquare size:  According to Claim 3, the expected
power spectrum of a lattice-focal lens increases with windze

e (Fig. 9). For larger subsquares the sinc blur around theralent
focal segment is narrower, so more energy is concentratetieon
focal segment. However, it is clear that we cannot makebitrar-
ily large. When the number of subsquares is small, the egdect
power spectrum is high, but there are not enough samples/ér co
the full focal segment (Figure 9(a)). On the other hand, wifen
number of subsquares is too large, every subsquare has uwpde s
port around the main focal segment, leading to lower enengyne
focal segment (Fig. 9(c)).

Posed another way, each subsquare is focused at a diffevignit p
in the depth range, and provides reasonable coverage @/sulh
range of depths for which it achieves a defocus diameter s¥f le
than 1 pixel (Fig. 9, rightmost column). The subsquaresrge-
ment is undersampled if the minimum defocus diameter foresom
depth range is above 1 pixel, and redundant when the sulesjuar
effective depth coverage overlap. In the optimal arranggraach
depth is covered by exactly one subsquare.

We derive the minimal number of windows providing full coage
of the depth of eld, resulting in an optimal .

Claim 4 The maximal subsquare size which allows full spectrum
coverage is

e =(ASN) B (26)
Proof: If the spacing between spatial samplesOsthe maxi-
mal frequency we need to be concerned witth8=2 = S=(4D).
For window sizee we obtain e? subsquares. If the slopes of
the subsquares are equally spaced over the ran§e2; S=2], the
spacing between samples in the frequency domainzsWSe?.
Using subsquares of widtleA, we convolve the samples with
sing eAvk)sing eAw). For full coverage, we thus requimA
1=t, implying:

e (Asn) B (27)



If we plug the optimake from Eq. (26) into Eq. (20) we conclude
that the expected power spectrum of a lattice-focal lenk oyiti-
mal window size is:

A8:3

Efif s(u; W)l mb(m&y): (28)
8%

Discussion of lens spectra: The lattice-focal lens with an op-
timal window size achieves the highest power spectrum les-
est to the upper bound) among all computational imaginggdssi
listed in Table 2. While the squared MTFs for wavefront cadin
and focus sweep fall offjuadratically as a function ofw., for
the lattice-focal lens the squared MTF only falls liffearly. Fur-
thermore, while the squared MTFs for wavefront coding armli$o
sweep scale wittA2, for the lattice-focal lens the squared MTF

scales withA8=3, Still, there exists a gap ¢ASA)*™ between the
power spectrum of the lattice-focal lens and the upper bouhd
should be noted that the advantage of the lattice-focaiseasy/mp-

totic and is most effective for large depth of eld ranges. &¥tthe

depth range of interest is small the difference is less eatite, as
demonstrated below.

Compact support in other designs: From the above discus-
sion, the aperture area should be divided more or less gqudi
elements focused at different depths. However, beyond| egea

Large depth rangeS= 2)
Wavefront coding Lattice-focal

Small depth rangeS= 0:1)
Wavefront coding Lattifoeal

Figure 12: w,.y,-slice (atwy, = 0:9W wy,, =  0:9W) for two depth
ranges de ned by slope bounds=2 (left) and S= 0:1 (right). For
the smaller range, the difference between the focal segamehthe
full bounding square is lower, and the spectra for wavefiding
and the lattice-focal lens are more similar.

followed by wavefront coding, then focus sweep. Note thatei
we use a square aperture, several imaging systems have orére h
zontal and vertical frequency content. This leads to hoitizloand
vertical structure in the reconstructions of Figure 10 tipalarly
noticeable in the standard lens and the wavefront codingtses

In Figure 11 we simulate the effect of varying the depth rafige
planar object was positioned &  0:5, and the camera parame-
ters were adjusted to cover a narrow depth radge0:1 (Fig. 11,
top row) and a wider rang8= 2 (Fig. 11, second row). When the
focus sweep, wavefront coding and lattice-focal lens ajesaed
to a narrower depth range their performance signi cantlpiaves,

we also want the aperture regions focused at each depth to besince they now distribute the same budget over a narroweeran

grouped together. Eq. (20) indicates that the expected pspez-
trum is higher if we use few wide windows, rather than manylsma
ones. This can shed some light on earlier multi-focus dssigor
example, [George and Chi 2003] use annular focus rings, B[
Eliezer et al. 2005] use multiplexed subsquares, but meltipn-
adjacent subsquares are assigned the same focal lengttothin b
cases, the support of the aperture area focused at eachisleypth
at all compact, leading to sub-optimal MTFs.

5 Experiments

We rst perform a synthetic comparison between extendeddefp
eld approaches. We then describe a prototype construdfdhe
lattice-focal lens and demonstrate real extended-DOF ésiag

5.1 Simulation

We start with a synthetic simulation using spatially-insat rst
order (paraxial) optics. The OTFs in this simulation are pated
numerically with precision, and do not rely on the approxiear-
mulas in Table 2.

Our simulation use#é\ = 100D and considers two depth of eld
ranges given by§= 2 andS= 0:1. Assuming a planar scene,
we synthetically convolved an image with the PSF of eachgiesi
adding i.i.d. Gaussian noise with standard deviatfior 0:004.
Non-blind deconvolution was performed using Wiener Itegiand
the results are visualized in Figures 10 and 11. We set tleepae
rameters of each design to best match the depth range—for-exa
ple, we adjust the parabola widgh(in Eq. (5)), and select the opti-
mal subsquare size of the lattice-focal lens. The standadd¢aded
lenses were focused at the middle of the depth rangg,=a0.

In Figure 10 we simulate the effect of varying the depth ofdbe
ject. Using cameras tuned for depth rarf§e 2, we positioned
the planar object at= 0 (Fig. 10, top row) ang= 0:9 (Fig. 10,
bottom row). As expected, higher spectra improve the vigual-
ity of the deconvolution. Standard and coded lenses obtaiale
lent reconstructions when the object is positioned at tbagslope
s= 0, but away from the focus depth the image deconvolution can-
not recover much information. Focus sweep, wavefront apeimd
the lattice-focal lens achieve uniform reconstructionliggacross
depth. The best reconstruction is obtained by our latbofPSF,

The difference between the designs becomes more criticah wie
depth range is large. Figure 12 visualizegg.y,-slice for bothS
values. ForS= 0:1, the length of the focal segment is so short
that there is little difference between the segment andoitsding
square. Thus, with a smaller depth range the wavefront gddims
incurs less of penalty for spending its budget on afocabregi

Mapping slope ranges to physical distances: Assume that the
camera has sensor resolutibg = 0:007mm, and that we use an
f = 85mm focal length lens focused at demth= 70cm. This
depth also speci es the location of tglight eld plane. The DOF

is de ned by the rangédmin; dmax corresponding to slopesS=2.
From Eq. (2), the depth range can be expressedhadl S=2),
yielding a DOF of[35;¥]cm for S= 2 and [66:2;74:3]cm for
S= 0:1. The pixel size in the light eld isD = Dy=M, where
M= f=(dy, f)= 0:13 is the magni cation. We set the effective
aperture sizéA to 100 = 100My=M = 50:6mm, which corre-
sponds tof=1:68. The subsquares number and focal lengths are
selected such that for each point in the depth range, thesg-is
actly one subsquare achieving defocus diameter of lessdhan
pixel. The subsquare number is given by Eq. (26), in this simu
lation m= 100 aperture subsquares wits 2, andm= 16 sub-
squares witts= 0:1. To set the focal lengths of each subsquare we
selectm equally spaced slopes in the rangd  S=2; S=2]. A slope

sj is mapped to a physical depth according to Eg. (2). To make
the j-th subsquare focus at demﬁwe select its focal lengtlh; ac-
cording to the Gaussian lens formula=f]l = 1=dj + 1=ds (where

ds denotes the sensor-to-lens distance).

5.2 Implementation

Hardware construction: To demonstrate our design we have
built a prototype lattice-focal lens. Our construction \pdes a
proof of concept showing that a lattice-focal lens can belémp
mented in practice and lead to reasonably good results, \eswe
it is not an optimized or fully-characterized system.

As shown in Figure 13, our lattice-focal lens mounts to a main
lens using the standard threaded interface for a lens Tthe sub-
squares of the lattice-focal lens were cut from BK7 sphéptzmno-
convex lens elements using a computer-controlled saw. qineres
are of size & 5:5mm and thickness 3mm. By attaching our



Standard Lens Coded aperture

Focus sweep Wavefront coding atticd-focal

Figure 10: Synthetic comparison of image reconstruction at diffeajéect depths Top row: object deptlrs0, Bottom row: object depth

sS=

0:9 Standard and coded lenses produce high quality reconstrudor an object at the focus depth, but a very poor one awam fr

the focus depth. Focus sweep, wavefront coding and theddtical lens perform equally across depth. The highestityuaiconstruction

produced by our lattice-focal lens.

Standard Lens Coded aperture

Focus sweep Wavefront coding atticd-focal

Figure 11: Synthetic comparison of image reconstruction when camarapeters are adjusted for different depth ranges. Top naavrow
depth range bounded by=S0:1, Bottom row: wider range bounded by=S2. Most designs improve when they attempt to cover a narrower
range. The difference between the designs is more dradticge depth ranges.

lattice-focal lens to a high-quality main lens (Canon 85nin2[),
we reduce aberrations. Since most of the focusing is aathibye
the main lens, our new elements require low focal powerscand
respond to very low-curvature surfaces with limited alktére (in
our prototype, the subsquare focal lengths varied from 1&®to).

In theory the lattice-focal element should be placed in tlaag of

the main lens aperture or at one of its images, e.g., thererrar
exit pupils. To avoid disassembling the main lens to acdesset
planes, we note that a suf ciently narrow stop in front of thain

lens rede nes a new aperture plane. This lets us attach tigea
focal lens at the front, where the stop required to de ne a aper-
ture still let us use 60% of the lens diameter.

The minimal subsquare size is limited by diffraction. Siree
normal lens starts being diffraction-limited around &rl2 aper-
ture [Goodman 1968], we can t about 100 subsquares within an
f=1:2 aperture. To simplify the construction, however, our pro-
totype included only 12 subsquares. The DOF this allowedus t
cover was small and, as discussed in Sec. 5.1, in this ramge th
lattice-focal lens advantage over wavefront coding istiahi Still,

our prototype demonstrates the effectiveness of our approa

Given a xed budget ofm subsquares of a given width, we can
invert the arguments in Sec. 4 and determine the DOF it can
cover in the optimal way. As discussed at the end of Sec. 5.1
and illustrated in Figure 9(b), for every point in the optima
DOF, there is exactly one subsquare achieving defocus diam-
eter of less than 1 pixel. This constraint also determines th
focal length for each of these subsquares. For our prototype
we focused the main lens at 180cm and chose subsquare focal
lengths covering a depth range [6f0; 180cm. Given the limited
availability of commercial plano-convex elements, oursylares'
coverage was not perfectly uniform, and we used focal length
10000,5000,4000,3000,2500,2000,1750,1500,1300,1200mm,
plus one at subsquare (in nity focal length). However, far
custom-manufactured lens this would not be a limitation.

Calibration: ~ To calibrate the lattice-focal lens, we used a planar
white noise scene and captured a stack of 30 images for differ
depths of the scene. Given a blurred and sharp pair of inBgés

at depthd, we solved for the kernely minimizingjfq 1q Byj-

We show the recovered PSF at 3 depths in Figure 13. As distusse
in Sec. 4, the PSF is a superposition of boxes of varying siags
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Standard lenst=16 Standard lend,=4 Lattice-focal lens
Figure 14: Comparison between a lattice-focal lens and a standard, leagh for a narrow aperture (¥16) and for the same aperture size
as our lattice-focal lens prototype €4). All photos were captured with equal exposure time, so tHé fmage is very noisy. The standard

f=4image is focused at the white book, but elsewhere producefoaubsed image. The lattice-focal output is sharper overetitire scene.

the wrong PSF leads to convolution error, we can locallyestoe
explanation provided by PSf around pixel as:

Ei(d)= iBi Bail®+/ r(gi(la)+ r(gyi(la) ; (30)

90cm

whereBg = fg 143. We regularize the local depth scores using
a Markov random eld (MRF), then generate an all-focus image
using the Photomontage algorithm of Agarwala et al. [2004].

150cm

Results:  In Figure 14 we compare the reconstruction using our
lattice-focal lens with a standard lens focused at the reiddlithe
depth range (i.e., the white book). Using a narrow aperttréq),

the standard lens produces a very noisy image, since we keld e
posure time constant over all conditions. Using the sametage
size as our prototypef €4), the standard lens resolves a sharp im-
age of the white book, but the rest of the scene is defocused. F
the purpose of comparison, we speci ed the depth layers algnu
and deconvolved both the standard and lattice-focal imagts
PSFs corresponding to the true depth. Because the specfrum o
the lattice-focal lens is higher than a standard lens a¢hesdepth
range, greater detail can be resolved after deconvolution.

180cm

Figure 13: Our prototype lattice-focal lens and PSFs calibrated at
three depths. The prototype attaches to the main lens likara s
dard lens lter. The PSFs are a sum of box Iters from the diffet
subsquares, where the exact box width is a function of thiatilev

between the subsquare focal depth and the object depth. Figure 15 shows all-focus images and depth maps capturad usi

our lattice-focal lens. More results are available oflin&Since
the MRF of Agarwala et al. [2004] seeks invisible seams, dlyeil
transitions usually happen at low-texture regions and htiteaac-
tual contours. Despite the MRF's preference for piecewizestant
depth structures we handle continuous depth variatiorsh@sn in
Depth estimation:  Given the calibrated per-depth PSFs, we de- the rightmost column of Figure 15.

blur an image using sparse deconvolution [Levin et al. 200%]s
algorithm computes the latent imabgeas

the exact arrangement of boxes varies with depth. For cdegrar
we did the same calibration using a standard lens as well.

The results in Figure 15 were obtained fully automaticatow-
ever, depth estimation can fail, especially next to ocolusiound-
aries, which present a general problem for all computationa
extended-DOF systems [Dowski and Cathey 1995; Nagahata et a

lg = argminfq | Bi?+ 1 & r(ga()* r(g() ; (29)
I 2008; Levin et al. 2007; Veeraraghavan et al. 2007]. Whilgrecp

wheregy:; gy denote horizontal and vertical derivatives of tkil
pixel, r is a robust function, antl is a weighting coef cient.

Since the PSF varies over depth, rough depth estimationjisresl
for deblurring. If an image region is deconvolved with a P8F ¢
responding to the incorrect depth, the result will includteging
artifacts. To estimate depth, we start by deconvolving thtére
image with the stack of all depth-varying PSFs, and obtaitacks
of candidate deconvolved imagékjg. Since deconvolution with

pled solution to this problem is beyond the scope of this papest
artifacts can be eliminated with simple manual layer re e

SNote that despite the discussion in [Levin et al. 2009b], wipley a
MAP,.« approach that scores a deqthbased on the bedy explanation
alone. The reason this approach works here is that a delaratjpn is ab-
sent from the search space, and there is a roughly equal eafisolutions
around all PSF$4.

4“www.wisdom.weizmann.ac.il/levina/papers/lattice



Standard lens

Lattice-focal lens

Figure 15: Partially defocused images from a standard lens, compaitidam all-focused image and depth map produced by the &ftical

lens.

Figure 16: Synthetic refocusing using the coarse depth map estimatbdhe lattice-focal lens.

Relying on depth estimation to decode an image from a lafticel
lens is a disadvantage compared to depth-invariant sakjtiaout it
also allows coarse depth recovery. In Figure 16 we used tighro
depth map to synthetically refocus a scene post exposure.

6 Discussion

This paper analyzes extended depth of eld systems in lighd
space. We show that while effective extended DOF systenis see
high spectrum content, the maximal possible spectrum iaded
The dimensionality gap between the 4D light eld and the 3bdio
manifold is a key design factor, and to maximize spectruntesan
lenses should concentrate their energy in the focal mahdbthe
light eld spectrum. We analyze existing computational gy
designs and show that some do not follow this principle, @bth-
ers do not achieve a high spectrum over the depth range. Ghide
this analysis we propose the lattice-focal lens, accogrfiim the
dimensionality gap. This allows us to achieve defocus PSHs w
higher spectra compared to previous designs.

However, the lattice-focal lens does not fully achieve tippear
bound. One open question is whether better designs existheh
the upper bound could be tighter, or both. Our intuition it tthe
upper bound could be tighter. The proof of Claim 2 is based on
the assumption that ah A primal support is devoted to every fre-
quency point. However, the fact that the integration s@rfaas to
“cover” a full family of slopes implies that the aperture areas

to be divided between all slopes. Thus the primal supporaohe
slope is much smaller thaky which implies a wider frequency sup-

port around the focal segment, reducing the height of thetspa
on the focal segment itself.

We have focused on spectra magnitude, which dominates the de
convolution quality. However, the accuracy of depth estiomis
important as well. Wavefront coding and focus sweep canfeas

an important advantage that they bypass the need to estii@yatte.

On the other hand, the lattice-focal lens has the bene tafvering

a rough depth map in addition to an all-focused image. Onedut
research question is whether the higher spectrum of thedétical

lens can also be achieved with a depth-invariant design.
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Appendix: Spectra derivations
Below we complete the budget and spectra derivation of Sec. 3

Claim 5 For an aperture of size A A and exposure length the
total energy in eachw,,-slice is bounded by A
7z

Ry (Wt )2t AZ (31)



Proof: The proof reviews the budget proof in [Levin et al. 2008c].
Note thaﬂ<WX0:yO(wu; W) is the 2D Fourier transform of:

77

kO y;uv)e 2P(WoXt WoY) dxdly: (32)
For every clear aperture poipj  A=2; jvj A=2:
zz ' 2 ZZ 2
kO y;uv)e 2P(WoXt WoY) dxdy k(x;y;u;v)dxdy — 1:
(33)

Where the rstinequality follows from the fact that a phasenge

does not increase magnitude, and the second inequalityw®l|
from the unit energy through every clear aperture point @se

Egs. (13) and (14)).

Since the aperture sizeA€, the total norm is bounded by?:

7z 7z _ 2
k(xy,uv)e 2P WoY)dxdy dudv A2:  (34)

By Parseval's theorem, the square integral is the same idube
and the primal domains, thus:

zz

gy, (W )j 2y A% (35)

[

Standard lens:

shift (resulting from the translation of the subsquare egnt

k) (vse; wy; W w) = €2A%e 2P(Wallot Wko) ging( @A) sino( €AWK,)
N (39)

As in the proof of Claim 3, we note that[lg] affects very low

frequencies only, so we use Eq. (21) to approximate

Efjki2] éE[jl?"jzl (40)
At ,
= TS|n(:2(eAwu)smc2(eAW\,) ; (41)

where the number of subsquares i®4 and the factor 22 repre-
sents the probability of a blocked subsquare. By selectinQ 8-
slice, Eq. (38) follows]]

Eqg. (41) suggests that, ignoring diffraction, the sensatiapres-
olution implies a tradeoff in selecting the optimal holeesizlIf
we use small holes, the power spectrum of the aperture isrwide
and wider spectrum implies that more budget is spread aveamy fr
the main focal segment (indeed Eq. (38) shows that the exgect
spectrum is multiplied bye and decreases whemis small). On
the other hand, the expected power spectrunk ddlls off like
sin(eAwy)sinc(eAwy). That is, since the lens is focused only
at a single depth, to have spectral content at slopes comdsp

to other depths, the spectrum of the aperture must be sutlgie
wide, implying that a small hole sizeis needed.

Focus sweep:

. . . . l
Claim 6 The power spectrum of a standard lens focused at depth €1aim 8 For jusj;jwyj > (SA =, the power spectrum of the focus

sp with aperture A Ais
ifs(ws; wg)j? = Asin@(A(s  so)ws)Sin(A(s so)w) :  (36)

Proof: A lens focused at slopg) is modeled by a linear integration
surfacec(u;Vv) = ( spu; spv). If the surface were in nite, the Fourier
transform would be an impulse at, =  sow; W, =  Sow. Given
the nite aperture we need to convolve that with a sinc, angth

k(s wg; wi we) = AZSind(A(wy  Sows)) sindA(wy o)
Eq. (36) follows by selecting an OTF-in(@.

The w4y, -slices in Figure 4(b) reveals a sinc around the point

W= SoWw W = swy. Note that reducing the aperture size
A increases the sinc width and minimizes defocus blur. Howeve
given a xed exposure length it also reduces the amount bf igl-
lected, which reduces the MTF. Indeed, the sinc height in(&8).
decreases for smallérvalues.

Coded aperture:
lens, w.l.0.g. focused at slogge= 0. We construct a coded aperture
by dividing the aperture into squares of see  eA and randomly
blocking each subsquare with probability2l The expected power
spectrum can then be computed analytically.

Claim 7 For alens focused aps= 0, the expected power spectrum
of a random coded aperture with holes see €A is

s o A% . ,
Elif s(wiy)i?] ?smcz(eAS/vx)smcz(eAS/vy). (38)

Proof: We expressf( =4 ki wherekl is the 4D spectrum of an
individual subsquare. For an unblocked hole centerag;at we

can expresﬁj analytically as the transform of a box times a phase

A coded aperture is constructed with a standard

sweep camera asymptotically approaches

A%a(wiy)?

& ] Wx;yJ'2 (42)

ifsi
Whgrea(ij;yj) is a bounded multiplicative factor in the range
1 2 o
Wiyl

a(jWgy)) = ———2——: 43
o) = s ) (43)

Proof: The spectrum of a standard lens focused at stgpe
AZsingAnk(so  9)SinAw(sp 9)) : (44)

The spectrum of a focus sweep is obtained by averaging Ey. (44
over . To compute this integral we make use of the following
identity: for a 2D vector =[rq;r>],

Zy .
sind(rt)sing(rot)dt = aj(Jr}‘) :
¥

(45)

If S=2< s< S=2 andSlarge enough, we use Eq. (45) and get:

2Zso _
S S:Zsmc(AWX(SO s)sindAwy(so  9))ds
AL s2rs .

= S S:2+SSII‘IC(AWXS())SII‘IC(AWyS())dSO
Aa(wy) |

ST

f s(Wy) =

(46)

Taking the power of Eq. (46) provides Eq. (4).

5The approximation is reasonable forj;jwyj > (SA L.



Figure 4(d) displayam,y,-slices from the power spectrum of a
focus sweep camera.
trated around the main focal segment, with the same narralthwi
achieved by the upper bound in Fig. 4(a). However, the madeit
of the focus sweep is signi cantly lower. In fact, the totaleegy at
every Wy, -slice is much lower than the budget of Claim 5, that is:

zz

gy, (W0 w)jPdwudu, A% (47)
To understand why, recall that the upper bound in Claim 5 is ob
tained by noting that whexty are integrated, the magnitude of the
projection integral is bounded by 1 (Eg. (33)). And indeetiew
the 4D lens kernel is a delta function afv, that integral is equal
to 1. By contrast, the effective 4D kernel for a focus sweap-ca
era is the average of standard-lens 4D kernels over all deatid
therefore is not a delta function. When such a non-deltagtesn
multiplied by a wave of the forne 2P(Wx*wWY) interference and
phase cancelations signi cantly reduce the magnitude efirle-
gral, and Eq. (33) is far below 1.

Wavefront coding:

Claim 9 For a slope 2 [ S=2;S=2], the power spectrum of a
wavefront coding lens asymptotically approaches

2

- . 48
SA (48)

if s(us; wg)j2

Proof: A wavefront coding lens is a cubic refractive element (as
reported in [Dowski and Cathey 1995]). From Snell's law, the
integration surface is determined by the lens normal. Theze
the integration surface is a separable parabgilav) = ( aw?; av?).
The parabola widtla can be set such that the parabola slope cov-
ers the slope range of intergstS=2; S=2], implying a= S=(2A).
The power spectrum of a 1D parabola as computed in [Levin. et al
2008c] is

.~ . A
jk(w wo)j? %djwujk S2wj - (49)

The 2D parabola case is a separable extension:
I’ 2 A?
JK(vs; Wy W W) W dj W< S=2j w4 dj Wj< S2jwj - (50)

If s2 [ S=2;S=2], we can slice Eq. (50) to get Eq. (4@.
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