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Abstract

Humans demonstrate remarkable abilities to predict physical events in dynamic
scenes, and to infer the physical properties of objects from static images. We
propose a generative model for solving these problems of physical scene under-
standing from real-world videos and images. At the core of our generative model
is a 3D physics engine, operating on an object-based representation of physical
properties, including mass, position, 3D shape, and friction. We can infer these
latent properties using relatively brief runs of MCMC, which drive simulations in
the physics engine to fit key features of visual observations. We further explore
directly mapping visual inputs to physical properties, inverting a part of the gener-
ative process using deep learning. We name our model Galileo, and evaluate it on a
video dataset with simple yet physically rich scenarios. Results show that Galileo
is able to infer the physical properties of objects and predict the outcome of a vari-
ety of physical events, with an accuracy comparable to human subjects. Our study
points towards an account of human vision with generative physical knowledge at
its core, and various recognition models as helpers leading to efficient inference.

1 Introduction

Our visual system is designed to perceive a physical world that is full of dynamic content. Consider
yourself watching a Rube Goldberg machine unfold: as the kinetic energy moves through the ma-
chine, you may see objects sliding down ramps, colliding with each other, rolling, entering other
objects, falling — many kinds of physical interactions between objects of different masses, mate-
rials and other physical properties. How does our visual system recover so much content from the
dynamic physical world? What is the role of experience in interpreting a novel dynamical scene?

Recent behavioral and computational studies of human physical scene understanding push forward
an account that people’s judgments are best explained as probabilistic simulations of a realistic, but
mental, physics engine [2, 8]. Specifically, these studies suggest that the brain carries detailed but
noisy knowledge of the physical attributes of objects and the laws of physical interactions between
objects (i.e., Newtonian mechanics). To understand a physical scene, and more crucially, to predict
the future dynamical evolution of a scene, the brain relies on simulations from this mental physics
engine. Even though the probabilistic simulation account is very appealing, there are missing practi-
cal and conceptual leaps. First, as a practical matter, the probabilistic simulation approach is shown
to work only with synthetically generated stimuli: either in 2D worlds, or in 3D worlds but each
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object is constrained to be a block and the joint inference of the mass and friction coefficient is not
handled [2]. Second, as a conceptual matter, previous research rarely clarifies how a mental physics
engine could take advantage of previous experience of the agent [11]. It is the case that humans
have a life long experience with dynamical scenes, and a fuller account of human physical scene
understanding should address it.

Here, we build on the idea that humans utilize a realistic physics engine as part of a generative
model to interpret real-world physical scenes. We name our model Galileo. The first component of
our generative model is the physical object representations, where each object is a rigid body and
represented not only by its 3D geometric shape (or volume) and its position in space, but also by its
mass and its friction. All of these object attributes are treated as latent variables in the model, and
are approximated or estimated on the basis of the visual input.

The second part is a fully-fledged realistic physics engine — in this paper, specifically the Bullet
physics engine [4]. The physics engine takes a scene setup as input (e.g., specification of each of the
physical objects in the scene, which constitutes a hypothesis in our generative model), and physically
simulates it forward in time, generating simulated velocity profiles and positions for each object.

The third part of Galileo is the likelihood function. We evaluate the observed real-world videos
with respect to the model’s hypotheses using the velocity vectors of objects in the scene. We use a
standard tracking algorithm to map the videos to the velocity space.

Now, given a video as observation to the model, physical scene understanding in the model corre-
sponds to inverting the generative model by probabilistic inference to recover the underlying physi-
cal object properties in the scene. Here, we build a video dataset to evaluate our model and humans
on real-world data, which contains 150 videos of different objects with a range of materials and
masses over a simple yet physically rich scenario: an object sliding down an inclined surface, and
potentially collide with another object on the ground. Note that in the fields of computer vision
and robotics, there have been studies on predicting physical interactions or inferring 3D properties
of objects for various purposes including 3D reasoning [6, 13] and tracking [9]. However, none
of them focused on learning physical properties directly, and nor they have incorporated a physics
engine with representation learning.

Based on the estimates we derived from visual input with a physics engine, a natural extension is
to generate or synthesize training data for any automatic learning systems by bootstrapping from
the videos already collected, and labeling them with estimates of Galileo. This is a self-supervised
learning algorithm for inferring generic physical properties, and relates to the wake/sleep phases in
Helmholtz machines [5], and to the cognitive development of infants. Extensive studies suggest that
infants either are born with or can learn quickly physical knowledge about objects when they are very
young, even before they acquire more advanced high-level knowledge like semantic categories of
objects [3, 1]. Young babies are sensitive to physics of objects mainly from the motion of foreground
objects from background [1]; in other words, they learn by watching videos of moving objects. But
later in life, and clearly in adulthood, we can perceive physical attributes in just static scenes without
any motion.

Here, building upon the idea of Helmholtz machiness [5], our approach suggests one potential com-
putational path to the development of the ability to perceive physical content in static scenes. Fol-
lowing the recent work [12], we train a recognition model (i.e., sleep cycle) that is in the form of a
deep convolutional network, where the training data is generated in a self-supervised manner by the
generative model itself (i.e., wake cycle: real-world videos observed by our model and the resulting
physical inferences).

Our work makes three contributions. First, we propose Galileo, a novel model for estimating phys-
ical properties of objects from visual inputs by incorporating the feedback of a physics engine in
the loop. We demonstrate that it achieves encouraging performance on a real-world video dataset.
Second, we train a deep learning based recognition model that leads to efficient inference in the
generative model, and enables the generative model to predict future dynamical evolution of static
scenes (e.g., how would that scene unfold in time). Third, we test our model and compare it to hu-
mans on a variety of physical judgment tasks. Our results indicate that humans are quite successful
in these tasks, and our model closely matches humans in performance, but also consistently makes
similar errors as humans do, providing further evidence in favor of the probabilistic simulation ac-
count of human physical scene understanding.
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Figure 1: (a) Snapshots of the dataset. (b) Overview of the model. Our model formalizes a hy-
pothesis space of physical object representations, where each object is defined by its mass, friction
coefficient, 3D shape, and a positional offset w.r.t. an origin. To model videos, we draw exactly two
objects from that hypothesis space into the physics engine. The simulations from the physics engine
are compared to observations in the velocity space, a much “nicer” space than pixels.

2 Scenario

We seek to learn physical properties of objects by observing videos. Among many scenarios, we
consider an introductory setup: an object is put on an inclined surface; it may either slide down or
keep static due to gravity and friction, and may hit another object if it slides down.

This seemingly simple scenario is physically highly involved. The observed outcome of these sce-
nario are physical values which help to describe the scenario, such as the velocity and moving
distance of objects. Causally underlying these observations are the latent physical properties of ob-
jects such as the material, density, mass and friction coefficient. As shown in Section 3, our Galileo
model intends to model the causal generative relationship between these observed and unobserved
variables.

We collect a real-world video dataset of around 100 objects sliding down a ramp, possibly hitting
another object. Figure 1a provides some exemplar videos in the dataset. The results of collisions,
including whether it will happen or not, are determined by multiple factors, such as material (density
and friction coefficient), size and shape (volume), and slope of surface (gravity). Videos in our
dataset vary in all these parameters.

Specifically, there are 15 different materials — cardboard, dough, foam, hollow rubber, hollow
wood, metal coin, metal pole, plastic block, plastic doll, plastic ring, plastic toy, porcelain, rubber,
wooden block, and wooden pole. For each material, there are 4 to 12 objects of different sizes and
shapes. The angle between the inclined surface and the ground is either 10o or 20o. When an object
slides down, it may hit either a cardboard box, or a piece of foam, or neither.

3 Galileo: A Physical Object Model

The gist of our model can be summarized as probabilistically inverting a physics engine in order
to recover unobserved physical properties of objects. We collectively refer to the unobserved latent
variables of an object as its physical representation T . For each object i , Ti consists of its mass mi ,
friction coefficient ki , 3D shape Vi , and position offset pi w.r.t. an origin in 3D space.
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