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Abstract

We study the problem of color constancy—inferring from an image thdamspeof the illu-
mination and the reflectance spectra of all the depicted surfaces. Thistestiprablem is un-
derdetermined: many surface and illumination spectra can be describbdess @ombination
of 3 basis functions, giving 3 unknowns per pixel, plus 3 parametess gbobal illumination.
A trichromatic visual system makes fewer measurements than there arenmskno

We address this problem by writing the reflectance spectra of small gadygigels as
linear combinations of "spatio-spectral” basis functions. These aggegarface reflectance
spectra require fewer parameters to describe than the sum of the kpacaraeters for the
individual surface pixels, giving us more measurements than unknosamgsers.

We explore this problem in a Bayesian context, showing when the probleweison
underdetermined based on analyzing the local curvature characteofsties log-likelihood
function. We show how using the spatio-spectral basis functions migatugvmproved re-
flectance and illumination spectral estimates when applied to real image data.

1 Introduction

Color is important in our understanding of the visual world and providesff@aative cue for
object detection and recognition. In general, however, the obseoledaf an object differs
from its true color due to factors such as lighting and orientation. Colortanog refers to
the ability to perceive the color of an object as approximately constantdiega of the color
of the light falling upon it [10]. We are able to reliably use color for a varigtyision tasks
largely because of our ability to perform color constancy well.
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Inherently, the color constancy problem is underdetermined. The imagation process
consists of an illumination reflecting off of a surface, then being passeddghra set of sensors.
The input to the sensors is the product of the illumination spectrum and flaessreflectance
spectrum. Different combinations of illumination and reflectance spectrproduce the same
spectrum impinging on the sensor, and various sensor inputs can residt #ame sensor
responses. Due to these ambiguities, it may be impossible to uniquely separatiéett
of the illumination and the surface reflectances in an image. The goal of ¢atigmal color
constancy [21, 17, 6, 18, 3, 20, 13, 14, 24, 2, 9], therefore, isterthine an optimal separation
of reflectance and illumination under some metric. Given the sensor respoms seek an
estimate of the reflectance and illumination spectra.

This would appear to involve estimating very many numbers. If we specify0anB®
spectrum at 10 nm intervals, even assuming a single illumination spectruntheverhole
image, we would need1(N + 1) numbers to specify the reflectance spectraXopixels
plus one illuminant. In order to simplify the color constancy problem, low-dimersinear
models are used to describe illumination and reflectance spectra [16,15]18, sufficiently
large portion of the energy in these spectra (typically 99%) - can beidedansing as low
as three-dimensional models for both surfaces and illuminants. An additonsiraint used
by some approaches is that surfaces and illuminants must be physicallaibégliz.g. their
spectra cannot be negative and surface reflectances must be fess ¢dlgal to 1 [13, 2, 9].

Even after these simplifications, the color constancy problem remainsdetdenined and
existing approaches must make further assumptions in order to obtain asoBRuichsbaum’s
Gray World algorithm assumes that the mean reflectance of all images is thessaitiee illu-
mination is estimated using this mean [6]. Maloney and Wandell's Subspace nrethorks
that a two-dimensional model describe surface reflectances for teeo€aschromatic sen-
sors [20]. Gamut mapping methods [12, 11] exploit the observed cotouge estimate the
illuminant spectrum, and can be combined with realizability constraints. SincgesBa ap-
proach [2] can incorporate the various assumptions above into its pababilities, Bayesian
decision theory [1] provides a principled framework which we will usesiiidying the color
constancy problem.

A parameter counting argument reveals the underlying problem we addrédss work:
if we use a 3-dimensional model for the surface reflectance at eadhanixka 3-dimensional
model for the illumination spectrum, for the case of trichromatic color sena@rfave more
unknowns than observations. We measure 3 numbers at each positibaygdo estimate 3
numbers at each position, plus the 3 numbers describing the illuminant. Tillenqris always
underdetermined, requiring, in a Bayesian solution, more reliance onitrgopobabilities or
loss function than on the likelihood function to estimate the best answer. Quld p@fer the
situation where the data likelihood function dominated the other terms.

In this paper, we make the problem overdetermined by introducing lined hasc-



tions that describe both spectral and spatial variations in the surfaeetagfites. These
spatio-spectral basis functions exploit image regularities which allow usettifgsurfaces

reflectances using fewer numbers, yielding more image measurements kmawvarparame-

ters.

In the next sections, we introduce the notation and linear basis functidysanahen ex-
plore the Bayesian approach. We show with simple examples that the strofctinegposterior
indicates conditions under which color constancy is still undetermined byattze Ve then
apply our approach to real images, verifying (using hyperspectraldrdatp) that our surface
reflectance estimates improve through using the spatio-spectral bagisrisnc

2 Linear models

We assume there is one global illumination in each scene and that the lighuspéetiving
each surface is the term-by-term product of the illumination and local teflee spectrum. For
a surface reflectanc®(\) and illuminationE (), the response at positianof a photoreceptor
with a spectral response &, () is:

vk =Y RMEMNS*(V), (1)
A

The illuminant and surface spectra can be written as linear combinations iiitheation
basis functionsz;(\) and reflectance basis functios§()), with coefficientse; ands?, re-
spectively, at position:

L

EQ) =) E(Ne 2
Zzl

STN) =) Si(Vs], 3)

j=1

wherelL is defined as the number of elements in eector (i.e., the number of wavelength
samples). Doing so allows us to write the rendering equation as

L L
vi =Y Re(N)D Ei(Ne ) S;(\s. 4)
A i=1 j=1
Summing over\, we get a bilinear form,
L L
vi =YY &GS, 5)

i=1 j=1



whereGj, = > 5 Ri(N)Ei(N)S;(N).

The number of basis functions used in the linear models of (2) and (3)qaid ® the
number of wavelength samples, so that the model fully describes the entire dlimnimand
reflectance spectra exactly. In general, however, we wish to apprtexiima true illuminant
E()) and surface spectig”(\) using lower dimensional linear models. Thus, we can define

di

E(\) =) E(Me, (6)
=1
ds

S*(A) =) Si(Vs], @)

J=1

whered; is the dimensionality of the illuminant approximatiéi{ ), ds is the dimensionality
of the surface approximatiofiz(\) and0 < (dg,dg) < L. In addition, we can decompose
(5) as:

dg ds dg L L dg L L
T355) SIERS 3 SICHETD S SIERED SHD SRUCHE
=1 j=1 i=1 j=dg+1 i=dg+1 j=1 i=dg+1j=dg+1

dg ds

= Z Z &GijkS; + wi,

i=1 j=1

(8)

wherew? is the error due to the use of lower dimensional models to approximate the true
illumination and reflectance, which we will refer to as "observation noisette remainder
of this paper. A summary of the notation used in this paper is provided in Table 1

Equation (8) is perhaps best understood by viewing color constaray estimation prob-
lem. The goal is to estimaté®(\) and E(\) giveny?. Thus, we view the “true” illuminants
as havingiz degrees of freedom as defined by the filgtilluminant basis functions, with re-
maining basis functions contributing in the form of noise. Analogously fdiase reflectance,
the firstdg basis functions define the space of “true” reflectances and the remdiasgig
functions add noise. Note that while the illumination “noise” and reflectano&séf are or-
thogonal to the “true” illumination and reflectance, the projections of the "aga and the
“noise” into the sensor response space are not orthogonal.

3 Bayesian Approach to Color Constancy

The Bayesian approach to color constancy utilizes a probabilistic frarkeewaxamine the
problem. This framework is based on three fundamental probability distritsutithe prior,
the likelihood, and the posterior. The prior describes the probability thattaic set of pa-



Symbol | Symbol Definition Symbol | Symbol Definition
N number of pixels in an image m number of pixels along one dimension pf
a square block being considered within
an image
A wavelength ~ index into spatio-spectral basis functions
L number of wavelength samples (length|ok number of sensor responses available at
A vector) any pixel
E(\) spectral radiance of illuminant E(y) spatio-spectral radiance of illuminatign
in m x m block
E;(\) ith basis function of illumination E;(vy) | ith spatio-spectral illumination basjs
function
€ scalar weight ofith illumination basis| €; scalar weight ofith spatio-spectral illu-
function mination basis function
e row vector of alle; e row vector of alle;
dg dimensionality of illumination represen-dg dimensionality of spatio-spectral illumi-
tation nation representation
E(\) approximation to illuminant fronaz di- E~(7) approximation to spatio-spectral illumj-
mensional linear model nant fromd g dimensional linear model
S*(X\) | surface reflectance at point S*(y) | spatio-surface reflectance for pixel block
€T
Si(N) jth basis function of surface reflectance S;(y) | jth spatio-spectral surface reflectance ba-
sis function
S; scalar weight ofjth surface reflectancesy weight of jth spatio-spectral surface re-
basis function at position flectance basis function for pixel bloak
s* column vector of; for all j st column vector of5 for all j
S matrix whose columns are given &y S matrix whose columns are given By
dg dimensionality of surface reflectance repdgs dimensionality of spatio-spectral surface
resentation reflectance representation
Sz(N) approximation to surface reflectance aﬁw(q/) approximation to spatio-spectral surface
position z from dg dimensional linear reflectance at pixel block from dg di-
model mensional linear model
Ri(N\) | spectral sensitivity okth sensor Ry (vy) | spatio-spectral sensitivity dfth sensor
R(\) matrix of Rx () for all k R(v) matrix of Ry (~) for all &
Ui scalar response @th sensor at: Yy scalar response dfth sensor for pixel
block x
y* vector ofyy for all k y* vector ofy? for all k
Yy matrix of y* vectors for allz Y matrix of y* vectors for allz
Gijk 3-d tensor relating illumination and re-Gj; ;. 3-d tensor relating spatio-spectral illumi-
flectance weights to sensor responses nation and reflectance weights to spatio-
spectral sensor responses
wi observation noise containedzj wy observation noise containedyf

Table 1: Symbol Notation



rameters is the correct estimate without knowing anything about the datadigtribution is
written asP(e, s), wheree ands are the global illumination weights and the surface weights
for all positions in an image. The likelihood, given By|e, s), governs the relationship be-
tween the parameters being estimakedr(ds) and the observed data (in this case the set of all
sensor responses in an imagkg, The posterior describes what is known about the parameters
being estimated after having observed the data and can be calculated agex) Bile as

P(esly) = P(sle 9P(es) ©)

where the normalization constaétis independent of the parameters to be estimated. (In ad-
dition to these probabilities, the Bayesian formulation requires that we secdgt function
that defines the penalty associated with a parameter estimgggspfvhen the true parameter
values arge, s). For estimating the relative surface and illumination spectra, independent of
any overall scale factor, we find that the loss function has little effe¢tsi@we use a minus
delta loss function, which corresponds to MAP estimation wherein we maximizeo#terior
probability given by equation (9).)

The underdetermined nature of the general color constancy problem snipéé there
should be an infinite set of solutions which maximize the posterior. To see tha the case,
we must examine the properties of equation (9).

Assuming independent and identically distributed Gaussian observatiom \witis vari-
anceos? in the photoreceptor responses at each patch, the posterior probability is

P(esly) = % []e @20 8CusS) /2 p(eg). (10)
x,k

If the posterior is flat along any dimension in this region, there is a family dfiptessolutions
to the maximization problem, whereas if the posterior is not flat along any dirmssidinite
number of local maxima must exist. To illustrate this point, we will consider a vergle toy
example in whichlg = 1, dg¢ = 1 andP(e, s) is uniform over some rande, 5] x [«, 5]. The
posterior is then given by

Le—-(y-€9%/(20%) if o < g 5< f3

. (11)
otherwise

P(a7 b’y) = {

SSEN

Figure 1 illustrates this distribution. There is a ridge of points, defined byyherbola
es= 1, that maximize the posterior probability. At any one of these points we cahaebere
is one direction of zero curvature and one direction of negative cueatim the following
section, we describe a method of performing this sort of curvature amatygxamine the
structure of the color constancy problem in a less trivial setting.



Figure 1: Depiction of the posterior for the toy color comstaproblemy = es Note that at any
local maximum of the posterior, there is zero curvature glome principle direction, and negative
curvature along the other, indicating a local 1-d subspddbe parameters which explain the
observed data equally well.

3.1 Local Curvature Analysis

We explore how the structure of the posterior probability reveals whethapithe color
constancy problem is solvable. We assume in this analysis that the priahiitbP (e, s)
varies slowly over the region being considered. In this case, the lonatste of the posterior
can be analyzed by examining the local structure of the likelihood function,
1 2
Liyles) = —55 > (v~ D eGuus)) - (12)
z,k i,j

The local structure we are interested in is the curvature of the log likelihowdibn, which
tells us how moving in the parameter space affects our ability to explain thevelsgata. We
will analyze how this structure changes when we introduce low-level $jpafiiamation into
the model, and use this analysis to motivate the use of such information forcooistancy.

The curvature of the log likelihood can be obtained from an eigen decatgposf its
Hessian matrix [8]. The Hessian is a matrix of all second order deriwatine thus, for an
N-pixel image, is adg + Ndgs) x (dg + Ndg) matrix. The eigenvectors of the Hessian
matrix give principal directions of curvature and the correspondingeajaees give the extent
of curvature in each of these directions.

At a maximum of the log likelihood, all eigenvalues of the Hessian must be neitiye
(meaning that there cannot be any positive curvature at this point siecledhlikelihood
cannot increase as we move away from the local maximum). If there aedganwalues equal
to zero, this implies that there are directions of zero curvature - e.g., treeweags we can vary
the estimated parameters without affecting the likelihood of the data. For acumigximum,
all eigenvalues of Hessian must be negative at the maximum.

The amount of curvature of the Hessian also tells us something of howt keeesin expect
a parameter estimate to be in the presence of observation noise. Largeakigerof the
Hessian imply a highly curved log likelihood, which, under the assumption eliagively flat



prior, implies a highly curved posterior distribution. The larger the cureatdithe posterior
(i.e., the more "peaky” it is) the more robust we can expect it to be to ohsemnnoise in the
observed data.

This notion of calculating the curvature of the Hessian of the log-likelihootss related
to the Fisher Information Matrix, except that we examine the Hessian of théé&inood at
a particular point, whereas the Fisher Information Matrix takes an expetctatibe Hessian
with respect to the parameters being estimated [23].

To help us understand the structure of the color constancy probleradbworld images,
we first examine representative special cases in toy examples. Appgdigs a full deriva-
tion of the Hessian for the log likelihood function given by (12).

3.1.1 Underdetermined Case

We constructed a toy problem in which the sensor responses for all poiatsimage are
generated using equation (8) with the noise term set to zero. To perimuesions, we used
a hyperspectral data set of 28 natural scenes collected at Bristardity by Brelstaff, et. al.
as described in [22, 4, 5]. Each of these imag&5ésx 256 pixels in size and contains sensor
responses to 31 spectral bands, ranging from 400 nm to 700 nm in li@terals. Each
scene also contains a Kodak greycard at a known location with a consfl@stance spectrum
of known intensity. The scene illuminant is approximated as the spectrumdegtat the
location of the greycard divided by its constant reflectance. Our datasefore consists of
256x256x28 reflectance spectra and 28 illumination spectra.

The first three illumination and reflectance basis functions obtained byiaggdyincipal
components analysis (PCA) to this data are plotted in Figure 2(a) and @¢pgatively (PCA
is performed on all 28 illumination spectra and approximately half of the refieetapectra).
We assume, without loss of generality, a Gaussian model for sensonsespcentered at 650
(red), 550 (green), and 450 nm (blue) as shown in Figure 2(c). Bémpges from the dataset,
after being passed through these Gaussian sensors, are showrnrenJigu

To construct our toy problem, we draw 10 sample reflectance speatnaoinodataset and
project those spectra onto a 3-dimensional space spanned by theréestefiectance basis
functions shown in Figure 2(b). We perform an analogous operatianmersample illumina-
tion spectrum and pass the low dimensional illumination and reflectances thifeeigensors
of Figure 2(c) to yield sample image values. This is a toy example because the dtionin
and reflectance are described fully by 3-dimensional linear models, whiubt the case for
real images.

Evaluating the Hessian at the correct location in parameter space (i.e., tmeunagf the
log-likelihood) results in the eigenvalue spectrum shown in Figure 8, wiolvs that there
are 3 eigenvalues equal to zero, and thus 3 directions of zero cuevatae three associated
eigenvectors give the directions of zero curvature in parameter spagdinear combination
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Figure 2: Basis functions and sensor responses used in toyde® Basis functions are obtained
from a hyperspectral dataset.

Figure 3: Sample images from dataset of 28 hyperspectraamafter being passed through the
sensors of Figure 2(c). The hyperspectral images contéannration from 31 spectral bands at
each pixel, and the greycards in each of the images is useditthé true illumination of the scene.



of these eigenvectors is also a direction of zero curvature.

It is interesting to note that there are 3 illumination weights and also three eierse
with corresponding zero eigenvalues. Each of these eigenvectorgiimensiondy + Ndg,
with three of those dimensions corresponding to the illuminant weights. Treegfgenvectors
span the space of the 3-dimensional illuminant space, meaning that foetamiyillumination
coefficients, there exists some set of reflectance weights such that tlieolikeassociated
with that set of parameters is equal to the likelihood associated with the teeteaf parame-
ters. In other words, this means that we can move in any direction in the 3-simnahspace
of the illuminant and still find surface reflectance values that render tdagereed sensor val-
ues. One example of this is a multiplicative scaling up of the illumination and a pomdag
scaling down of the surface reflectances.

===

log |eigenvaluep
S

(a) Eigenvalue spectrum (b) Graphic depiction

Figure 4: Eigenvalue spectrum and corresponding curvafube log likelihood for a toy example

of the color constancy problem. Note that all eigenvaluesnan-positive (the log of the absolute
value is used on the right side plot for display purposes)chia the curves on the left shows
a projection on the log likelihood function onto a particuiérection of principle curvature. The

directions of zero curvature and eigenvalues at zero shatnthle problem is underdetermined

3.1.2 Sufficient Sensors

If there are 4 independent photoreceptor responses available in$t@ade would expect for
a better behaved log-likelihood function. However, there should still lzedinection of zero
curvature in the Hessian, corresponding to a simple scaling of the illuminatibsuafaces. To
see this, we use the basis functions and sensor responses givenrm&agiwell as a fourth
sensor response (chosen to be random and thus independent tfieh¢hoee) to construct
another toy example. We again generate 10 random points and find thashimhibehaves as
expected, as shown in Figure 5. [[[[ Not only does the Hessian hdyeae eigenvalue equal
to zero, the other eigenvalues have a much larger value than the eigsnvbtbe Hessian in
the underdetermined case. ]]]]
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Figure 5: Eigenvalue spectrum and corresponding curvatuitee log likelihood for a case when
the number of sensors exceeds the dimensionality of thasrhodel. Again, all eigenvalues
are non-positive. There is now only one direction of zerwature, corresponding to an unknown
scale factor.

3.2 Bayesian Color Constancy in the Underdetermined Case

In general, the Bayesian approach to color constancy is able to preducigue parameter
estimate in the underdetermined case despite multiple degrees of ambiguity in thedi#elih
function. This is because the prior or the loss function will favor one saludier the others
[2].

Often, however, the prior may be inaccurate for the particular image brargieed. Ide-
ally, we would like for our parameter estimate to be dominated by the effect dik&lidood
function. That is, we would like for the estimate to be based on the data itsélbnnarior
assumptions about the data or how much we value particular parts of the data.

4 Spatio-spectral Basis Functions

We now introduce an alternative formulation of the finite-dimensional modelsepted in
Section 2 that model both spatial and spectral properties of groupsed$ iixnatural images.
The hypothesis is that by taking characteristic spatial variations of natuagks into account,
the number of parameters necessary to describe the reflectance of anitidg reduced so
that the problem is no longer underdetermined.

Certain physical phenomena, such as interreflections, may generaaetehiatic spatial
and spectral signatures which allow estimation of the desired spectra fraye ohasa. Natural
images, like foliage, may exhibit characteristic spatial changes in color.sp&io-spectral
basis functions allow us to exploit these, or other, regularities in the visoiddivin order to
solve the color constancy problem. We expect this approach will wortkibeghly textured
images, and worst in flat, color Mondrian-type images [21].
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4.1 Modified Linear Models

Instead of using linear models to describe the reflectance of individuakpixe will now use
these models to describe groups of pixels. Without loss of generality, nvgroap pixels into
m x m blocks and use the same basic formulation as was developed in Sectionr@etria
do so, it is necessary to convert blocks of pixels into vector format. Whiddoy rasterizing
the pixels within the block. The reflectance of a block of pixels is definedvastar of length
m?2L consisting of the reflectance of each pixel within the block stacked on teaabf other in
raster order. The same process is used to describe the sensoseesptie block as a vector
of lengthm? K and the illumination as a vector of length? L.

The basis functions used to model the reflectance of blocks of pixelsoareaierred to
asspatio-spectrateflectance basis functions, since they describe both the spectrgpatial s
characteristics of a block of pixels.

We shall denote a group of pixels by so that the illumination and reflectance of a block
of pixels is given by:

m2L

E(v)= ) Ei(v)e, (13)
=1
m2L

S%(v) =) _S;(v)s;, (14)
j=1

where E;(y) and S;(y) are the spatio-spectral illumination and reflectance basis functions,
e ands} are the weights associated with these basis functifiis,) is the illumination of

all blocks in the image, an8®(~) is the reflectance of the block of pixeis Note that the
elements of the scene are now written as a functior ohther than\. This is due to the
fact that the spatio-spectral representation contains information abthuthe frequency and
spatial characteristics of the scene. Approximating these models with fémvensions, we

can define

di
E(y) = Z E;(v)e;, (15)
) zd:Sl
S=() =>_S;(vs7, (16)
j=1

whereE(y) is the approximate illumination of all blocks in an image, constructed usihg a
dimensional model, ancfw(y) is the approximated reflectance for the blackconstructed
using ads dimensional model.

We define anmn x m block of pixels as havingn? K sensor outputs, witl sensor outputs
per pixel. Thus, we define the sensor responses of the group of pxéte block diagonal
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matrix

0
Ry =| . (7)

with m? blocks along the diagonal, where
R(A) = [Ri(\) Ra(N) ... Rrg(N)].

We let Ry () refer to thekth column of the matripx®(7y).
Following a derivation analogous to that presented in Section 2, we cantheitgensor
output in a bilinear form with noise as:

dg ds

Y = Z Z e Gij kS + Wi, (18)

i=1 j=1

wherey? is the sensor response of the block of pixe)<x;; ;. is defined as
Gijx = Y Ri(1)Ei(7)8;(7), (19)
v

andw? is the noise introduced from using a lower-dimensional linear model.

4.2 Descriptive Power of Spatio-Spectral Basis Functions

The advantage of incorporating spatial information into the linear models tosddscribe
scenes is that it provides more descriptive power using a fewer nunflparameters. It is
straightforward to show that even if natural images displayed the chesgict¢hat individ-
ual pixels in an image are independent of one another, and incorposaiatigl information
provides no benefit, spatio-spectral basis functions provide eqgsatigtve power to stan-
dard spectral basis functions. For real images, spatio-spectralfbasi®ns in fact describe
images much better than standard spectral basis functions, due to thatmorrthat exists
between neighboring pixels in natural images.

The amount of improvement in descriptive power provided by the new metmode tested
by using real images to find linear reflectance bases for blocks of wasi@es (including
m = 1, which corresponds to the traditional case of examining each pixel indepdy)
and, in each case, calculating the squared reconstruction error asrthesgbnality of the
reflectance model is varied. To do this, we use the dataset of hyptedperages described
earlier in Section 3.1.1. Approximately half of the data in the 28 scenes (stlectdomly)
is used to find the linear model, and the squared reconstruction error igatatt using the
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remaining data.

The first three components of the reflectance basis corresponding=tol was shown
in Figure 2(b), and Figure 6 plots the first 12 spatio-spectral refleetbasis functions for
m = 2. These basis functions were extracted from the hyperspectral daggthis calibration
gray card in each image of the dataset, in the same manner as describetidn $écl. The
correlation between neighboring pixels in the block is apparent when examining these basis
functions.

Figure 6 shows the first 12 components of the reflectance basis comdisg tom = 2.

A comparison of squared reconstruction error when considering iaek ofm =1, 2 and 4
is shown in Figure 7.

It can be seen that using a block sizenof= 2 dramatically improves performance. For
example, the data shows that the error rate obtained when describingirelciith 3 basis
functions can be achieved by using oril5 basis functions per pixel when describing an
image with2 x 2 blocks (i.e., 5 basis functions for the block). Increasing the block size
beyondm = 2 shows even further improvement in the ability to describe the data using fewer
parameters, since more of the image correlations can be described bygtreblacks.

4.3 Curvature Analysis Using Spatio-Spectral Basis Functions

To see the advantage of using spatial information in the context of Bayesianconstancy,
we must once again analyze the local curvature of the posterior probalkiitjowing the
derivations in Section 3, we once again make the assumption of a locallyiélattribution,
allowing us to simplify the problem and examine the log likelihood function, now varite

Lles =Y (v - Y eGus) (20)
x,k i,j

We again consider two toy problems, now for the caskof pixel blocks instead of single
pixels. Figures?? and?? show the eigenvalues of the Hessian matrix in the underdetermined
and overdetermined cases, respectively. In both cases we havasti? sesponses available
and we consider 12 pixels (3 blocks) and an illumination projected down irge timensions.
For the underdetermined case, reflectances are 12 dimensional svimetle& overdetermined
case they are 11 dimensional.

5 Experiments with Natural Images

We look at groups of 40 pixels, grouped into 10 sets of 2x2 pixel blodks 10 sets were
selected from randomized positions in the image.
In order to get the priors, we project our dataset of reflectanceglaminations onto the
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Figure 6: The first 12 spatio-spectral basis functions fdt gixel blocks. Each basis function is
plotted for wavelength values from 400 to 700 nm on the x-aXise first 3 spatio-spectral basis
functions, (a), show only spectral variations and no spa#igation. The next 3 basis functions,
(b), correspond to spatial derivatives. The final 6 indi@taore complex relationship of spatial
and spectral variations, (c) and (d).
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Figure 7: The squared reconstruction error using lineareatsodf varying dimensions for block
sizes ofm =1, 2, 3, and 4. The x-axis is equivalent to the number of basistions used to

describe then x m block divided bym?2. Using block sizes ofn = 2 or larger greatly reduces the
number of coefficients needed to describe each pixel.

basis functions given in Figures 2(a) (for illumination) and 6 (for spatiectral reflectance).
We fit truncated Gaussians to the data and use these as our priors.

Our goal is now to find the set of illumination and reflectance coefficientsntidimize
the posterior probability. In order to do this, we need to search over #eesy all possible
illumination and surface reflectance coefficients. Since the number aicgudoefficients
scales with the number of pixels in the image, this quickly becomes an intractablepr.

Following [2], in order to make the problem more feasible, we limit our seardbdk
over the space of illumination coefficients and solve for the surfacehtiemation using a
deterministic relationship. In the underdetermined case, where the nundmrsafr responses

WQW?TTTTTTTTTTTT

e 1:

o5t

2os TTTTTIIIN

—10f

mmmim

log |eigenvalues
log |eigenvalues

—oo

(a) Underdetermined case (b) Overdetermined case

Figure 8: Eigenvalue spectra of the log likelihood functwmen using x 2 blocks in the under-
determined case (left) and overdetermined case (rightwa#ssthe case when considering single

pixels, in the underdetermined case, there are three idinsobf zero curvature and in the overde-
termined case there is only one direction of zero curvature.
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at each pixel is equal to the number of surface coefficients at each pigesolve for sur-
faces that produce the sensor responses exactly given an illuminai®is (fone by solving
equation (8) assuming no sensor noise through a simple matrix inversios)isguivalent
to constraining our search to locations of maximum probability in the likelihoodhdrcase
where we have more sensor responses than surface coefficietékenbe pseudo-inverse to
find the surface coefficients corresponding to a given illumination.

Unfortunately, applying this technique of constraining the search spaealtmages gives
numerical problems. In these images, the noise term in equation (8), whigsponds to the
surface and illumination components not included in a low-dimensional modedeséahe
surface coefficients that maximize the likelihood term given the true illuminarg teeby dif-
ferent from the true surfaces coefficients. This makes it hard to gdyopealyze the posterior
probability corresponding to a given illuminant.

To avoid the numerical issues mentioned above, we test our algorithm onsroage
structed by first projecting the true surface reflectances down to 11 giomsnout of 124 in
the2 x 2 block model, multiplying the reflectance image by the true illuminant, and passing
the result through the Gaussian sensors shown in Figure 2(c). Taeravfair comparison
between our algorithm using spatial information and te existing Bayesian ey \®orld
algorithm that rely on single pixels, we also find a new set of single-pixtatance basis
functions and prior probabilities that apply to this modified dataset.

Figure 9 shows that there is very little visual difference between the imagéeld using
the true reflectance and the image obtained after projecting the reflectatocéhe lower-
dimensional subspace. We need to be clear: these are pre-prooeaged, not “real” images,
although they are tantalizingly close to real images. We show the benefitsngf sysatio-
spectral basis functions in solving color constancy using the pregsedeémages, and expect
that extensions to real images will follow in work by us or by others.

(&) Sample image from dataset (b) Image after projection

Figure 9: The visual effect of projecting reflectance to lodenensions is very small.

Figure 10 shows results for our approach using spatio-spectraffboast®ons in a Bayesian
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approach with the standard Bayesian approach and the Gray WorlobappiEach algorithm
is run on 15 random groups of 40 pixels chosen from the image. Theydartimage we con-
sider is not fit very well by the priors, which is why the standard Bayesjgomoach, examining
one pixel at a time, and the Gray World approach both result in incorstioi&es. Despite the
low prior probabilities, however, the Bayesian approach using spaticksp basis functions
allows us to locate the correct illuminant for each draw. This illustrates théikeiood term
does dominate our estimate, as we would expect.
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Figure 10: Results of color constancy applied to a naturafjen&ach algorithm was run 15 times,
with results shown in dotted lines. The mean illuminatianirthe prior is given in the dashed line

as reference, and the true illuminant is marked by circles.

6 Conclusions

We have studied the effect of using spatio-spectral surface reftectasis functions to find a
low-dimensional estimate of surface reflectance characteristics.

These basis functions can convert the color constancy problem fiamder-determined
problem to an over-determined one. We can see this in the curvaturectehistics of the
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log-likelihood function at parameter local maxima.

For natural images, pre-processed to restrict the surface reflectaniations to be ex-
plained by an average of 11 basis functions per 2 pixel block, we find that using spatio-
spectral basis functions allows for very accurate estimates of the glomairiition spectrum
(and therefore of surface reflectance spectra, too). For the samedmeging purely spectral
basis functions results in an underdetermined problem, with much higher estireatio for
the optimal Bayesian estimate.
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APPENDIX: The Hessian of the Log Likelihood Func-
tions with Bilinear Forms
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