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Abstract

We develop an integrated, probabilistic model for the
appearance and three-dimensional geometry of cluttered
scenes. Object categories are modeled via distributions
over the 3D location and appearance of visual features. Un-
certainty in the number of object instances depicted in a
particular image is then achieved via a transformed Dirich-
let process. In contrast with image-based approaches to ob-
Jject recognition, we model scale variations as the perspec-
tive projection of objects in different 3D poses. To calibrate
the underlying geometry, we incorporate binocular stereo
images into the training process. A robust likelihood model
accounts for outliers in matched stereo features, allowing
effective learning of 3D object structure from partial 2D
segmentations. Applied to a dataset of office scenes, our
model detects objects at multiple scales via a coarse recon-
struction of the corresponding 3D geometry.

1. Introduction

Detailed geometric models have played an important role
in the design of methods for the detection of particular ob-
jects in cluttered scenes. However, most algorithms for
generic object categorization use a simple 2D pixel repre-
sentation. In discriminative approaches, scale invariance
is often achieved by resizing an image in small steps, and
detecting objects via a “sliding window”. Alternatively,
some part-based models include variables which account
for global scaling of expected feature distances [3], or lo-
cal affine warpings of feature templates [7]. Other methods
discard geometry entirely following an initial stage of fea-
ture extraction [1, 13]. In all cases, scale invariance is based
on transformations of the observed pixels or low—level fea-
tures, and underlying 3D structure is ignored.

While a purely image based approach to object recogni-
tion is sometimes adequate, many applications require more
explicit knowledge about the 3D world. For example, if
robots are to navigate in complex environments and ma-
nipulate objects, they require more than a flat segmenta-
tion of the image pixels into object categories. Motivated

by these challenges, we instead cast object recognition as
a 3D problem, and develop methods which partition esti-
mated 3D structure into object categories.

A few recent models ignore objects, learning direct map-
pings from images to 3D geometry [5, 12,17]. However,
knowledge of the objects present in a scene provides infor-
mation about their expected 3D shape, regularizing the of-
ten ambiguous depth estimates produced by low—level fea-
tures. In addition, geometry provides important cues for
object recognition. To exploit these relationships, we use
binocular stereo training images to train an approximately
calibrated model of multiple objects’ 3D geometry. Us-
ing this model, we achieve scale invariant object recogni-
tion via translations of 3D objects, rather than image trans-
formations. Because we consider objects with predictable
3D structure, we also automatically recover a coarse recon-
struction of the underlying scene depths.

Rather than learning classifiers for isolated objects, we
propose a hierarchical, probabilistic model of multiple ob-
ject scenes [14, 18]. Our approach extends an earlier 2D
scene model based on the transformed Dirichlet process
(TDP) [15]. Dirichlet processes are a flexible tool from
nonparametric Bayesian statistics [2, 11, 16], which we use
to allow uncertainty in the number of object instances de-
picted in each image. Generalizing [15], we automatically
learn part-based descriptions of an a priori unknown set
of visual categories. Previous TDP models also assembled
2D object models in a “jigsaw puzzle” fashion, and thus
assumed images were normalized to a common scale. Ex-
tending the TDP to 3D scenes, we propose a robust stereo
likelihood which captures ambiguities in low—level feature
matching. We then develop Monte Carlo methods which
learn 3D object models from partial stereo segmentations,
and estimate 3D scene structure from monocular images.

We begin in Sec. 2 by introducing our feature represen-
tation, and formulate a robust stereo likelihood function.
Sec. 3 then uses the TDP to develop a generative, part—
based model for 3D feature locations and appearance. In
Sec. 4, we describe a blocked Gibbs sampler which learns
scene geometry from labeled stereo training images. We
conclude in Sec. 5 with results on office scenes.
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Figure 1. Three types of interest operators applied to two office
scenes: Harris—affine corners (left), maximally stable extremal re-
gions (center), and clustered Canny edges (right).

2. Features and Geometry

In Sec. 2.1, we first motivate the three types of features
used to represent training and test images. We then formu-
late the imaging geometry underlying our depth estimates
(Sec. 2.2), and develop a robust likelihood function which
accounts for outliers in matched stereo features (Sec. 2.3).

2.1. Feature Extraction and Representation

Each training or test image is first converted to a set of
regions of interest using three detectors. Harris—affine cor-
ners extract local maxima of orientation energy [10], while
maximally stable extremal regions are derived from a wa-
tershed segmentation algorithm [9].! We also build a set of
straight edge features by dividing Canny edge sequences at
points of high curvature. Fig. 1 illustrates these three re-
gions, showing that they favor complementary aspects of
object appearance. In particular, edge features play a criti-
cal role in modeling textureless objects like desks.

Following several recent papers [1, 13, 14], we use SIFT
descriptors [8] (normalized histograms of orientation en-
ergy) to describe the appearance of each region of interest.
Interest points provide a lower dimensional representation
which focuses on the most repeatable and salient regions,
while SIFT descriptors provide some lighting and viewpoint
invariance. To facilitate learning, we use K-means cluster-
ing to vector quantize the SIFT descriptors from the train-
ing set, producing a dictionary of appearance “words.” As
in [15], we also coarsely encode region shape by dividing
features into three groups (circular, horizontal, or vertical)
prior to quantization. The i*" feature in image j is then de-
scribed by the closest appearance descriptor w;;, and 2D
pixel coordinates (v;-“’i, vé"l) Our current model neglects the
scale at which features are detected.

2.2. Binocular Stereo Matching

Let u = (u®,u¥,u*) denote the world coordinates of a
3D point, where the z-axis has been chosen to align with the
camera’s optical axis. Then, indexing pixels (v*, v¥) from

I'Software provided by the Oxford University Visual Geometry Group:
http://www.robots.ox.ac.uk/~vgg/research/affine/

the optical center, the perspective projection of u equals
wV
v =¢ o ey

where ¢ denotes the magnification, in pixels, corresponding
to the camera’s focal length. Other coordinate systems are
easily accomodated by appropriate transformations.
Training images used in this paper are captured by a cali-
brated stereo camera (the MEGA-D, by Videre Design). As
in recent approaches to sparse wide baseline stereo [9], we
begin by extracting regions of interest in both the left and
right images. For each interest point in the reference (left)
image, we then search for the best matching regions along
the corresponding epipolar line (see Fig. 2). Match qual-
ity is measured via the Euclidean distance between SIFT
descriptors [8]. Let v% denote the disparity, in pixels, cor-
responding to a candidate pair of matching features. Each
match corresponds to some set of world coordinates:
u’ = U—uz u¥ = ﬁuz u® = 52 2)
3 £ vl
Here, D is the baseline distance between cameras (in our
case, 89 mm). Note that we have written the world ©* and
u¥Y in terms of the unknown depth v?, rather than the dis-
parity v?. This form emphasizes our primary interest in the
underlying 3D geometry, and is more easily incorporated
with our generative model of scene structure (see Sec. 4).
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2.3. Robust Disparity Likelihoods

Because we represent images by a sparse set of interest
regions, we must only estimate scene depths at these points.
While this problem is simpler than the estimation of dense
depth maps, it is still ill-posed based solely on local feature
correspondences. In particular, repetitive scene structures
and occlusion effects near object boundaries often lead to
inaccurate disparity estimates for some features. In Fig. 2,
we illustrate the noisy depth estimates produced by local
matching in stereo images of office scenes. Wide baseline
stereo algorithms typically employ a geometric validation
stage to discard such outliers [9]. This approach would
work poorly for our application, however, because features
near object boundaries are often the most informative for
recognition tasks. We instead propose a probabilistic model
which robustly converts approximate disparity matches to
depth distributions. The learning algorithms developed in
Sec. 4 then use geometric models of objects to impose a
scene structure which resolves local ambiguities.

Consider a feature which has candidate stereo matches
at C different disparities {9¢}<_;, and let ¥ denote the
matching score (distance between SIFT descriptors) for o<
Features with no matches induce an uniformative likelihood
on the underlying scene depth v*. Otherwise, at most one
match can correspond to the true scene depth, and the others
must be outliers. Let a be an unobserved random variable
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Figure 2. An office scene depicting a computer screen, desk, and bookshelf (color—coded, left). For three features, we show matches along
epipolar lines in the right stereo image, and corresponding depth likelihoods. Depth estimates (right) are independently chosen for each
feature. In the frontal view, close features are green and distant red. The overhead view colors features like their associated object.

indicating which of the C' matches is not an outlier, and take
a = 0 if all matches are outliers. Neglecting possible cor-
relations due to scene structure, we assume that inlier and
outlier matches are independently sampled as

C
p({od, o3y [ w?) =D p ({0,053 a | w)
a=0
C C
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Let e denote the prior probability that all observations are
outliers (& = 0), so that all other outlier hypotheses have
equal probability (1 — €)/C. We assume that correct
matches are corrupted by Gaussian noise, while outlier dis-
parities are sampled uniformly over a range determined by
the camera geometry:
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We also assign the inlier and outlier matching scores v2 log—
normal densities with differing mean and variance.

To estimate the parameters of this likelihood function,
we collected disparity matches for 16,000 monitor and
bookshelf features from the stereo training images used in
Sec. 5. Because each selected object was approximately
orthogonal to the optical axis, the median depth of each in-
stance’s raw stereo matches provides an accurate estimate of
true depth for all features. We may then compute maximum
likelihood parameter estimates by extending standard EM
updates for mixture models [4]. The E—step averages over
possible outlier hypotheses a, producing a lower bound on
the likelihood which is maximized in the M—step.

From our training set, we estimated the probability that
all matches are outliers to be ¢ = 0.22, and the noise level
for correct matches as o4 = 2.4 pixels. Fig. 2 illustrates
depth likelihoods correponding to three sample features.
Intuitively, matches with small disparities lead to greater
depth uncertainty, due to the inversion induced by the per-
spective projection of eq. (2). When there are many con-
flicting matches, the likelihood becomes uniform.

3. Hierarchical Models for 3D Scenes

In this section, we develop a transformed Dirichlet pro-
cess (TDP) model for multiple object scenes. We begin by
reviewing Dirichlet processes (Sec. 3.1), and previous work
describing spatial data via transformations (Sec. 3.2). In
Sec. 3.3, we extend these approaches to learn part-based
models of 3D object structure and appearance.

3.1. Counting with Dirichlet Processes

Graphical models describe the statistical structure of a
fixed set of random variables. Many machine vision appli-
cations, however, must deal with uncertainty in the number
of parts composing a particular object, or objects present in
a particular scene. We address this issue using the Dirichlet
process (DP), a flexible nonparametric prior which has been
widely applied in Bayesian statistics [2, 11].

Consider a collection of spatial data, such as 3D points
extracted from a visual scene. Let § = (i, A) denote the
mean and covariance parameters of a Gaussian distribution,
and H be a prior measure on the space of Gaussian distri-
butions ©. A Dirichlet process with concentration param-
eter v, denoted by DP(~, H), then defines a prior distribu-
tion over infinite Gaussian mixtures G ~ DP (v, H):

G(0) = B:5(0,0,) 0o ~ H (6)
=1
-1
Be=p T8, 8. ~Beta(l,7) (7)
m=1

This stick—breaking construction [16] defines the mixture
weights 3 = (01, o, . . .) using beta random variables. We
use B ~ GEM(y) to denote this process. For moderate
concentrations -, all but a small random subset of the mix-
ture weights will be nearly zero.

Given G ~ DP(v, H), each observation u, is generated
by independently sampling mean and covariance parame-
ters §; ~ G, and then choosing u; ~ A/(6;) from the corre-
sponding Gaussian:

p(u; | B,601,65,...) =Y BeN(u;[6:) (8

=1
More generally, © could parameterize any family with a
complementary prior measure H. The stick—breaking pro-



cess induces a clustering bias, and leads to efficient Monte
Carlo methods which automatically learn the number of
clusters underlying a particular set of observations [2, 11].

3.2. Transformed Dirichlet Processes

As we demonstrate later, the DP mixture of eq. (8) leads
to effective part—based models for the internal geometry of
rigid objects. More generally, we expect multiple object
scenes to share local features, but differ significantly in their
global spatial structure. The hierarchical Dirichlet process
(HDP) [16] was developed to address the related problem
of partially sharing topics among text documents. Applied
to spatial data, the HDP chooses a globally shared mixture
Go ~ DP(v, H) as in egs. (6, 7). Each image is then as-
signed a mixture G; ~ DP(«, Gg), reusing the same Gaus-
sian clusters 6, in different proportions:

Gi(0) = me6(6,60) m ~DP(a,8) (9)

(=1

The global mixture weights 3 determine the expected clus-
ter proportions 7;, while « specifies the variability from im-
age to image. This construction assumes that images differ
only in the proportion of observed features for each spatial
cluster, rather than the location and shape of those clusters.
Because objects are not observed in consistent locations rel-
ative to the camera, a standard HDP would thus not ade-
quately generalize to novel visual scenes.

Motivated by these difficulties, we consider a family of
transformations 7(0; p) of the global mixture components
6, indexed by p. For spatial data, we associate these trans-
forms [6] with shifts of the mean location of global clusters:

T(u, Asp) = (1 +p, A) (10)
The transformed Dirichlet process (TDP) [15] generalizes
the HDP to more flexibly share spatial structure among im-
ages. The TDP is derived from distributions over transfor-
mations q(p | ¢), indexed by ¢ € ®. Let R denote a prior
measure on the space of transformation distributions &,
which we later constrain to be zero—mean Gaussians.

We begin by augmenting the Dirichlet process stick—
breaking construction of eq. (7) to define a global measure
describing both parameters ¢ and transformations p:

Goll.p) =S 850, 00400 160

=t be~ R
As before, 3 ~ GEM(). Note that each cluster 6, has a
different transformation distribution ¢(p | ¢¢). We then in-
dependently sample G; ~ DP(«, Gy) for each image. Be-
cause samples from DPs are discrete with probability one,
this joint measure can be written as

Gj(0,p) =Y med(0,00) lz >\jet5(/)70jet)] (12)
(=1 t=1

Figure 3. TDP model for 3D scenes (left), and cartoon illustration
of the generative process (right). Global mixture G describes the
expected frequency and location of visual categories, whose in-
ternal structure is represented by part-based appearance models
{F;}72,. Each image mixture GG, instantiates a randomly chosen
set of objects at transformed locations p. 3D feature positions u;
are sampled from transformed parameters 7 (éji; ﬁji) correspond-
ing to parts of object 0;;. The camera observes projections v;; of
these features, with part-dependent appearance wj;.

where >, Ajee = 1. As Go(6, p) only has support at a dis-
crete set of cluster parameters, G; (6, p) will associate many
different transformations p,¢; with each distinct 0,.

In the simplest case, each 3D feature in image j is now

generated by sampling (6, pj;) ~ Gj, and then choosing
wj; ~ N(7(0;i; pji)) from a transformed Gaussian [15].
Intuitively, global mixture components 6, define object ge-
ometry in a “canonical” coordinate frame, while the ran-
dom set of transformations p determine the object instances
within a particular scene. Critically, the TDP allows un-
certainty in the number of objects depicted by each image.
For instance, in the toy example of Fig. 3, the green object
appears twice, while the blue does not appear at all.

3.3. Part-Based Object Appearance Models

Applied directly, the TDP model of eqgs. (11, 12) de-
scribes the geometry of each global object cluster by a sin-
gle Gaussian. This representation poorly captures the com-
plex structure of many real objects, and does not model lo-
cal variations in object appearance. In this section, we show
how Dirichlet processes may also be adapted to learn richer,



part-based descriptions of visual categories.

Extending the DP mixture of eq. (8), we associate parts
with clusters of features that have distinctive appearances
wj; and 3D positions u ;. Each part 0, = (et ok, Nok)
of object ¢ is then defined by a Gaussian position distribu-
tion NV (puex, Aex), and a multinomial appearance distribu-
tion 7¢%. Letting H denote a prior measure on part param-
eters Oy, € O, we take F;, ~ DP(k, H) as the potentially
infinite set of parts underlying the ¢*" category:

> &y ~ GEM(H)

9) = ZEM(S(G,HM) Hgk ~H (13)
Generalizing the earlier TDP construction, we allow in-
finitely many potential visual object categories o, and define
a prior on their probabilities and associated transformations:

Golo,p) = 3650, 0t | 6 © SN 1y
=t e~ R
Finally, each image is based on a set of randomly trans-
formed objects G; ~ DP(«, Gy), analogously to eq. (12).

As illustrated in Fig. 3, given these infinite discrete mea-
sures, the i'" feature in image j is independently sampled
in three stages. First, a visual category 0;; and transforma-
tion p;; are chosen from Gj, selecting a particular object
instance. Second, parameters (7;i, fiji, Aji) = ;i ~ Fy,,
corresponding to one of that objects’ parts are selected, and
a 3D feature position w;; ~ N (7(f;i, Aji; pji)) sampled
relative to that instance’ s posmon Finally, we observe a
2D feature with appearance w;; ~ j;;, and position v;; de-
termined by the perspective projection of eq. (1).

The hierarchical, TDP scene model of Fig. 3 employs
three different stick—breaking processes, allowing uncer-
tainty in the number of visual categories (GEM(vy)), parts
composing each category (GEM(k)), and object instances
depicted in each image (GEM(«)). It thus generalizes the
parametric model of [14], which assumed fixed, known sets
of parts and objects. In the limit as k — 0, each category
uses a single part, and we recover a 3D extension of [15].

4. Learning Object Geometry and Appearance

We now describe a Gibbs sampling algorithm for learn-
ing our 3D TDP scene model’s parameters from training
data, extending related methods developed for other Dirich-
let process models [2, 11, 15, 16]. For each observed feature
(wys, vﬂ) we resample the corresponding 3D depth u7;, as
well as the assignments (t;;, k;;) of that feature to object
instances ¢ and parts k. Then, for each instance ¢ in im-
age j, we jointly resample assignments o;; to visual cate-
gories with corresponding transformations p;; and part as-
signments {k;; | t;; = t}. Iterating these steps, we approx-
imately sample from the model’s posterior distribution over
scene interpretations, simultaneously recognizing objects
and reconstructing 3D geometry. For simplicity, Sec. 4.1

and 4.2 assume fixed values for the parameters of parts 6
and transformations ¢; we discuss their learning in Sec. 4.3.

4.1. Inferring Feature Depths

Intuitively, the most likely depth u3; for a particular fea-
ture is strongly dependent on the 3D object instance ¢ ;, and
corresponding part kj;, generating that feature. For ade-
quate convergence of the Gibbs sampler, we thus employ
blocked sampling updates of (Z;;, kji, u3;). Let t,;; denote
all instance assignments except t;;, and define k. ;; simi-
larly. The Markov properties of the TDP then imply that

p(tji =t kji = k,ul; | v, w66, Kyis 0, p, 0)
ocp (t]tyi)p (k| Ky, §,0) 0o,k (wji)
c d
XD (/Ufiav;'/pu;i | 90jtkapjt)p (vjz | ’u’jZ)

The first term corresponds to the prior clustering bias of the
Dirichlet process [2, 11, 16], which takes a convenient form:

(i | i) o Z

Here, N ﬁ denotes the number of other features currently
assigned to each of the T} existing object instances, and ¢
allows for the creation of new object instances. Similarly,
the second term encodes the part clustering bias of eq. (13):

15)

(tjir t) + ad(ti, 1) (16)

p(kji [ tji =t,050 = £,k ji, i, 0\jt)
o ZBH}& (kji, k) + K0 (kji k) (17)

In this case, B[k,i denotes the number of other features as-
signed to the K, current parts of object {. Computation-
ally, we cache these statistics in a dynamically resized list
of instantiated parts [2, 11]. The infinitely many equivalent,
unoccupied parts are then tractably represented by k.

The appearance likelihood 7, ;% (w;;) of eq. (15) is di-
rectly determined by the chosen part k;; of the visual cat-
egory associated with instance t;;. However, the position
likelihood for feature (v};, ﬂ) is complicated by the imag-
ing process. In particular, each candidate depth u7; selects a
different 3D point vu3, along aray v defined by eq. (1). The
fourth term of eq. (15) is then the probability that the trans-
formed 3D Gaussian N (1,1 + pjt, Mo, k) corresponding
to part k of instance ¢ (see Fig. 3) assigns to this point. Let-
ting fitg, = o,k + pji denote the 3D position of this part,
and conditioning this Gaussian to the projection ray v, we
recover a scaled 1D Gaussian distribution in depth:

p (W | kji = kytji = t,050 =€) oc wieN (w;; Cons Xok)

Xip = 07 Ao XinCor = 0T At i (18)
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Figure 4. Visual object categories learned from stereo images of office scenes containing computer screens (red), desks (green), bookshelves
(blue), and background clutter (black). Covariance ellipses model 3D part geometry, and are positioned at their mean transformed location.
Bar charts show posterior probabilities for all instantiated global categories. Left: Single part TDP, as in Sec. 3.2. We show the seven
visual categories with highest posterior probability (top), and a close—up view of the screen and desk models (bottom). Right: Multiple
part TDP, as in Sec. 3.3. For clarity, we show the most likely parts (those generating 85% of observed features) for the five most frequent
non-background categories (top). The close—up view shows a five—part screen model, and a four—part desk model (bottom).

Note that transformed parts whose mean is farther from the
projection ray are given lower overall weight w,. To evalu-
ate the likelihood of new object instances #, we integrate
over potential transformations p;z, and evaluate eq. (18)
with an appropriately inflated 3D covariance.

The final term of eq. (15) is the depth likelihood corre-
sponding to stereo—based disparity matches. For monocu-
lar images, we jointly resample (%, kji, u3;) by using the
prior clustering bias of egs. (16, 17), and appearance like-
lihood, to reweight the Gaussian mixture of eq. (18). For
stereo training images, we evaluate the likelihood learned
in Sec. 2.3 on a uniformly spaced grid determined by the
largest expected scene geometry. We then evaluate eq. (18)
on the same grid for each candidate instance and part, and
resample from that discrete distribution. Given Z depths,
and T object instances with (on average) K parts, this re-
sampling step requires O(ZT; K) operations.

4.2. Inferring Object Categories

In the second phase of each Gibbs sampling iteration,
we fix feature depths «* and object assignments t, and con-
sider potential reinterpretations of each instance ¢ using a
new global object category o;;. Because parts and trans-
formations are defined with respect to particular categories,
blocked resampling of (0j¢, pj¢, {kji | tji =t}) is neces-
sary. Suppose first that o;; = £ is fixed. Given pj;, part
assignments k;; are conditionally independent:

p (kji =k| Wi, Uji, Lji = t, 050 = 2 k\ﬂvt\]wo\]t)

o< p (k| Kyjis t,0) ner(wii) N (wjy; poew, Aer)  (19)

Here, the first term is as in eq. (17). Alternatively, given
fixed part assignments p;; has a Gaussian posterior:

P (pje [ 0je = €, {kji, g | tji = t})

K,
< Npisoe) [ I N(us

k=1 i|kj;=k

— pjt; tews M) (20)

The Gaussian transformation prior A (¢) is specific to the
visual category (see eq. (14)), while the posterior mean and
covariance follow standard equations [4, 14]. Note that our
use of continuous, Gaussian position densities avoids an ex-
pensive discretization of 3D world coordinates.

For each candidate visual category o;;, we first perform
a small number of auxiliary Gibbs sampling iterations us-
ing eqs. (19, 20). Given the resulting transformations, the
part assignments of eq. (19) may be directly marginalized
to compute the likelihood of 0;;. The stick—breaking con-
struction of eq. (14) also induces a clustering prior:

L

> M 5(05e, ) +76(0j0, ) (21)
£=1
Here, M, [t denotes the number of object instances assigned
to the L current categories, and { indicates a new visual cat-
egory. Combining these terms, we resample o;;, and condi-
tionally choose (p;¢, {kji | t;; = t}) viaegs. (19, 20).

p(0ji | 0yjt) o

4.3. Inferring Part and Transformation Parameters

The preceding sections assumed fixed values for the
parameters 6, = (e, fter, Aex) defining part appearance
and position, as well as category—specific transformation
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Figure 5. ROC curves for the segmentation of features correspond-
ing to computer screens (red), desks (green), and bookshelves
(blue). Using stereo test images, we compare the single and multi-

ple part TDPs of Fig. 4 to a classifier based on feature appearance.

distributions ¢,. Given fixed values for all assignments
(k,t,0), depths u®, and transformations p, parameters
could be independently resampled via standard methods [4].
For efficiency, we instead analytically marginalize these
parameters, replacing all conditional likelihoods by Rao—
Blackwellized predictive likelihoods [11, 16]. These inte-
grals are made tractable by our use of conjugate, normal-
inverse-Wishart distributions for position densities, and a
Dirichlet prior for part appearance densities [4]. Empiri-
cally, the inferred model is fairly insensitive to the hyperpa-
rameters H and R. For greater robustness, we place vague
gamma priors on the DP concentration parameters, and re-
sample them via an auxiliary variable method [2, 16].

5. Analyzing Office Scenes

We consider a dataset of stereo office scenes contain-
ing four labeled objects: computer screens, desks, book-
shelves, and background clutter. With 120 training images
segmented as in Fig. 2, we used the Gibbs sampler of Sec. 4
to learn TDP scene models. Fig. 4 shows visual categories
for the full TDP (Fig. 3), and the simpler single part model
of Sec. 3.2, after 100 sampling iterations. While the sin-
gle part TDP captures coarse geometric relationships, parts
allow more accurate descriptions of object structure. For
example, the screen model defines parts for each of its four
corners. Note that the number of parts associated with each
category is inferred automatically.

During training, we distinguish the four manually la-
beled object categories from the visual categories G dis-
covered by the TDP. We restrict the Gibbs sampler from
assigning different objects to the same visual category, but
multiple visual categories may be used to describe different
forms of a particular object. For example, both models learn
(without supervision) two shapes for bookshelves, one hor-
izontal and the other vertical. Note that our allowance for
transformations causes the TDP to model scaling via 3D
translations, rather than multiple visual categories.

Fig. 6 shows typical test image interpretations for the
part—based TDP scene model. For stereo test images, TDP
depth estimates consistently improve on the raw estimates
of Fig. 2. In addition, as shown by the ROC curves of

Fig. 5, the TDP more accurately segments features into ob-
ject categories than a histogram model based solely on fea-
ture appearance. Parts improve segmentation performance
for monitors, but not for the less structured desk and book-
shelf categories. For monocular test images, we detect mon-
itors at multiple scales, and thus approximately infer scene
geometry via the presence of familiar objects.

6. Discussion

We have developed an integrated, hierarchical model for
the 3D geometry and appearance of multiple object scenes.
Applied to a dataset of office scenes, we show that geometry
improves feature categorization, and that inferred objects
provide coarse depth estimates from monocular images. We
believe that the 3D structure of our generative model will
provide an exciting framework to explore unsupervised ob-
ject discovery, recognition from multiple viewpoints, and
the incorporation of contextual cues.
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