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Abstract
In blind deconvolution one aims to estimate from an in-

put blurred imagey a sharp imagex and an unknown blur
kernelk. Recent research shows that a key to success is
to consider the overall shape of the posterior distribution
p(x, k|y) and not only its mode. This leads to a distinction
between MAPx,k strategies which estimate the mode pair
x, k and often lead to undesired results, and MAPk strate-
gies which select the bestk while marginalizing over all
possiblex images.

The MAPk principle is significantly more robust than
the MAPx,k one, yet, it involves a challenging marginal-
ization over latent images. As a result, MAPk techniques
are considered complicated, and have not been widely ex-
ploited. This paper derives a simple approximated MAPk

algorithm which involves only a modest modification of
common MAPx,k algorithms. We show that MAPk can, in
fact, be optimized easily, with no additional computational
complexity.

1. Introduction
Blind deblurring is the problem of recovering a sharp

version of a blurred input image when the blur parameters
are unknown. Under certain motion types, a blurred input
y can be modeled as convolution of a latent sharp imagex
with a blur kernelk

y = k ⊗ x (1)

where bothx and k are unknown. Since there is an in-
finite set of pairs(x, k) that can explain an input image
y, additional assumptions are required. The common ap-
proach is to utilize prior knowledge about the statistics
of natural images, such as their sparse derivative distribu-
tion [6, 12, 20, 2, 4, 8, 7, 21, 3, 23]. However, the prior itself
is usually not enough, and the estimation strategy should be
chosen with caution.

The direct approach is to look for a MAPx,k estimate,
that is, a pair(x̂, k̂) with maximal a posteriori probability

(x̂, k̂) = arg max log p(x, k|y). (2)

The MAPx,k pair should minimize the convolution error,
and have sparse derivatives. However, as shown by Levin
et al. [15], the total contrast of all derivatives in a blurred
image is usually lower than in a sharp one. As a result, the

MAPx,k score tends to favor the no-blur explanation, for
whichk is a delta kernel andx is the input blurred imagey.
The MAPx,k score does favor sharp signals at the vicinity
of step edges, and thus steering it towards the sharp solution
is usually sensitive to a careful detection of step edges and
the boosting of their contribution.

While a simultaneous MAP estimation of both image
and kernel is ill-posed, estimating the kernel alone is better
conditioned because the number of parameters to estimate
is small relative to the number of image pixels measured
[15]. This leads to MAPk estimation:

k̂ = arg max p(k|y) = arg max

Z

p(x, k|y)dx. (3)

The challenge of the MAPk score is that computingp(k|y)
in Eq. (3) involves a computationally intractable marginal-
ization over all possiblex explanations. The best practi-
cal MAPk algorithm is that of Ferguset al. [6], but this
algorithm is sometimes viewed as challenging to imple-
ment. In general, despite the superior robustness of the
MAPk estimation principle, only a few recent approaches
to blind deconvolution have taken this direction [6, 22, 18],
whereas many research attempts are devoted to the MAPx,k

approach [20, 2, 4, 8, 7, 21, 3, 23].
The main contribution of this paper is to show that an ap-

proximation to MAPk can, in fact, be optimized easily us-
ing a simple modification to MAPx,k algorithms. Similar to
most MAPx,k approaches, we alternate between solving for
the kernel and solving for the image. The critical difference
is that our kernel update system accounts for the covariance
around the current latent image estimate, and not only for
the centralx estimate itself. Furthermore, an efficient ap-
proximation to this covariance can be computed with no
extra computational complexity. We derive this simple al-
gorithm by casting the MAPk problem in the Expectation-
Minimization framework where the latent variable is the
sharp imagex.

We build on the algorithm of Ferguset al. [6], but pro-
vide a significantly simpler derivation. As a result we shed
new light on the success of this algorithm and lead to im-
proved performance.

To isolate the effect of the various algorithmic compo-
nents, we compare experimentally multiple algorithmic ver-
sions. In particular, we show that the use of independentx
andy derivative images, which was originally thought of
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as an approximation to the correct use of a real derivative
field, significantly improves performance. To encourage fol-
low up research, we include ourmatlab implementation.

2. MAPk blind deconvolution
In blind deconvolution, one observes a blurred imagey

which is the convolution of a latent sharp imagex with a
latent blur kernelk, corrupted by measurement noisen:

y = k ⊗ x + n (4)

We denote the number of unknowns inx, k byN, M respec-
tively, where typicallyM ≪ N . Ferguset al. [6], formulate
the problem in derivative space, and consider:

fh⊗y = k⊗ (fh⊗x)+nh, fv ⊗y = k⊗ (fv ⊗x)+nv. (5)

with {fh, fv} = {[−1, 1], [−1, 1]T}. In their formulation,
the “blurred input” is taken asy = [fh ⊗ y; fv ⊗ y], and
one solves for the derivative imagex = [fh ⊗ x; fv ⊗ x],
without enforcing{fh⊗x, fv ⊗x} to integrate into a single
imagex. While ignoring integrability neglects an impor-
tant constraint on the problem, we show that the derivative
representation significantly improves the results in practice.

Our goal is to estimatex andk from the blurred input
y. Since there are many pairsx, k which can explain the
y observation, one should utilize some prior knowledge. A
common natural image prior is to assume that the image
derivatives are sparse. In this article we express the sparse
prior as a mixture ofJ Gaussians (MOG):

p(x) = ΠiΠγρ(fi,γ(x)) (6)

ρ(fi,γ(x)) =
∑

j

πj√
2πσj

e
− 1

2σ2
j

‖fi,γ (x)‖2

(7)

wherefi,γ(x) denotes the output offγ ⊗ x at thei’th pixel.
In the image space formulation (Eq. (4)),{fγ}Γ

γ=1 are a
set of derivative filters. In the derivative space formulation
(Eq. (5)),{fγ} consists of the delta filter.

Most blind deconvolution algorithms use a sparsity prior
on the kernel, and in practice our implementation employs
a weak sparsity prior as well. However, the contribution
of this term is usually small and for the simplicity of the
derivation, we consider here a uniform prior onk and only
enforce all entries ofk to be non negative.

Assuming an i.i.d. Gaussian imaging noise with variance
η2, we can write

p(y|x, k) =
1

`
√

2πη
´N

e
−

‖k⊗x−y‖2

2η2 (8)

whereN is the number of image pixels.
Combining Eqs. (6)–(8) we express

p(y, x, k) = p(y, x|k)p(k) = p(y|x, k)p(x)p(k)

Thus,

− log p(y, x|k) =
‖k ⊗ x − y‖2

2η2
−

X

i,γ

log ρ(fi,γ(x)) + c (9)

wherec denotes a constant1, andp(k) is assumed uniform
and ignored.

The straightforward approach to blind deconvolution is
to search for the MAPx,k solution:

(x̂, k̂)=argmax p(x, k|y)=argmax p(x, y, k) (10)

However, as analyzed by Levinet al. [15], for priors of the
form of Eq. (6), MAPx,k does not provide the expected an-
swer and favors the no blur explanation. Instead, they sug-
gest that since the kernel size is significantly smaller than
the image size, a MAP estimation of the kernel alone is well
conditioned. Thus, one should look for a MAPk estimate,
marginalizing over all latent images:

k̂ = arg max p(k|y) = arg max p(y|k)

p(y|k) =

Z

p(x, y|k)dx.
(11)

However, computing the integral of Eq. (11) is not trivial,
and the remainder of this paper discusses approximation
strategies.

2.1. EM optimization
To optimize the MAPk score, we consider an

Expectation-Maximization framework which treats the la-
tent image as a hidden variable and marginalizes over it. In
a nutshell, this algorithm alternates between two main steps.
In the E-step one solves a non-blind deconvolution problem
and estimates the mean image given the current kernel, with
the covariance around it. In the M-step one solves for the
best kernel given the image. However, it accounts for the
covariance around the image estimate and not only for the
mean image estimate itself. Accounting for the covariance
is the crucial difference distinguishing the EM MAPk ap-
proach from the MAPx,k approach. Formally, the algorithm
is defined as follows:

1. E-step: Setq(x) = p(x|y, k), and computeµ, C, the
mean and covariance ofq(x), which are the mean im-
age given a kernel and the covariance around it.

2. M-step: Findk minimizing

Eq

ˆ

‖k ⊗ x − y‖2
˜

. (12)

As explained below, since Eq. (12) integrates a
quadratic term, the mean and covariance computed in
the E-step are the sufficient statistics ofq(x) required
for that minimization.

The standard EM derivation shows that if the E-step is ex-
act, every step of this algorithm improveslog p(y|k) [9].
The M-step minimization can be done easily, by solving a
quadratic programming problem. This requires knowledge
of the mean and covariance ofq alone and not the full dis-
tribution.

1Through this paper, we overload the variablec to denote any additive
constant independent of the variables of current interest.



Claim 1 Eq. (12) is minimized by the solution to the
quadratic programming problem

min
k

1

2
kT Ākk − b̄T

k k, s.t. k ≥ 0 (13)

where

Āk(i1,i2)=
∑

i µ(i+i1)µ(i+i2) + C(i+i1,i+i2) (14)

b̄k(i1)=
∑

i µ(i+i1)y(i). (15)

Proof: For a fixedx, the convolution error is quadratic ink
and therefore can be written as

‖k ⊗ x − y‖2 = kT Akk − bT
k k (16)

If k is anm×m kernel andM = m2, Ak is anM ×M
matrix representing the covariance of allm×m windows in
x, andbk the correlation withy:

Ak(i1, i2)=
X

i

x(i + i1)x(i + i2), bk(i1)=
X

i

x(i + i1)y(i)

(17)
wherei sums over all image pixels, andi1, i2 are kernel
indexes (in practice these are 2D indexes but we use the
1D vectorized version of the image and kernel). Averaging
Eq. (17) overx values coming from the distributionq(x)
provides Eqs. (14) and (15). Therefore, minimizing Eq. (12)
with respect tok is equivalent to minimizing Eq. (13).

EM MAP k v.s. MAPx,k: MAPx,k algorithms usually al-
ternate between two main steps: 1) setk constant and solve
for the bestx (a non-blind deconvolution problem), and 2)
setx constant and solve for the bestk. The EM algorithm
is not more complicated: finding the mean image in the E-
step is equivalent to solving forx givenk. In the M-step one
solves fork, where the only difference is that solving fork
in Eq. (13) takes into account not only the bestx, but also
the covariance around it. However, this small covariance
term has a crucial effect on the results. Deleting the co-
variance term from Eq. (14) will move us from the desired
MAPk result to the problematic MAPx,k one. We show that
an approximated covariance can be computed efficiently.

2.1.1 The E-step

For general sparse priors, computing the mean and covari-
ance of the distributionq is hard, and below we discuss our
approximation strategy. For simplicity, we start with the
case of a Gaussian prior onx. For a Gaussian prior, the co-
variance can be computed in closed form, resulting in the
Gaussian blind deconvolution algorithm of [16].

E-step under a Gaussian prior: A Gaussian prior onx
can be expressed using Eq. (7) with a single mixture com-
ponent.p(y, x|k) is then Gaussian as well, and Eq. (9) reads

as:

− log p(y, x|k)=
‖k ⊗ x − y‖2

2η2
+

∑

i,γ

‖fi,γ(x)‖2

2σ2
+c

=
1

2
xT Axx − bT

x x + c (18)

wherec denotes an additive constant and:

Ax = 1
η2 T T

k Tk + 1
σ2

∑
γ T T

fγ
Tfγ

(19)

bx = 1
η2 T T

k y (20)

whereTφ denotes a Toeplitz (convolution) matrix with the
filter φ. The conditional distributionp(x|y, k) is also Gaus-
sian, and its mean and covariance can be shown to be:

C = A−1
x µ = Cbx. (21)

This implies thatµ is the solution of the linear system
Axµ = bx, which is essentially a non-blind deconvolution
problem: find an imageµ such that its convolution withk
approximatesy, plus a regularization term on the deriva-
tives. The deconvolution system can be solved efficiently
in the frequency domain. We show in Sec. 3 that this sim-
ple Gaussian prior already provides good results, but sparse
priors can further improve performance.

Approximate E-step using sampling: Unfortunately,
there is no closed-form formula for the mean and covari-
ance under a general sparse prior. One approach is to ap-
proximate these using samples. We tried the MOG sam-
pling algorithm of Levi and Weiss [11, 19]. However, this
sampling algorithm is quite slow. A better option discussed
in the next section, is to consider variational free-energyap-
proximations.

2.2. Variational free energy strategies
Since for a sparse prior the mean and covariance can-

not be computed in closed form, we approximate the condi-
tional distribution with a simpler one using variational op-
timization. The major algorithmic steps are summarized
in Algorithm 1. In practice, this algorithm is very simple
to implement and involves steps which are anyway com-
puted by MAPx,k algorithms. Givenk it solves a non-
blind deconvolution problem, at which a mean latent im-
age estimateµ is computed using iterative reweighted least
squares [13, 14]. In each iteration, one findsµ by solving an
N×N linear systemAxµ = bx. This system seeksµ mini-
mizing the convolution error plus a weighted regularization
term on the derivatives (compare Eq. (19) with Eq. (26)).
The weights are selected to provide a quadratic upper bound
on the MOG negative log likelihood based on the previous
µ solution. This iterative reweighted least squares algorithm
is a standard strategy for findingx in a MAPx,k approach.
The covariance approximation uses the weighted deconvo-
lution systemAx which was already computed anyhow. A



full covariance would be theN×N inverse

C = A−1
x . (22)

However, for efficiency, we show that a diagonal approx-
imation is sufficient. This diagonal approximation can be
computed easily inO(N), by inverting the diagonal ele-
ments ofAx alone

C(i, i) =
1

Ax(i, i)
. (23)

Given µ, C, one employs the M-step described in the
previous section, and solves for the kernel as a quadratic
programming problem. This is again a standard step in
MAPx,k algorithms with the important difference that one
accounts for the covariance and not only the singlex so-
lution. However, including the covariance can be done at
no extra computational complexity. We usually iterate steps
1&2 (solving forx) of Algorithm 1 three times before pro-
ceeding to step3 (solving fork).

For completeness, we provide below a formal derivation
of the variational free-energy algorithm. Similar derivations
can be found in [17, 1]. The reader who is interested in
experimental evaluation can directly read Sec. 3.

2.2.1 Hidden mixture component variables
Before introducing the variational framework, we rewrite
the MOG prior of Eq. (7) with a slight change. We associate
with each derivative a hidden variablehi,γ indicating the
mixture component from which it arises.hi,γ can take each
of J discrete valuesj ∈ {1, . . . , J}. Then

p(fi,γ(x)|hi,γ) =
X

j

hi,γ,j√
2πσj

e
− 1

2σ2
j

‖fi,γ(x)‖2

(31)

wherehi,γ,j is a short notation forδ(hi,γ − j). The prior on
the hidden variables is the mixture component prior

p(hi,γ,j) = πj . (32)

Therefore

p(fi,γ(x)) =
∑

j

p(hi,γ,j)p(fi,γ(x)|hi,γ,j)

=
∑

j

πj√
2πσj

e
− 1

2σ2
j

‖fi,γ (x)‖2

(33)

which is exactly the original prior definition in Eq. (7).
The main advantage in introducing the hidden variables

is that given their values, things become Gaussian. For ex-
ample, sincehi,γ,j are binary, the log of Eq. (31) involves
no exponents:

log p(fi,γ(x)|hi,γ)=
P

j hi,γ,j

„

− ‖fi,γ(x)‖2

2σ2
j

−log(
√

2πσj)

«

(34)

Algorithm 1 Blind deconvolution using free-energy
Iterate:

1. Update weights:

wi,γ,j0 =

πj0
σj0

e
−

E[‖fi,γ (x)‖2]

2σ2
j0

P

j

πj

σj
e
−

E[‖fi,γ(x)‖2]

2σ2
j

(24)

with E[‖fi,γ(x)‖2] given byµ, C.
SetWγ to be a diagonal matrix with:

Wγ(i, i) =
X

j

w,i,γ,j

σ2
j

. (25)

2. Updatex: set

Ax = 1
η2 T T

k Tk+
∑

γ T T
fγ

WγTfγ
(26)

bx = 1
η2 T T

k y (27)

solve:Axµ = bx.

set diagonal covariance:C(i, i) = 1
Ax(i,i) .

3. Updatek: set

Āk(i1,i2)=
∑

i µ(i+i1)µ(i+i2)+C(i+i1,i+i2). (28)

b̄k(i1)=
∑

i µ(i+i1)y(i). (29)

solve the quadratic program

mink
1

2
kT Ākk + b̄T

k k s.t. k ≥ 0 (30)

Similarly, with h included, the joint distribution of Eq. (9)
simplifies to:

− log p(y, x, h|k) =
‖k ⊗ x − y‖2

2η2

+
X

i,γ,j

hi,γ,j

„‖fi,γ(x)‖2

2σ2
j

+
1

2
log(σ2

j ) − log(πj)

«

+c

(35)

2.2.2 The free energy
The idea behind the variational framework is to search for a
distributionq(x) approximatingp(x|y, k). While p(x|y, k)
cannot be computed in closed form, the trick is to select
q(x) from some simpler parametric family, which allows
for tractable computation. In our case we chooseq to be a
distribution on bothx andh, of the form

q(x, h) = q(x)
Y

i,γ

q(hi,γ) (36)

q(x) is chosen to be a Gaussian distribution, character-
ized by a meanµ and covarianceC. q(hi,γ) is just aJ-
dimensional vector whose elements sum to1 (to be a valid



distribution), thej’th element of this vector isp(hi,γ = j).
To fully expressq(h) we need to define a separateJ-
dimensional vector for each image pixel, resulting in a table
of N×γ ×J elements.

The variational optimization then alternates between two
main steps which approximate the E and M steps. In the
first step, we holdk constant, find a distributionq(x)q(h)
(within the simpler parametric family) which best approxi-
matesp(x|y, k), and compute its mean and covariance. The
second step is equivalent to the M-step: find the bestk with
respect to the distributionq (Eq. (12)).

More precisely, we attempt to minimize the free energy:

F (q) = −
∫
q(x, h) log p(y, x, h|k)dhdx

+
∫
q(x, h) log q(x, h)dhdx (37)

We note that since

log p(y, x, h|k) = log p(x, h|y, k) + log p(y|k), (38)

we can write the free energy as

F (q) = −
∫
q(x, h) log p(x, h|y, k)dhdx (39)

− log p(y|k)
∫
q(x, h)dhdx

+
∫
q(x, h) log q(x, h)dhdx

= DKL (q(x, h)||p(x, h|y, k))−log p(y|k)

That is, the free energy is the KL-divergence between
q(x, h) and the correct conditionalp(x, h|y, k), minus
log p(y|k). Since the KL-divergence is non-negative, min-
imizing the free energy minimizes an upper bound on the
term − log p(y|k) we wish to minimize. If the family of
q distributions includesp(x, h|y, k) such as in the Gaus-
sian case, andk is fixed, the bestq in the family is exactly
p(x, h|y, k). If the q family is not expressive enough, the
best approximation should be chosen.

To minimize the free energy we use an alternate opti-
mization over the parametersk, µ, C, q(hi,γ). In each step
it selects the optimal value for one of the parameters while
holding the others fixed. The update equations are derived
below.

2.2.3 Update equations
To derive the update equations, let us substitute Eqs. (35)
and (36) in Eq. (37) and express the blind deconvolution
free energy explicitly:

F (q)=

R

q(x)

„

‖k⊗x−y‖2

2η2 +
P

i,γ,j q(hi,γ,j)
‖fi,γ(x)‖2

2σ2
j

«

dx

+
P

i,γ,j q(hi,γ,j)
`

1
2

log(σ2
j ) − log(πj) + log(q(hi,γ,j))

´

− 1
2

log |C| + c.

(40)

We now attempt to minimize Eq. (40) with respect to each
of its variables while fixing the others.

Updating q(hi,γ)q(hi,γ)q(hi,γ): Fixingµ, C, k, for eachi, γ we can iso-
late from Eq. (40) the terms which involvehi,γ :

P

jq(hi,γ,j)

„

E[‖fi,γ(x)‖2]

2σ2
j

+ 1
2

log(σ2
j )−log(πj)+log(q(hi,γ,j))

«

(41)
Where E[‖fi,γ(x)‖2] =

∫
q(x)‖fi,γ(x)‖2dx, is the ex-

pected derivative magnitude according to the currentq dis-
tribution, which can be easily computed using the mean and
covarianceµ, C, e.g. iffγ is a delta filter,E[‖fi,γ(x)‖2] =
µ(i)2 + C(i, i).

q(hi,γ) should be a unit sumJ-dimensional vector. By
writing the Lagrangian of the problem, one can show that
Eq. (41) is minimized by

q(hi,γ,j0 ) =
πj0

σj0

e
−

E[‖fi,γ (x)‖2]

2σ2
j0 /

X

j

πj

σj

e
−

E[‖fi,γ (x)‖2]

2σ2
j (42)

Updating µµµ: We hold k, q(hi,γ) fixed and isolate from
Eq. (40) the terms which involvex. We can write:

F (q) =

Z

q(x)

„

1

2
xT Axx − bT

x x

«

dx − 1

2
log |C| + c (43)

with Ax, bx defined in Eq. (26). Sinceq(x) is Gaussian, the
integral of Eq. (43) can be computed easily:

F (q)=
1

2
µT Axµ−bT

x µ+
1

2
Tr(AxC)− 1

2
log |C|+c (44)

Since Eq. (44) is quadratic inµ, it is minimized by the so-
lution to the linear system:

Axµ = bx. (45)

Note that iterating Eqs. (42) and (45) is essentially
an iterative reweighted least squares non-blind deconvolu-
tion [13, 14]. In Eq. (45) we solve a weighted non-blind
deconvolution- find an imageµ, such that its convolution
with k approximatesy, plus a regularization term on the
derivatives. The weights on the derivatives are updated in
every iteration by Eq. (42).

For the specific case of a Gaussian prior the, filter
weights are uniform and one can solve forµ efficiently in
the frequency basis. Otherwise, we would like to employ a
fast numerical solver, and our implementation uses the con-
jugate gradient algorithm. One can also consider the fast
solver of [10], but we found that for this application, con-
jugate gradient converges faster. Another solver discussed
below is the simple Gauss-Seidel solver, which is employed
by the classical mean-field approach [6, 17].

Updating CCC: The following claim derives a formula for
the best update ofC, by differentiating Eq. (44) with respect
to C.

Claim 2 The covariance matrix minimizing the free energy
of Eq. (44) isC = A−1

x , for Ax defined in Eq. (26).



Proof: Fixing k, µ, q(hi,γ), the free energy of Eq. (44) can
be written as:

F (q) =
1

2
Tr(AxC) − 0.5 log |C| + c. (46)

Since log det is a convex function (see e.g. [5]), Eq. (46)
has a global minimum and it is enough to show that atC =
A−1

x , the derivative of Eq. (46) with respect to each of the
entries ofC is zero.

We recall that for every square matrixB

log |B|
∂B(i1, i2)

= B−1(i1, i2). (47)

Thus, differentiating Eq. (46) atC = A−1
x provides

F (q, y)

∂C(i1, i2)

˛

˛

˛

˛

C=A
−1
x

= Ax(i1, i2) − Ax(i1, i2) = 0. (48)

Covariance approximations: The drawback of the above
approach is that to computeC one needs to invert an
N ×N matrix. For large images, this is computationally
intractable. To simplify computation, one can search for
a C matrix with a simpler parametric form. The simplest
choice would be a zero covariance, but ignoring the vari-
ance aroundµ completely leads to the undesirable MAPx,k

solution. A more reasonable alternative we derive below is
to constrainC to be diagonal. While not derived here, one
could consider several other simplified covariance forms,
for example, a block diagonal covariance, or a Toeplitz
(convolution) covariance which is diagonal in the frequency
domain.

How should we update a diagonalC matrix? Let us fix
k, µ, q(hi,γ,j) and also fix all the off-diagonal elements of
C to 0. We then isolate from Eq. (44) the terms involving
C(i, i):

F (q) =
1

2
Ax(i, i)C(i, i) − 1

2
log C(i, i) + c. (49)

Differentiating Eq. (49) shows that it is minimized by:

C(i, i) =
1

Ax(i, i)
. (50)

Therefore, a diagonalC can be updated efficiently, in
o(N).

Updating kkk: Given the mean and covariance computed
above, we updatek by solving the quadratic programming
problem of Eq. (13).

2.3. Fergus et al.’s algorithm
Our algorithm is related to the successful Ferguset al.

approach [6], and our analysis is aimed to alleviate some
of its components and simplify extensions [22, 18]. Fergus
et al. [6] algorithm is similar to the diagonal free-energy
approach, and represents the problem in derivative space
(Eq. (5)). The main differences are summarized below.

Free energy definition: Ferguset al. [6] and the origi-
nal Miskin and MacKay [17] algorithms use a more general
free energy function, which aims to approximate the joint
distributionp(x, k|y) and not just the conditionalp(x|k, y).
In practice, this means that they also estimate the variance
aroundk, while our approach considers a singlek estimate
at each iteration. However, since Fergus’ algorithm works
in derivative domain, thex estimated by their variational
approach is an independent set of derivatives and not the
desired image. Thisx derivative estimate cannot be used
directly, leading Ferguset al. to a MAPk approach. That
is, they picked only thek estimate resulting from their vari-
ationalp(x, k|y) approximation, and used it to deconvolve
the input image. Later, Levinet al. [15] showed that this
MAPk approach is actually a major reason for their success.
In this paper we have observed that once the goal is directly
expressed as computing MAPk, the full conditional distri-
butionp(x, k|y) is not required, which significantly simpli-
fies the update equations.

Mean field: The algorithms of [6, 17] employ a mean-
field approach. The classical mean field approach is ba-
sically a specific simplified choice of approximate distri-
bution q, which factorizes as an independent product over
pixels q(x) = Πiq(xi), where eachq(xi) is a 1D Gaus-
sian, whose mean and variance should be estimated. This
is essentially the case if a diagonal covariance is assumed.
However, in the mean field framework, one typically up-
dates only a singleq(xi) at a time, holding all other pixels
fixed. On the other hand, since we viewq(x) as a joint
distribution on all pixels, we update all of them simultane-
ously. Solving Eq. (45) with respect to a single pixelµ(i) at
a time is equivalent to the Gauss-Seidel linear solver, which
is known as a slow numerical solver. If all variables can be
updated simultaneously, stronger solvers can be employed.
In our implementation we have observed that, with a suffi-
cient number of iterations, the Gauss-Seidel approach leads
to good results, but stronger solvers converge much faster.

Noise estimate: Ferguset al. algorithm also automati-
cally estimates the noise variance. We have observed this
is often a source of problems since their optimization di-
verges when the noise estimate decreases too much. Our
implementation alleviates this component by assuming the
noise variance is known, and we usedη = 0.01 in all exper-
iments. However, one reason for a noise update is that EM
algorithms are known to converge slowly at low noise levels
and faster at higher ones. To speed convergence, we start
with a high noise variance and gradually reduce it during
optimization, dividing by a factor of1.15, until the desired
η = 0.01 value is reached.



Ground truth Sparse, sampling, filt space

Gaussian, img space Gaussian, filt space

Sparse, free-eng, img space Our approach: sparse, free-eng, filt space

Fergus Cho

Figure 2. Recovered kernels, for the set of32 test images, including4 test images blurred with8 different kernels.

3. Experiments

A matlab implementation of the algorithms derived in
this paper is available online2. This unoptimized implemen-

2www.wisdom.weizmann.ac.il/˜levina/papers/LevinEtalCVPR2011Code.zip

tation processes the255 × 255 test images of [15] in about
2-4 minutes.

The MAPk algorithms described in the previous section
involve three main choices. First, whether we express the
problem in the image (Eq. (4)) or filter spaces (Eq. (5)).



Input Gaussian, img space Sparse, free-eng, img space Gaussian, filt space
Error ratio4.75 Error ratio9.78 Error ratio6.44

Our alg: sparse, free-eng, filt space Sparse, sampling, filt space Fergus Cho
Error ratio2.06 Error ratio3.51 Error ratio10.45 Error ratio4.00

Input Gaussian, img space Sparse, free-eng, img space Gaussian, filt space
Error ratio4.80 Error ratio7.86 Error ratio2.15

Our alg: sparse, free-eng, filt space Sparse, sampling, filt space Fergus Cho
Error ratio2.46 Error ratio2.05 Error ratio293.8 Error ratio6.38

Figure 3. Recovered images, 1. We empirically observe that deconvolution results are visually plausible when the ratioof errors between
deconvolution with the estimated kernel and deconvolutionwith the ground truth kernel is below3.



Input Gaussian, img space Sparse, free-eng, img space Gaussian, filt space
Error ratio2.32 Error ratio1.74 Error ratio2.39

Our alg: sparse, free-eng, filt space Sparse, sampling, filt space Fergus Cho
Error ratio1.33 Error ratio2.05 Error ratio1.24 Error ratio1.46

Input Gaussian, img space Sparse, free-eng, img space Gaussian, filt space
Error ratio3.07 Error ratio2.76 Error ratio4.14

Our alg: sparse, free-eng, filt space Sparse, sampling, filt space Fergus Cho
Error ratio1.86 Error ratio2.63 Error ratio1.91 Error ratio9.21

Figure 4. Recovered images, 2



Input Gaussian, img space Sparse, free-eng, img space Gaussian, filt space
Error ratio3.62 Error ratio2.88 Error ratio3.84

Our alg: sparse, free-eng, filt space Sparse, sampling, filt space Fergus Cho
Error ratio2.10 Error ratio1.97 Error ratio3.34 Error ratio5.30

Input Gaussian, img space Sparse, free-eng, img space Gaussian, filt space
Error ratio1.68 Error ratio1.49 Error ratio2.69

Our alg: sparse, free-eng, filt space Sparse, sampling, filt space Fergus Cho
Error ratio1.27 Error ratio1.18 Error ratio1.30 Error ratio1.28

Figure 5. Recovered images, 3
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Figure 1. Evaluation results: Cumulative histogram of the decon-
volution error ratio across test examples (ther’th bin counts the
percentage of test examples achieving error ratio belowr).

Second, the type of prior used– Gaussian or sparse. And
finally, the choice of covariance approximation. To isolate
the effect of the different factors we have compared five dif-
ferent algorithmic versions. First, a Gaussian prior [16] in
both image and filter domains. In this case the covariance
can be computed exactly and efficiently in the frequency ba-
sis. Second, we used a sparse MOG prior in the image and
filter domains. We use the free energy approach to compute
a diagonal covariance. The last algorithm used the fil-
ter domain and estimated a covariance using the sampling
algorithm of [11, 19]. Like most recent blind deconvolu-
tion algorithms, we used a coarse to fine approach. We also
compare our results with Cho and Lee [2], the best available
MAPx,k algorithm, and with the original implementation of
Ferguset al. [6].

We used the 32 test images of [15]. To evaluate the re-
sults we used the SSD ratio test of [15], and measured the
ratio of error between deconvolution with the estimated and
correct kernels. The idea is to normalize for the fact that
harder kernels achieve a larger reconstruction error even
when estimated correctly. In Fig. 1 we plot the cumulative
histogram of error ratios (e.g. binr = 3 counts the per-
centage of test examples with error ratio below3). Fig. 2
visualizes the estimated kernels. Figs. 3–5, visualize de-
convolution results for some test images. Other images are
included in the code package.

The best results are obtained by the diagonal free energy
approach in the derivative space. The original results of
Ferguset al. [6] slightly outperform Cho and Lee [2]. The
evaluation shows that the derivative-space approach clearly
outperforms the image-domain approach, and we discuss
this success below. The simple Gaussian prior performs
surprisingly well and, in the image domain, it even outper-
forms the sparse one (our Gaussian results improve over the
original results of [15]). The sampling approach is signifi-
cantly slower than the free energy approach, and produces

slightly less accurate results. We observe that deconvolution
results are usually visually plausible when their error ratio
is below 3. Thus, the error ratios in Fig. 1 show88% suc-
cess for our diagonal free energy deconvolution, compared
with 75% success for the original Ferguset al. implemen-
tation and69% for Cho and Lee. Despite the subtle differ-
ences, all these algorithms perform relatively well. Most
importantly, they significantly outperform a naive MAPx,k

approach with no extra computational complexity.

The success of the derivative space approach:The
derivative space solution assumes independence between
derivatives and ignores the important integrability con-
straint. Despite this problematic assumption, it largely im-
proves the results in practice.

One advantage of the derivative representation is that it
fits better with the variational model which considers an in-
dependent product over variables. Another advantage is that
the deconvolution system solved in each iteration is better
conditioned, since the regularization is placed on the un-
knowns themselves and not on their derivatives.

Another possible explanation is that the prior parame-
ter fitting of independent derivative signals is more accu-
rate, since it is enough to match the observed derivative
histogram. In contrast, learning prior models which cor-
rectly encode dependencies between horizontal and verti-
cal derivatives is not trivial. Thus, it is possible that the
prior we used in the images space representation is not suf-
ficiently accurate. In fact, a Gaussian prior in the image
domain might provide a better approximation to the distri-
bution than a sparse prior with wrong parameters, as sug-
gested by its superior performance in Fig. 1.

The filter domain approach which ignores integrability
is used only when estimating the kernel. Givenk, the sharp
imagex is recovered using standard non-blind deconvolu-
tion in the image domain.

4. Discussion
The MAPk blind deconvolution principle is significantly

more robust than the MAPx,k principle. Yet, it is consid-
ered hard to implement and has not been widely exploited.
In this paper we argue that the MAPk approach can actually
be optimized easily, and present simple and practical MAPk

algorithms. While popular MAPx,k strategies basically al-
ternate between latent image estimation given a kernel and
kernel estimation given an image, our MAPk algorithm em-
ploys the same steps, where the only difference is that the
kernel estimation accounts for the covariance aroundx and
not only for the mean solution. While an exact estimation of
the covariance is challenging, a diagonal approximation can
be computed efficiently inO(N) as the inverse diagonal of
the deconvolution system.

While we have presented the basic principles of MAPk

optimization, there are many more algorithmic choices to
explore, such as the choice of filters, the choice of covari-



ance approximation, and the prior model. We hope that the
basic principles laid in this paper will open the door for fol-
low up research on these important questions.
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