
102 COMMUNICATIONS OF THE ACM | NOVEMBER 2011 | VOL. 54 | NO. 11

WHAT MAKES AN array of pixel intensities
look like a realistic image? How can
you invent a set of plausible-looking
image values in order to remove noise
or to fill in missing regions of an im-
age? These are problems the vision
and image processing community has
been struggling with for many years.
Many different analytic approaches
have been tried, but they seldom cap-
ture the richness and subtle details
needed to produce realistic images.

To date, the best method to gener-
ate image data has been a surprisingly
simple one: copy image values from
somewhere else. This would seem to
be too restrictive—how could one im-
age patch possibly be a close enough
match to another one to be useful? But
it turns out that small image regions
are essentially reusable parts, appear-
ing, with small changes, many differ-
ent times within an image or a set of
images. If the patch is small enough,
very good estimates of unknown im-
age values can be found by extract-
ing pixels from a patch with similar
neighboring image values. The com-
puter graphics community discovered
this in the late 1990s and early 2000s,
leading to an explosion of texture syn-
thesis papers based on such sample-
based methods.

This paradigm for finding good im-
age values works not just for texture
synthesis, but for many different image
manipulations, too. The approach has
been used for problems ranging from
super-resolution to texture transfer,
filling in, image editing, noise removal,
and object detection. The source of im-
age patches can be other regions of the
image being processed, or other im-
ages. Sample-based image priors are
ubiquitous in modern image process-
ing and image synthesis.

Unfortunately, this powerful ap-
proach for image processing has a se-
rious performance bottleneck: poten-

tially for each pixel to be processed,
one must find the database patch that
is closest to the image data surround-
ing that pixel. With a naive approach,
and searching for matches within the
same image, the search cost can be qua-
dratic in the number of image pixels.

Fortunately, it is seldom the case
that the true nearest neighbor must
be found; a patch that is very similar
to the target patch is often all that’s
needed. This allows for existing fast,
approximate nearest neighbor meth-
ods from the discrete algorithms
community to be used. But while
these methods help quite a bit, they
often don’t help enough, and we are
still left with algorithms that may be
too slow for interactive applications.

Which brings us to the break-
through contributions in the paper
that follows. The authors have devel-
oped an efficient way to find approxi-
mate nearest neighbors for the case of
patches within image data.

Their advance resulted from two
main insights. The first is the ob-
servation, also noted by others, that
the best matches from two spatially
neighboring positions are usually
two spatially neighboring patches
from the database region. This pres-

ents a fast method to guess a match-
ing patch, given the match to the spa-
tial neighbor, but such an approach
can get stuck in solutions that are
only locally optimal. The authors’ fix
to that comes from their second in-
sight, delightfully counterintuitive:
looking for a matching patch at ran-
dom positions in the database region
eventually finds good matches. Their
“patch match” algorithm combines
these approaches—deterministic up-
date of a previous solution while al-
lowing improvements from random
guesses—to give a fast, approximate
nearest neighbor algorithm for image
patches that avoids getting stuck in
bad solutions.

The breakthrough of the algorithm
is its processing speed, which, for the
first time, allows interactive use of
some remarkable image editing algo-
rithms that were previously restricted
to slow, batch processing. The au-
thors applied their algorithm to many
image processing tasks, showing a
broad range of applications.

The paper opens up algorithmic
and theoretical questions. The scaling
behavior with patch size is not known,
nor is the best trade-off known for
many of the choices made by the au-
thors. But the work is having a large
impact in the vision and graphics com-
munities, both for the algorithm itself,
and as an example of a class of algo-
rithms to explore. It is unusual that
commercial success follows so closely
after an academic paper, but that hap-
pened in this case. The patch match
algorithm is behind the release-de-
fining “content-aware fill” feature of
Adobe Photoshop CS5.

William T. Freeman (billf@mit.edu) is a professor of
computer science and Associate Department Head of the
Electrical Engineering and Computer Science Department
at the Massachusetts Institute of Technology, Cambridge,
MA.

© 2011 ACM 0001-0782/11/11 $10.00

Technical Perspective
A Perfect ‘Match’
By William T. Freeman

research highlights

DOI:10.1145/2018396.2018420

The authors
have developed
an efficient way
to find approximate
nearest neighbors for
the case of patches
within image data.

