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Abstract

In image restoration tasks, a heavy-tailed gradient distri-
bution of natural images has been extensively exploited as
an image prior. Most image restoration algorithms impose
a sparse gradient prior on the whole image, reconstructing
an image with piecewise smooth characteristics. While the
sparse gradient prior removes ringing and noise artifacts,
it also tends to remove mid-frequency textures, degrading
the visual quality. We can attribute such degradations to
imposing an incorrect image prior. The gradient profile in
fractal-like textures, such as trees, is close to a Gaussiandis-
tribution, and small gradients from such regions are severely
penalized by the sparse gradient prior.

To address this issue, we introduce an image restoration
algorithm that adapts the image prior to the underlying tex-
ture. We adapt the prior to both low-level local structures as
well as mid-level textural characteristics. Improvementsin
visual quality is demonstrated on deconvolution and denois-
ing tasks.

1. Introduction

Image enhancement algorithms resort to image priors to
hallucinate information lost during the image capture. In
recent years, image priors based on image gradient statis-
tics have received much attention. Natural images often
consist of smooth regions with abrupt edges, leading to a
heavy-tailed gradient profile. We can parameterize heavy-
tailed gradient statistics with a generalized Gaussian distri-
bution or a mixture of Gaussians. Prior works hand-select
parameters for the model distribution, and fix them for the
entire image, imposing the same image prior everywhere
[10, 17, 23]. Unfortunately, different textures have differ-
ent gradient statistics even within a single image, therefore
imposing a single image prior for the entire image is inap-
propriate (Figure1).

We introduce an algorithm that adapts the image prior to
both low-level local structures as well as mid-level texture
cues, thereby imposing the correct prior for each texture.1

Adapting the image prior to the image content improves the
quality of restored images.

1Strictly speaking, an estimate of image statistics made after examin-
ing the image is no longer a “prior” probability. But the fitted gradient
distributions play the same role as an image prior in image reconstruction
equations, and we keep that terminology.
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Figure 1. The colored gradient profiles correspond to the region
with the same color mask. The steered gradient profile is spatially
variant in most natural images. Therefore, the image prior should
adapt to the image content. Insets illustrate how steered gradients
adapt to local structures.

2. Related work
Image prior research revolves around finding a good im-

age transform or basis functions such that the transformed
image exhibits characteristics distinct from unnatural im-
ages. Transforms derived from signal processing have been
exploited in the past, including the Fourier transform [12],
the wavelet transform [28], the curvelet transform [6], and
the contourlet transform [8].

Basis functions learned from natural images have also
been introduced. Most techniques learn filters that lie in the
null-space of the natural image manifold [20, 30, 31, 32].
Aharon et al. [1] learns a vocabulary from which a natu-
ral image is composed. However, none of these techniques
adapt the basis functions to the image under analysis.

Edge-preserving smoothing operators do adapt to local
structures while reconstructing images. The anisotropic dif-
fusion operator [5] detects edges, and smoothes along edges
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but not across them. A similar idea appeared in a prob-
abilistic framework called a Gaussian conditional random
field [26]. A bilateral filter [27] is also closely related to
anisotropic operators. Elad [9] and Barash [2] discuss rela-
tionships between edge-preserving operators.

Some image models adapt to edge orientations as well as
magnitudes. Hammondet al. [13] present a Gaussian scale
mixture model that captures the statistics of gradients adap-
tively steered in the dominant orientation in image patches.
Rothet al. [21] present a random field model that adapts to
the oriented structures. Bennettet al. [3] and Joshiet al. [14]
exploit a prior on colors: an observation that there are two
dominant colors in a small window.

Adapting the image prior to textural characteristics was
investigated for gray-scale images consisting of a single
texture [23]. Bishop et al. [4] present a variational im-
age restoration framework that breaks an image into square
blocks and adapts the image prior to each block indepen-
dently (i.e. the image prior is fixed within the block). How-
ever, Bishopet al. [4] do not address issues with estimating
the image prior at texture boundaries.

3. Image characteristics

We analyze the statistics of gradients adaptively steered
in the dominant local orientation of an imagex. Rothet al.
[21] observe that the gradient profile of orthogonal gradi-
ents∇ox is typically of higher variance compared to that of
aligned gradients∇ax, and propose imposing different pri-
ors on∇ox and∇ax. We show that different textures within
the same image also have distinct gradient profiles.

We parameterize the gradient profile using a generalized
Gaussian distribution:

p(∇x) =
γλ( 1

γ
)

2Γ( 1
γ
)

exp(−λ‖∇x‖γ) (1)

whereΓ is a Gamma function, andγ, λ are the shape pa-
rameters.γ determines the peakiness andλ determines the
width of a distribution. We assume that∇ox and∇ax are
independent:p(∇ox,∇ax) = p(∇ox)p(∇ax).

3.1. Spatially variant gradient statistics

The local gradient statistics can be different from the
global gradient statistics. Figure1 shows the gradient statis-
tics of the colored regions. Two phenomena are responsible
for the spatially variant gradient statistics: the material and
the viewing distance. For example, a building is noticeably
more piecewise smooth than a gravel path due to material
properties, whereas the same gravel path can exhibit differ-
ent gradient statistics depending on the viewing distance.To
account for the spatially variant gradient statistics, we pro-
pose adjusting the image prior locally.
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Figure 2. The distribution ofγ, ln(λ) for ∇ox,∇ax in natural im-
ages. While the density is the highest aroundγ = 0.5, the density
tails off slowly with significant density aroundγ = 2. We show, as
insets, some patches from Figure1 that are representative of differ-
entγ, ln(λ).

3.2. The distribution of γ, λ in natural images

Different textures give rise to different gradient profiles
and thus differentγ, λ. We study the distribution of the
shape parametersγ, λ in natural images. We sample∼
110, 000 patches of size41 × 41 from 500 high quality nat-
ural images. We fit the gradient profile from each patch to
a generalized Gaussian distribution to associate each patch
with γ, λ. We fit the distribution by searching forγ, λ that
minimize the Kullback-Leibler (KL) divergence between
the empirical gradient distribution and the model distribu-
tion p, which is equivalent to minimizing the negative log-
likelihood of the model distribution evaluated over the gra-
dient samples:

[γ̃, λ̃] = argmin
γ,λ

{

−
1

N

N
∑

i=1

ln (p(∇xi))

}

(2)

Figure2shows the Parzen-window fit to sampledγ̃, ln(λ̃)
for ∇ox,∇ax. For orthogonal gradients∇ox, there exists a
large cluster nearγ = 0.5, ln(λ) = 2. This cluster corre-
sponds to patches from a smooth region with abrupt edges or
a region near texture boundaries. This observation supports
the dead leaves image model – an image is a collage of over-
lapping instances [16, 19]. However, we also observe a sig-
nificant density even whenγ is greater than1. Samples near
γ = 2 with largeλ correspond to flat regions such as sky,
and samples nearγ = 2 with smallλ correspond to fractal-
like textures such as tree leaves or grass. We observe sim-
ilar characteristics for aligned gradients∇ax as well. The
distribution of shape parameters suggests that a significant
portion of natural images is not piecewise smooth, which
justifies adapting the image prior to the image content.

4. Adapting the image prior

The goal of this paper is to identify the correct image
prior (i.e. shape parameters of a generalized Gaussian dis-
tribution) for each pixel in the image. One way to identify
the image prior is to fit gradients from every sliding win-
dow to a generalized Gaussian distribution (Eq2), but the



required computation would be overwhelming. We intro-
duce a regression-based method to estimate the image prior.

4.1. Image model

Let y be an observed degraded image,k be a blur kernel
(a point-spread function or a PSF), andx be a latent image.
Image degradation is modeled as a convolution process:

y = k ⊗ x+ n (3)

where⊗ is a convolution operator, andn is an observation
noise. The goal of a (non-blind) image restoration problem
is to recover a clean imagex from a degraded observation
y given a blur kernelk and a standard deviation of noise
η, both of which can be estimated through other techniques
[10, 18].

We introduce a conditional random field (CRF) model to
incorporate texture variations within the image restoration
framework. Typically, a CRF restoration model can be ex-
pressed as follows:

p(x|y, k, η) =
1

M

∏

i

φy(x; yi, k, η)φx(x) (4)

whereM is a partition function andi is a pixel index.φy

is derived from the observation process Eq3; φx from the
assumed image prior:

φy(x; yi, k, η) ∝ exp(−
(yi − (k ⊗ x)i)

2

2η2
) (5)

φx(x) ∝ exp(−λ‖∇x‖γ) (6)

To model the spatially variant gradient statistics, we in-
troduce an additional hidden variablez, calledtexture, to the
conventional CRF model.z controls the shape parameters of
the image prior:

p(x, z|y, k, η) =
1

M

∏

i

φy(x; yi, k, η)φx,z(x, z) (7)

whereφx,z(x, z) ∝ exp(−λ(z)‖∇x‖γ(z)). We modelz as a
continuous variable since the distribution of[γ, λ] is heavy-
tailed and does not form tight clusters (Figure2).

We maximizep(x|y, k, η) to estimate a clean imagêx.
To do so, we use a Laplace approximation around the mode
ẑ to approximatep(x|y, k, η):

p(x|y, k, η) =

∫

z

p(x, z|y, k, η)dz ≈ p(x, ẑ|y, k, η) (8)

Section4.2discusses how we estimateẑ for each pixel.

4.2. Estimating the textureẑ

A notable characteristic of a zero-mean generalized
Gaussian distribution is that the variancev and the fourth
momentf completely determine the shape parameters[γ, λ]
[24]:
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Figure 3. The local variance and fourth moments of gradientscom-
puted from the deconvolved, down-sampled image of Figure1 are
closely correlated with those of the down-sampledoriginal image.

v =
Γ(3/γ)

λ
2

γ Γ(1/γ)
, f =

Γ(5/γ)

λ
4

γ Γ(1/γ)
(9)

To take advantage of these relationships, we define the local
texture around a pixeli, ẑi, as a two dimensional vector. The
first dimension is the variancevi of gradients in the neigh-
borhood of a pixeli, and the second dimension is the fourth
momentfi of gradients in the neighborhood of a pixeli:

ẑi = [vi(∇x), fi(∇x)] (10)

Qualitatively, the variance of gradientsvi(∇x) encodes the
width of the distribution, and the fourth momentfi(∇x) en-
codes the peakiness of the distribution. Note that we can
easily computevi, fi by convolving the gradient image with
a window that defines the neighborhood. We use a Gaussian
window with a 4-pixel standard deviation.

Estimating the texture ẑ from the observation y The
texture ẑ should be estimated from the sharp imagex we
wish to reconstruct, butx is not available when estimat-
ing ẑ. We address this issue by estimating the textureẑ
from an image reconstructed using a spatially invariant im-
age prior. We hand-select the spatially invariant prior with
a weak gradient penalty so that textures are reasonably re-
stored: [γo = 0.8, λo = 6.5], [γa = 0.6, λa = 6.5]. A
caveat is that the fixed prior deconvolution may contami-
nate the gradient profile of the reconstructed image, which
may induce texture estimation error. To reduce such decon-
volution noise, we down-sample the deconvolved image by
a factor of 2 in both dimensions before estimating the tex-
ture ẑ. The gradient profile of natural images is often scale
invariant due to fractal properties of textures and piecewise
smooth properties of surfaces [16, 19], whereas that of the
deconvolution noise tends to be scale variant. Therefore, the
textureẑ estimated from the down-sampled deconvolved im-
age better resembles the texture of the original sharp image.

4.3. Estimating the shape parametersγ, λ from ẑ

We could numerically invert Eq9 to directly compute the
shape parameters[γ, λ] from the variance and fourth mo-
ment estimates [24]. However, a numerical inversion is com-
putationally expensive and is sensitive to noise. We instead
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Figure 4. We regularize the estimated shape parameters using a
GCRF such that the texture transition mostly occurs at the texture
boundary. We model the observation noise in the GCRF as the
varianceof the variance and fourth moments estimated from two
Gaussian windows with different standard deviations – 2-pixel and
4-pixel, as shown in (b). This reduces the shape parameter esti-
mation error at texture boundaries, as shown in (c) (comparegreen
and red curves).

use a kernel regressor that maps the log of the textureln(ẑ)
to shape parameters[γ, ln(λ)].

The regressor should learn the mapping from the tex-
tureẑ of the down-sampleddeconvolvedimage to shape pa-
rameters in order to account for any residual deconvolution
noise in the estimated texturêz. Since the deconvolved im-
age, thuŝz, depends on the blur kernel and the noise level,
we would have to train regressors discriminatively for each
degradation scenario, which is intractable. However, we em-
pirically observe in Figure3 that the variance and fourth mo-
ment of the deconvolved, down-sampled image are similar
to those of the down-sampled original image. Therefore, we
learn asingle regressor that maps the variance and fourth
moment of the down-sampledoriginal image to the shape
parameters, and use it to estimate the shape parameters from
the down-sampled deconvolved image.

To learn the regression function, we sample125, 000
patches of size17× 17 pixels from500 high quality natural
images. We fit the gradient profile of each patch to a gen-
eralized Gaussian distribution, and associate each fit with
the variance and fourth moment of gradients in the down-
sampled version of each patch (9 × 9 pixels). We use the
collected data to learn the mapping from[ln(v), ln(f)] to
[γ, ln(λ)] using LibSVM [7]. We use a 10-fold cross valida-
tion technique to avoid over-fitting.
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Figure 5. The shape parameters for orthogonal gradients, estimated
from the down-sampled deconvolved image of Figure1 (recon-
structed from an image degraded with 5% noise and the blur in
Figure7) and the down-sampled original image. The shape param-
eters estimated from the deconvolved image are similar to those of
the original image.

4.4. Handling texture boundaries

If multiple textures appear within a single window, the
estimated shape prior can be inaccurate. Suppose we want
to estimate the image prior for a 1-dimensional slice of an
image (Figure4(a)). Ideally, we should recover two regions
with distinct shape parameters that abut each other via a thin
band of shape parameters corresponding to an edge. How-
ever, the estimated image prior becomes “sparse” (i.e. small
γ) near the texture boundary even if pixels do not correspond
to an edge (the green curve in Figure4(c)). The use of a
finite-size window for computingv andf causes this issue.

To recover shape parameters near texture boundaries, we
regularize the estimated shape parameters using a Gaussian
conditional random field (GCRF) [26]. Essentially, we want
to smooth shape parameters only near texture boundaries. A
notable characteristic at texture boundaries is thatẑ’s esti-
mated from two different window sizes tend to be different
from each other: while a small window spans a homogenous
texture, a larger window could span two different textures,
generating different̂z’s. We leverage this characteristic to
smooth only near texture boundaries by defining the obser-
vation noise level in GCRF as amean varianceof the vari-
ancev and of the fourth momentf estimated from windows
of two different sizes (Gaussian windows with 2-pixel and
4-pixel standard deviations.) If the variance of these esti-
mates is large, the central pixel is likely to be near a texture
boundary, thus we smooth the shape parameter at the central
pixel. Appendix A discusses the GCRF model in detail. Fig-
ure 4(c) shows the estimated shape parameters before and
after regularization along with the estimated GCRF observa-
tion noise. After regularization, two textures are separated
by a small band of sparse image prior corresponding to an
edge.

Figure 5 shows the estimated shape parameters for or-



thogonal gradients of Figure1. In the top row of Figure5,
the parameters are estimated from the image reconstructed
from 5% noise and the blur in Figure7. We observe that the
estimated prior in the tree region is close to Gaussian (i.e.
γ = 2 ∼ 3), whereas the estimated prior in the building re-
gion is sparse (i.e.γ < 1). The estimated shape parameters
are similar to parameters estimated from the down-sampled,
original image (the bottom row of Figure5). This supports
the claim that shape parameters estimated from a degraded
input image reasonably accurate.

4.5. Implementation details

We minimize the negative log-posterior to reconstruct a
clean imagêx:

x̂ = argmin
x

{
(y − k ⊗ x)2

2η2
(11)

+ w

N
∑

i=1

(λo(ẑi)‖∇ox(i)‖
γo(ẑi) + λa(ẑi)‖∇x‖

γa(ẑi))}

where[γo, λo], [γa, λa] are estimated parameters for orthog-
onal and aligned gradients, respectively, andw is a weight-
ing term that controls the gradient penalty.w = 0.025 in all
examples. We minimize Eq11using an iterative reweighted
least squares algorithm [17, 25].

5. Experimental results

We evaluate the performance of the content-aware image
prior for deblurring and denoising tasks. We compare our
results to those reconstructed using a sparse unsteered gradi-
ent prior [17] and a sparse steered gradient prior [21], using
peak signal-to-noise ratio (PSNR) and gray-scale structural
similarity (SSIM) [29] as quality metrics. We augmented
the steerable random fields [21], which introduced denois-
ing and image inpainting as applications, to perform decon-
volution using the sparse steered gradient prior. In all exper-
iments, we use the first order and the second order gradient
filters [11]. We can augment these algorithms using higher
order gradient filters to improve reconstruction qualities, but
it is not considered in this work. The test set consists of 21
high quality images downloaded from LabelMe [22] with
enough texture variations within each image.

Non-blind deconvolution The goal of non-blind deconvo-
lution is to reconstruct a sharp image from a blurred, noisy
image given a blur kernel and a noise level. We gener-
ate our test set by blurring images with the kernel shown
in Figure7, and adding5% noise to blurred images. Fig-
ure6 shows the measured PSNR and SSIM for different de-
convolution methods. The content-aware prior deconvolu-
tion method performs favorably compared to the competing
methods, both in terms of PSNR and SSIM. The benefit of
using a spatially variant prior is more pronounced for images
with large textured regions. If the image consists primarily
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Figure 6. Image deconvolution results : PSNR and SSIM. Mean
PSNR: unsteered gradient prior – 26.45 dB, steered gradientprior
– 26.33 dB,content-aware prior – 27.11 dB. Mean SSIM: un-
steered gradient prior – 0.937, steered gradient prior – 0.940,
content-aware prior – 0.951.

of piecewise smooth objects such as buildings, the differ-
ence between the content-aware image prior and others is
minor. Figure7 compares the visual quality of images re-
constructed using different priors. We observe that textured
regions are best reconstructed using the content-aware im-
age prior, illustrating the benefit of adapting the image prior
to textures.

Denoising The goal of denoising is to reconstruct a sharp
image from a noisy observation given a noise level. We con-
sider reconstructing clean images from degraded images at
two noise levels:5% and10%. Figure8 shows the mea-
sured PSNR and SSIM for the denoising task. When the
noise level is low (5%), the content-aware prior reconstructs
images with lower PSNR compared to competing methods.
One explanation is that the content-aware prior may not re-
move all the noise in textured regions (such as trees) because
the gradient statistics of noise is similar to that of the under-
lying texture. Such noise, however, does not disturb the vi-
sual quality of textured regions. The SSIM measure, which
is better correlated with the perceptual quality [29], shows
that the content-aware image prior performs slightly worse,
if not comparably, compared to other methods at a5% noise
level. It’s worth noting that when the noise level is low, the
observation term is strong so that reconstructed images do
not depend heavily on the image prior. The top row of Fig-
ure9 shows that at a5% noise level, reconstructed images
are visually similar.

When the noise level is high (10%), SSIM clearly fa-
vors images reconstructed using the content-aware prior. In
this case, the observation term is weak, thus the image prior
plays an important role in the quality of reconstructed im-
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Figure 7. Adapting the image prior to textures leads to better reconstructions. The red box denotes the cropped region.
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Figure 8. Image denoising results : PSNR and SSIM. At5% noise = Mean PSNR: unsteered gradient prior – 32.53 dB, steered gradient prior
– 32.74 dB,content-aware prior – 31.42 dB. Mean SSIM: unsteered gradient prior – 0.984, steered gradient prior – 0.984,content-aware
prior – 0.982. At 10% noise = Mean PSNR: unsteered gradient prior – 28.54 dB, steered gradient prior – 28.43 dB,content-aware prior
– 28.52 dB. Mean SSIM: unsteered gradient prior – 0.950, steered gradient prior – 0.953,content-aware prior – 0.959

ages. Therefore, the performance benefit from using the
content-aware prior is more pronounced. The bottom row of
Figure9 shows denoising results at a10% noise level, sup-
porting our claim that the content-aware image prior gener-
ates more visually pleasing textures.

Figure10 shows the result of deconvolving a real blurry
image captured with a handheld camera. We estimate the
blur kernel using the algorithm in Ferguset al. [10]. Again,
textured regions are better reconstructed using our method.

5.1. User study
We conducted a user study on Amazon Mechanical Turk

to compare the visual quality of the reconstructed images.
We evaluated 5 randomly selected images for each degra-
dation scenario considered above. Each user views two im-
ages, one reconstructed using the content-aware prior and
another reconstructed using either the unsteered gradient
prior or the steered gradient prior. The user selects the visu-
ally pleasing one of the two, or selects“There is no differ-
ence” option. We cropped each test image to500 × 350
pixels to ensure that the users view both images without
scrolling. We did not refer to restored images while select-
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Figure 11. User study results. The blue region corresponds to the
fraction of users that favored our reconstructions for eachdegra-
dation scenario. At a low degradation level, users do not prefer
one method over another, but as the level of degradation increases,
users clearly favor the content-aware image prior.

ing crop regions in order to minimize bias.

We gathered about 20 user opinions for each comparison.
In Figure11, we show the average user preference in each
degradation scenario. Users did not have a particular pref-
erence when the degradation was small (e.g.5% noise), but
at a high image degradation level users clearly favored the
content-aware image prior over others.



Noisy image Unsteered gradient prior Content-aware priorSteered gradient prior

PSNR : 30.74dB, SSIM: 0.995 PSNR : 30.85dB, SSIM: 0.995 PSNR : 29.27dB, SSIM: 0.995

5
%

 n
o

is
e

1
0

%
 n

o
is

e

PSNR : 29.49dB, SSIM: 0.957 PSNR : 29.33dB, SSIM: 0.960 PSNR : 29.41dB, SSIM: 0.965

Original image

Figure 9. The visual comparisons of denoised images. The redbox denotes the cropped region. At5% noise level, while the PSNR of
our result is lower than those of competing algorithms, visually the difference is imperceptible. At10% noise level, content-aware prior
outperforms others in terms of both the PSNR and the SSIM, andis more visually pleasing.

Sparse unsteered gradient prior Sparse steered gradient prior Content-aware priorBlurry input image

Figure 10. The deconvolution of a blurred image taken with a hand-held camera. We estimate the blur kernel using Ferguset al. [10]. The
red box denotes the cropped region. The textured region is better reconstructed using the content-aware image prior.

5.2. Discussions
A limitation of our algorithm, which is shared with algo-

rithms using a conditional random field model with hidden
variables [14, 21, 26], is that hidden variables, such as the
magnitude and/or orientation of an edge, or textureness of a
region, are estimated from the degraded input image or the
image restored through other means. Any error from this
preprocessing step induces error in the final result.

Another way to estimate a spatially variant prior is to seg-
ment the image into regions and assume a single prior within
each segment. Unless we segment the image into many
pieces, the estimated prior can be inaccurate. Also, the seg-
mentation may inadvertently generate artificial boundaries
in reconstructed images. Therefore, we estimate a distinct
image prior for each pixel in the image.

6. Conclusion

We have explored the problem of estimating spatially
variant gradient statistics in natural images, and exploited

the estimated gradient statistics to adaptively restore differ-
ent textural characteristics in image restoration tasks. We
show that the content-aware image prior can restore piece-
wise smooth regions without over-smoothing textured re-
gions, improving the visual quality of reconstructed images
as verified through user studies. Adapting to textural charac-
teristics is especially important when the image degradation
is significant.

Appendix A

Gaussian CRF model for[γ, λ] regularization

We regularize the regressor outputs[γ̃, λ̃] using a Gaus-
sian Conditional Random Fields (GCRF). We maximize the
following probability to estimate regularizedγ:

P (γ; γ̃) ∝
∏

i,j∈N(i)

ψ(γ̃i|γi)Ψ(γi, γj) (12)

whereN(i) denotes the neighborhood ofi, ψ is the obser-
vation model andΨ is the neighborhood potential:



ψ(γ̃i|γi) ∝ exp

(

−
(γ̃i − γi)

2

2σ2
l

)

Ψ(γi, γj) ∝ exp

(

−
(γi − γj)

2

2σ2
n(i, j)

)
(13)

We setσl andσn adaptively. We set the varianceσ2
n(i, j)

of the neighboringγ estimatesγi, γj asσ2
n(i, j) = α(x(i)−

x(j))2, wherex is the image andα = 0.01 controls how
smooth the neighboring estimates should be.σn encourages
the discontinuity at strong edges of the imagex [26]. The
observation noiseσ2

l is the average variance of the variance
and fourth moment estimates (for two Gaussian windows
with standard deviation = 2 pixels, 4 pixels). We use the
same GCRF model to regularizeln(λ) with α = 0.001.
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