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Abstract

We study the problem of color constancy–inferring from an image the spectrum of the illu-

mination and the reflectance spectra of all the depicted surfaces. This estimation problem is un-

derdetermined: many surface and illumination spectra can be described as alinear combination

of 3 basis functions, giving 3 unknowns per pixel, plus 3 parameters fora global illumination.

A trichromatic visual system makes fewer measurements than there are unknowns.

We address this problem by writing the reflectance spectra of small groupsof pixels as

linear combinations of ”spatio-spectral” basis functions. These aggregated surface reflectance

spectra require fewer parameters to describe than the sum of the spectral parameters for the

individual surface pixels, giving us more measurements than unknown parameters.

We explore this problem in a Bayesian context, showing when the problem is over or

underdetermined based on analyzing the local curvature characteristicsof the log-likelihood

function. We show how using the spatio-spectral basis functions might give us improved re-

flectance and illumination spectral estimates when applied to real image data.

1 Introduction

Color is important in our understanding of the visual world and provides aneffective cue for

object detection and recognition. In general, however, the observed color of an object differs

from its true color due to factors such as lighting and orientation. Color constancy refers to

the ability to perceive the color of an object as approximately constant regardless of the color

of the light falling upon it [10]. We are able to reliably use color for a varietyof vision tasks

largely because of our ability to perform color constancy well.
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Inherently, the color constancy problem is underdetermined. The image formation process

consists of an illumination reflecting off of a surface, then being passed through a set of sensors.

The input to the sensors is the product of the illumination spectrum and the surface’s reflectance

spectrum. Different combinations of illumination and reflectance spectra canproduce the same

spectrum impinging on the sensor, and various sensor inputs can result inthe same sensor

responses. Due to these ambiguities, it may be impossible to uniquely separate the effect

of the illumination and the surface reflectances in an image. The goal of computational color

constancy [21, 17, 6, 18, 3, 20, 13, 14, 24, 2, 9], therefore, is to determine an optimal separation

of reflectance and illumination under some metric. Given the sensor responses, we seek an

estimate of the reflectance and illumination spectra.

This would appear to involve estimating very many numbers. If we specify a 300 nm

spectrum at 10 nm intervals, even assuming a single illumination spectrum overthe whole

image, we would need31(N + 1) numbers to specify the reflectance spectra forN pixels

plus one illuminant. In order to simplify the color constancy problem, low-dimensional linear

models are used to describe illumination and reflectance spectra [16, 7, 19,15]. A sufficiently

large portion of the energy in these spectra (typically 99%) - can be described using as low

as three-dimensional models for both surfaces and illuminants. An additionalconstraint used

by some approaches is that surfaces and illuminants must be physically realizable, e.g. their

spectra cannot be negative and surface reflectances must be less than or equal to 1 [13, 2, 9].

Even after these simplifications, the color constancy problem remains underdetermined and

existing approaches must make further assumptions in order to obtain a solution. Buchsbaum’s

Gray World algorithm assumes that the mean reflectance of all images is the same, and the illu-

mination is estimated using this mean [6]. Maloney and Wandell’s Subspace methodrequires

that a two-dimensional model describe surface reflectances for the case of trichromatic sen-

sors [20]. Gamut mapping methods [12, 11] exploit the observed color gamut to estimate the

illuminant spectrum, and can be combined with realizability constraints. Since a Bayesian ap-

proach [2] can incorporate the various assumptions above into its prior probabilities, Bayesian

decision theory [1] provides a principled framework which we will use forstudying the color

constancy problem.

A parameter counting argument reveals the underlying problem we address in this work:

if we use a 3-dimensional model for the surface reflectance at each pixel, and a 3-dimensional

model for the illumination spectrum, for the case of trichromatic color sensors,we have more

unknowns than observations. We measure 3 numbers at each position, yet have to estimate 3

numbers at each position, plus the 3 numbers describing the illuminant. The problem is always

underdetermined, requiring, in a Bayesian solution, more reliance on the prior probabilities or

loss function than on the likelihood function to estimate the best answer. One would prefer the

situation where the data likelihood function dominated the other terms.

In this paper, we make the problem overdetermined by introducing linear basis func-
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tions that describe both spectral and spatial variations in the surface reflectances. These

spatio-spectral basis functions exploit image regularities which allow us to specify surfaces

reflectances using fewer numbers, yielding more image measurements than unknown parame-

ters.

In the next sections, we introduce the notation and linear basis function analysis, then ex-

plore the Bayesian approach. We show with simple examples that the structureof the posterior

indicates conditions under which color constancy is still undetermined by the data. We then

apply our approach to real images, verifying (using hyperspectral image data) that our surface

reflectance estimates improve through using the spatio-spectral basis functions.

2 Linear models

We assume there is one global illumination in each scene and that the light spectrum leaving

each surface is the term-by-term product of the illumination and local reflectance spectrum. For

a surface reflectanceS(λ) and illuminationE(λ), the response at positionx of a photoreceptor

with a spectral response ofRk(λ) is:

yx
k =

∑

λ

Rk(λ)E(λ)Sx(λ), (1)

The illuminant and surface spectra can be written as linear combinations of theillumination

basis functionsEi(λ) and reflectance basis functionsSj(λ), with coefficientsei andsx
j , re-

spectively, at positionx:

E(λ) =

L
∑

i=1

Ei(λ)ei, (2)

Sx(λ) =
L

∑

j=1

Sj(λ)sx
j , (3)

whereL is defined as the number of elements in theλ vector (i.e., the number of wavelength

samples). Doing so allows us to write the rendering equation as

yx
k =

∑

λ

Rk(λ)
L

∑

i=1

Ei(λ)ei

L
∑

j=1

Sj(λ)sx
j . (4)

Summing overλ, we get a bilinear form,

yx
k =

L
∑

i=1

L
∑

j=1

eiGij,ksx
j , (5)
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whereGij,k =
∑

λ Rk(λ)Ei(λ)Sj(λ).

The number of basis functions used in the linear models of (2) and (3) are equal to the

number of wavelength samples, so that the model fully describes the entire illumination and

reflectance spectra exactly. In general, however, we wish to approximate the true illuminant

E(λ) and surface spectraSx(λ) using lower dimensional linear models. Thus, we can define

Ẽ(λ) =

dE
∑

i=1

Ei(λ)ei, (6)

S̃x(λ) =

dS
∑

j=1

Sj(λ)sx
j , (7)

wheredE is the dimensionality of the illuminant approximatioñE(λ), dS is the dimensionality

of the surface approximatioñSx(λ) and0 < (dS , dE) < L. In addition, we can decompose

(5) as:

yx
k =

dE
∑

i=1

dS
∑

j=1

eiGij,ksx
j +

dE
∑

i=1

L
∑

j=dS+1

eiGij,ksx
j +

L
∑

i=dE+1

dS
∑

j=1

eiGij,ksx
j +

L
∑

i=dE+1

L
∑

j=dS+1

eiGij,ksx
j

=

dE
∑

i=1

dS
∑

j=1

eiGij,ksx
j + wx

k ,

(8)

wherewx
k is the error due to the use of lower dimensional models to approximate the true

illumination and reflectance, which we will refer to as ”observation noise” for the remainder

of this paper. A summary of the notation used in this paper is provided in Table 1.

Equation (8) is perhaps best understood by viewing color constancy asan estimation prob-

lem. The goal is to estimatẽSx(λ) andẼ(λ) givenyx
k . Thus, we view the “true” illuminants

as havingdE degrees of freedom as defined by the firstdE illuminant basis functions, with re-

maining basis functions contributing in the form of noise. Analogously for surface reflectance,

the first dS basis functions define the space of “true” reflectances and the remainingbasis

functions add noise. Note that while the illumination “noise” and reflectance “noise” are or-

thogonal to the “true” illumination and reflectance, the projections of the “true” data and the

“noise” into the sensor response space are not orthogonal.

3 Bayesian Approach to Color Constancy

The Bayesian approach to color constancy utilizes a probabilistic framework to examine the

problem. This framework is based on three fundamental probability distributions - the prior,

the likelihood, and the posterior. The prior describes the probability that a certain set of pa-
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Symbol Symbol Definition Symbol Symbol Definition
N number of pixels in an image m number of pixels along one dimension of

a square block being considered within
an image

λ wavelength γ index into spatio-spectral basis functions
L number of wavelength samples (length of

λ vector)
K number of sensor responses available at

any pixel
E(λ) spectral radiance of illuminant E(γ) spatio-spectral radiance of illumination

in m × m block
Ei(λ) ith basis function of illumination Ei(γ) ith spatio-spectral illumination basis

function
ei scalar weight ofith illumination basis

function
ei scalar weight ofith spatio-spectral illu-

mination basis function
e row vector of allei e row vector of allei

dE dimensionality of illumination represen-
tation

dE dimensionality of spatio-spectral illumi-
nation representation

Ẽ(λ) approximation to illuminant fromdE di-
mensional linear model

Ẽ(γ) approximation to spatio-spectral illumi-
nant fromdE dimensional linear model

Sx(λ) surface reflectance at pointx Sx(γ) spatio-surface reflectance for pixel block
x

Sj(λ) jth basis function of surface reflectanceSj(γ) jth spatio-spectral surface reflectance ba-
sis function

sx
j scalar weight ofjth surface reflectance

basis function at positionx
sx
j weight of jth spatio-spectral surface re-

flectance basis function for pixel blockx
sx column vector ofsx

j for all j sx column vector ofsx
j for all j

s matrix whose columns are given bysx s matrix whose columns are given bysx

dS dimensionality of surface reflectance rep-
resentation

dS dimensionality of spatio-spectral surface
reflectance representation

S̃x(λ) approximation to surface reflectance at
position x from dS dimensional linear
model

S̃x(γ) approximation to spatio-spectral surface
reflectance at pixel blockx from dS di-
mensional linear model

Rk(λ) spectral sensitivity ofkth sensor Rk(γ) spatio-spectral sensitivity ofkth sensor
R(λ) matrix ofRk(λ) for all k R(γ) matrix ofRk(γ) for all k
yx

k scalar response ofkth sensor atx yx

k scalar response ofkth sensor for pixel
blockx

yx vector ofyx
k for all k yx vector ofyx

k for all k
y matrix ofyx vectors for allx y matrix ofyx vectors for allx
Gij,k 3-d tensor relating illumination and re-

flectance weights to sensor responses
Gij,k 3-d tensor relating spatio-spectral illumi-

nation and reflectance weights to spatio-
spectral sensor responses

wx
k observation noise contained inyx

k wx

k observation noise contained inyx

k

Table 1: Symbol Notation
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rameters is the correct estimate without knowing anything about the data. Thisdistribution is

written asP (e, s), wheree ands are the global illumination weights and the surface weights

for all positions in an image. The likelihood, given byP (y|e, s), governs the relationship be-

tween the parameters being estimated (eands) and the observed data (in this case the set of all

sensor responses in an image,y). The posterior describes what is known about the parameters

being estimated after having observed the data and can be calculated using Bayes’ rule as

P (e, s|y) =
1

Z
P (y|e, s)P (e, s), (9)

where the normalization constant1
Z is independent of the parameters to be estimated. (In ad-

dition to these probabilities, the Bayesian formulation requires that we specifya cost function

that defines the penalty associated with a parameter estimate of(ẽ, s̃) when the true parameter

values are(e, s). For estimating the relative surface and illumination spectra, independent of

any overall scale factor, we find that the loss function has little effect [2], so we use a minus

delta loss function, which corresponds to MAP estimation wherein we maximize theposterior

probability given by equation (9).)

The underdetermined nature of the general color constancy problem implies that there

should be an infinite set of solutions which maximize the posterior. To see that this is the case,

we must examine the properties of equation (9).

Assuming independent and identically distributed Gaussian observation noise with vari-

anceσ2 in the photoreceptor responses at each patch, the posterior probability is:

P (e, s|y) =
1

Z

∏

x,k

e−(yx
k
−

∑

i,j eiGij,ksx
j )2/(2σ2)P (e, s). (10)

If the posterior is flat along any dimension in this region, there is a family of possible solutions

to the maximization problem, whereas if the posterior is not flat along any dimensions, a finite

number of local maxima must exist. To illustrate this point, we will consider a very simple toy

example in whichdE = 1, dS = 1 andP (e, s) is uniform over some range[α, β]× [α, β]. The

posterior is then given by

P (a, b|y) =

{

1
Z e−(y−es)2/(2σ2) if α < e, s < β

0 otherwise
(11)

Figure 1 illustrates this distribution. There is a ridge of points, defined by the hyperbola

es= 1, that maximize the posterior probability. At any one of these points we can seethat there

is one direction of zero curvature and one direction of negative curvature. In the following

section, we describe a method of performing this sort of curvature analysis to examine the

structure of the color constancy problem in a less trivial setting.
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Figure 1: Depiction of the posterior for the toy color constancy problem,y = es. Note that at any
local maximum of the posterior, there is zero curvature along one principle direction, and negative
curvature along the other, indicating a local 1-d subspace of the parameters which explain the
observed data equally well.

3.1 Local Curvature Analysis

We explore how the structure of the posterior probability reveals whether or not the color

constancy problem is solvable. We assume in this analysis that the prior probability P (e, s)

varies slowly over the region being considered. In this case, the local structure of the posterior

can be analyzed by examining the local structure of the likelihood function,

L(y|e, s) = −
1

2σ2

∑

x,k

(

yx
k −

∑

i,j

eiGij,ksx
j

)2
. (12)

The local structure we are interested in is the curvature of the log likelihood function, which

tells us how moving in the parameter space affects our ability to explain the observed data. We

will analyze how this structure changes when we introduce low-level spatial information into

the model, and use this analysis to motivate the use of such information for colorconstancy.

The curvature of the log likelihood can be obtained from an eigen decomposition of its

Hessian matrix [8]. The Hessian is a matrix of all second order derivatives and thus, for an

N-pixel image, is a(dE + NdS) × (dE + NdS) matrix. The eigenvectors of the Hessian

matrix give principal directions of curvature and the corresponding eigenvalues give the extent

of curvature in each of these directions.

At a maximum of the log likelihood, all eigenvalues of the Hessian must be non-positive

(meaning that there cannot be any positive curvature at this point since the log likelihood

cannot increase as we move away from the local maximum). If there are anyeigenvalues equal

to zero, this implies that there are directions of zero curvature - e.g., there are ways we can vary

the estimated parameters without affecting the likelihood of the data. For a unique maximum,

all eigenvalues of Hessian must be negative at the maximum.

The amount of curvature of the Hessian also tells us something of how robust we can expect

a parameter estimate to be in the presence of observation noise. Large eigenvalues of the

Hessian imply a highly curved log likelihood, which, under the assumption of a relatively flat
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prior, implies a highly curved posterior distribution. The larger the curvature of the posterior

(i.e., the more ”peaky” it is) the more robust we can expect it to be to observation noise in the

observed data.

This notion of calculating the curvature of the Hessian of the log-likelihood is also related

to the Fisher Information Matrix, except that we examine the Hessian of the loglikelihood at

a particular point, whereas the Fisher Information Matrix takes an expectation of the Hessian

with respect to the parameters being estimated [23].

To help us understand the structure of the color constancy problem for real-world images,

we first examine representative special cases in toy examples. AppendixB gives a full deriva-

tion of the Hessian for the log likelihood function given by (12).

3.1.1 Underdetermined Case

We constructed a toy problem in which the sensor responses for all pointsin an image are

generated using equation (8) with the noise term set to zero. To perform simulations, we used

a hyperspectral data set of 28 natural scenes collected at Bristol University by Brelstaff, et. al.

as described in [22, 4, 5]. Each of these images is256× 256 pixels in size and contains sensor

responses to 31 spectral bands, ranging from 400 nm to 700 nm in 10 nmintervals. Each

scene also contains a Kodak greycard at a known location with a constantreflectance spectrum

of known intensity. The scene illuminant is approximated as the spectrum recorded at the

location of the greycard divided by its constant reflectance. Our dataset therefore consists of

256x256x28 reflectance spectra and 28 illumination spectra.

The first three illumination and reflectance basis functions obtained by applying principal

components analysis (PCA) to this data are plotted in Figure 2(a) and 2(b), respectively (PCA

is performed on all 28 illumination spectra and approximately half of the reflectance spectra).

We assume, without loss of generality, a Gaussian model for sensor responses centered at 650

(red), 550 (green), and 450 nm (blue) as shown in Figure 2(c). Sample images from the dataset,

after being passed through these Gaussian sensors, are shown in Figure 3.

To construct our toy problem, we draw 10 sample reflectance spectra from our dataset and

project those spectra onto a 3-dimensional space spanned by the first three reflectance basis

functions shown in Figure 2(b). We perform an analogous operation onone sample illumina-

tion spectrum and pass the low dimensional illumination and reflectances through the sensors

of Figure 2(c) to yield sample image values. This is a toy example because the illumination

and reflectance are described fully by 3-dimensional linear models, whichis not the case for

real images.

Evaluating the Hessian at the correct location in parameter space (i.e., the maximum of the

log-likelihood) results in the eigenvalue spectrum shown in Figure 8, which shows that there

are 3 eigenvalues equal to zero, and thus 3 directions of zero curvature. The three associated

eigenvectors give the directions of zero curvature in parameter space.Any linear combination
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(a) Illumination Basis Functions
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(b) Reflectance Basis Functions
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(c) Sensor Responses

Figure 2: Basis functions and sensor responses used in toy examples. Basis functions are obtained
from a hyperspectral dataset.

Figure 3: Sample images from dataset of 28 hyperspectral images after being passed through the
sensors of Figure 2(c). The hyperspectral images contain information from 31 spectral bands at
each pixel, and the greycards in each of the images is used to find the true illumination of the scene.
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of these eigenvectors is also a direction of zero curvature.

It is interesting to note that there are 3 illumination weights and also three eigenvectors

with corresponding zero eigenvalues. Each of these eigenvectors is ofdimensiondE + NdS ,

with three of those dimensions corresponding to the illuminant weights. The three eigenvectors

span the space of the 3-dimensional illuminant space, meaning that for any set of illumination

coefficients, there exists some set of reflectance weights such that the likelihood associated

with that set of parameters is equal to the likelihood associated with the correct set of parame-

ters. In other words, this means that we can move in any direction in the 3-dimensional space

of the illuminant and still find surface reflectance values that render to the observed sensor val-

ues. One example of this is a multiplicative scaling up of the illumination and a corresponding

scaling down of the surface reflectances.
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(a) Eigenvalue spectrum

(3 curves with slope = 0)

(b) Graphic depiction

Figure 4: Eigenvalue spectrum and corresponding curvatureof the log likelihood for a toy example
of the color constancy problem. Note that all eigenvalues are non-positive (the log of the absolute
value is used on the right side plot for display purposes). Each of the curves on the left shows
a projection on the log likelihood function onto a particular direction of principle curvature. The
directions of zero curvature and eigenvalues at zero show that the problem is underdetermined

3.1.2 Sufficient Sensors

If there are 4 independent photoreceptor responses available insteadof 3, we would expect for

a better behaved log-likelihood function. However, there should still be one direction of zero

curvature in the Hessian, corresponding to a simple scaling of the illumination and surfaces. To

see this, we use the basis functions and sensor responses given in Figure 8 as well as a fourth

sensor response (chosen to be random and thus independent of the other three) to construct

another toy example. We again generate 10 random points and find that the Hessian behaves as

expected, as shown in Figure 5. [[[[ Not only does the Hessian have only one eigenvalue equal

to zero, the other eigenvalues have a much larger value than the eigenvalues of the Hessian in

the underdetermined case. ]]]]
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Figure 5: Eigenvalue spectrum and corresponding curvatureof the log likelihood for a case when
the number of sensors exceeds the dimensionality of the surface model. Again, all eigenvalues
are non-positive. There is now only one direction of zero curvature, corresponding to an unknown
scale factor.

3.2 Bayesian Color Constancy in the Underdetermined Case

In general, the Bayesian approach to color constancy is able to producea unique parameter

estimate in the underdetermined case despite multiple degrees of ambiguity in the likelihood

function. This is because the prior or the loss function will favor one solution over the others

[2].

Often, however, the prior may be inaccurate for the particular image being examined. Ide-

ally, we would like for our parameter estimate to be dominated by the effect of thelikelihood

function. That is, we would like for the estimate to be based on the data itself, not on prior

assumptions about the data or how much we value particular parts of the data.

4 Spatio-spectral Basis Functions

We now introduce an alternative formulation of the finite-dimensional models presented in

Section 2 that model both spatial and spectral properties of groups of pixels in natural images.

The hypothesis is that by taking characteristic spatial variations of naturalimages into account,

the number of parameters necessary to describe the reflectance of an image will be reduced so

that the problem is no longer underdetermined.

Certain physical phenomena, such as interreflections, may generate characteristic spatial

and spectral signatures which allow estimation of the desired spectra from image data. Natural

images, like foliage, may exhibit characteristic spatial changes in color. Thespatio-spectral

basis functions allow us to exploit these, or other, regularities in the visual world in order to

solve the color constancy problem. We expect this approach will work best in richly textured

images, and worst in flat, color Mondrian-type images [21].
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4.1 Modified Linear Models

Instead of using linear models to describe the reflectance of individual pixels, we will now use

these models to describe groups of pixels. Without loss of generality, we can group pixels into

m × m blocks and use the same basic formulation as was developed in Section 2. In order to

do so, it is necessary to convert blocks of pixels into vector format. We dothis by rasterizing

the pixels within the block. The reflectance of a block of pixels is defined as avector of length

m2L consisting of the reflectance of each pixel within the block stacked on top ofeach other in

raster order. The same process is used to describe the sensor response of the block as a vector

of lengthm2K and the illumination as a vector of lengthm2L.

The basis functions used to model the reflectance of blocks of pixels are now referred to

asspatio-spectralreflectance basis functions, since they describe both the spectral and spatial

characteristics of a block of pixels.

We shall denote a group of pixels byx, so that the illumination and reflectance of a block

of pixels is given by:

E(γ) =
m2L
∑

i=1

Ei(γ)ei, (13)

Sx(γ) =
m2L
∑

j=1

Sj(γ)sx

j , (14)

whereEi(γ) andSj(γ) are the spatio-spectral illumination and reflectance basis functions,

ei andsx
j are the weights associated with these basis functions,E(γ) is the illumination of

all blocks in the image, andSx(γ) is the reflectance of the block of pixelsx. Note that the

elements of the scene are now written as a function ofγ rather thanλ. This is due to the

fact that the spatio-spectral representation contains information about both the frequency and

spatial characteristics of the scene. Approximating these models with fewer dimensions, we

can define

Ẽ(γ) =

dE
∑

i=1

Ei(γ)ei, (15)

S̃x(γ) =

dS
∑

j=1

Sj(γ)sx

j , (16)

whereẼ(γ) is the approximate illumination of all blocks in an image, constructed using adE

dimensional model, and̃Sx(γ) is the approximated reflectance for the blockx, constructed

using adS dimensional model.

We define anm×m block of pixels as havingm2K sensor outputs, withK sensor outputs

per pixel. Thus, we define the sensor responses of the group of pixelsas the block diagonal
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matrix

R(γ) =















R(λ) 0 . . . 0

0 R(λ) . . . 0
...

...
. . .

...

0 0 0 R(λ)















(17)

with m2 blocks along the diagonal, where

R(λ) = [R1(λ) R2(λ) . . . RK(λ)].

We letRk(γ) refer to thekth column of the matrixR(γ).

Following a derivation analogous to that presented in Section 2, we can writethe sensor

output in a bilinear form with noise as:

yx

k =

dE
∑

i=1

dS
∑

j=1

eiGij,ksx

j + wx

k , (18)

whereyx

k is the sensor response of the block of pixelsx, Gij,k is defined as

Gij,k =
∑

γ

Rk(γ)Ei(γ)Sj(γ), (19)

andwx

k is the noise introduced from using a lower-dimensional linear model.

4.2 Descriptive Power of Spatio-Spectral Basis Functions

The advantage of incorporating spatial information into the linear models usedto describe

scenes is that it provides more descriptive power using a fewer number of parameters. It is

straightforward to show that even if natural images displayed the characteristic that individ-

ual pixels in an image are independent of one another, and incorporatingspatial information

provides no benefit, spatio-spectral basis functions provide equal descriptive power to stan-

dard spectral basis functions. For real images, spatio-spectral basisfunctions in fact describe

images much better than standard spectral basis functions, due to the correlation that exists

between neighboring pixels in natural images.

The amount of improvement in descriptive power provided by the new methodcan be tested

by using real images to find linear reflectance bases for blocks of various sizes (including

m = 1, which corresponds to the traditional case of examining each pixel independently)

and, in each case, calculating the squared reconstruction error as the dimensionality of the

reflectance model is varied. To do this, we use the dataset of hyperspectral images described

earlier in Section 3.1.1. Approximately half of the data in the 28 scenes (selected randomly)

is used to find the linear model, and the squared reconstruction error is calculated using the
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remaining data.

The first three components of the reflectance basis corresponding tom = 1 was shown

in Figure 2(b), and Figure 6 plots the first 12 spatio-spectral reflectance basis functions for

m = 2. These basis functions were extracted from the hyperspectral data using the calibration

gray card in each image of the dataset, in the same manner as described in Section 3.1.1. The

correlation between neighboring pixels in the×2 block is apparent when examining these basis

functions.

Figure 6 shows the first 12 components of the reflectance basis corresponding tom = 2.

A comparison of squared reconstruction error when considering blocksizes ofm =1, 2 and 4

is shown in Figure 7.

It can be seen that using a block size ofm = 2 dramatically improves performance. For

example, the data shows that the error rate obtained when describing eachpixel with 3 basis

functions can be achieved by using only1.25 basis functions per pixel when describing an

image with2 × 2 blocks (i.e., 5 basis functions for the block). Increasing the block size

beyondm = 2 shows even further improvement in the ability to describe the data using fewer

parameters, since more of the image correlations can be described by the larger blocks.

4.3 Curvature Analysis Using Spatio-Spectral Basis Functions

To see the advantage of using spatial information in the context of Bayesiancolor constancy,

we must once again analyze the local curvature of the posterior probability. Following the

derivations in Section 3, we once again make the assumption of a locally flat prior distribution,

allowing us to simplify the problem and examine the log likelihood function, now written as

L(y|e, s) =
∑

x,k

(

yx

k −
∑

i,j

eiGij,ksx

j

)2
. (20)

We again consider two toy problems, now for the case of2×2 pixel blocks instead of single

pixels. Figures?? and?? show the eigenvalues of the Hessian matrix in the underdetermined

and overdetermined cases, respectively. In both cases we have 12 sensor responses available

and we consider 12 pixels (3 blocks) and an illumination projected down into three dimensions.

For the underdetermined case, reflectances are 12 dimensional whereas in the overdetermined

case they are 11 dimensional.

5 Experiments with Natural Images

We look at groups of 40 pixels, grouped into 10 sets of 2x2 pixel blocks.The 10 sets were

selected from randomized positions in the image.

In order to get the priors, we project our dataset of reflectances andilluminations onto the
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(d) basis functions 10, 11, and 12

Figure 6: The first 12 spatio-spectral basis functions for 2x2 pixel blocks. Each basis function is
plotted for wavelength values from 400 to 700 nm on the x-axis. The first 3 spatio-spectral basis
functions, (a), show only spectral variations and no spatial variation. The next 3 basis functions,
(b), correspond to spatial derivatives. The final 6 indicatea more complex relationship of spatial
and spectral variations, (c) and (d).
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Figure 7: The squared reconstruction error using linear models of varying dimensions for block
sizes ofm =1, 2, 3, and 4. The x-axis is equivalent to the number of basis functions used to
describe them×m block divided bym2. Using block sizes ofm = 2 or larger greatly reduces the
number of coefficients needed to describe each pixel.

basis functions given in Figures 2(a) (for illumination) and 6 (for spatio-spectral reflectance).

We fit truncated Gaussians to the data and use these as our priors.

Our goal is now to find the set of illumination and reflectance coefficients thatminimize

the posterior probability. In order to do this, we need to search over the space of all possible

illumination and surface reflectance coefficients. Since the number of surface coefficients

scales with the number of pixels in the image, this quickly becomes an intractable problem.

Following [2], in order to make the problem more feasible, we limit our search tolook

over the space of illumination coefficients and solve for the surfaces at each iteration using a

deterministic relationship. In the underdetermined case, where the number ofsensor responses
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(a) Underdetermined case
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Figure 8: Eigenvalue spectra of the log likelihood functionwhen using2 × 2 blocks in the under-
determined case (left) and overdetermined case (right). Aswas the case when considering single
pixels, in the underdetermined case, there are three directions of zero curvature and in the overde-
termined case there is only one direction of zero curvature.
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at each pixel is equal to the number of surface coefficients at each pixel, we solve for sur-

faces that produce the sensor responses exactly given an illumination (this is done by solving

equation (8) assuming no sensor noise through a simple matrix inversion). This is equivalent

to constraining our search to locations of maximum probability in the likelihood. Inthe case

where we have more sensor responses than surface coefficients, wetake the pseudo-inverse to

find the surface coefficients corresponding to a given illumination.

Unfortunately, applying this technique of constraining the search space toreal images gives

numerical problems. In these images, the noise term in equation (8), which corresponds to the

surface and illumination components not included in a low-dimensional model, causes the

surface coefficients that maximize the likelihood term given the true illuminant to be very dif-

ferent from the true surfaces coefficients. This makes it hard to properly analyze the posterior

probability corresponding to a given illuminant.

To avoid the numerical issues mentioned above, we test our algorithm on images con-

structed by first projecting the true surface reflectances down to 11 dimensions out of 124 in

the2 × 2 block model, multiplying the reflectance image by the true illuminant, and passing

the result through the Gaussian sensors shown in Figure 2(c). To provide a fair comparison

between our algorithm using spatial information and te existing Bayesian and Gray World

algorithm that rely on single pixels, we also find a new set of single-pixel reflectance basis

functions and prior probabilities that apply to this modified dataset.

Figure 9 shows that there is very little visual difference between the image obtained using

the true reflectance and the image obtained after projecting the reflectance onto the lower-

dimensional subspace. We need to be clear: these are pre-processedimages, not “real” images,

although they are tantalizingly close to real images. We show the benefits of using spatio-

spectral basis functions in solving color constancy using the pre-processed images, and expect

that extensions to real images will follow in work by us or by others.

(a) Sample image from dataset (b) Image after projection

Figure 9: The visual effect of projecting reflectance to lower dimensions is very small.

Figure 10 shows results for our approach using spatio-spectral basisfunctions in a Bayesian
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approach with the standard Bayesian approach and the Gray World approach. Each algorithm

is run on 15 random groups of 40 pixels chosen from the image. The particular image we con-

sider is not fit very well by the priors, which is why the standard Bayesianapproach, examining

one pixel at a time, and the Gray World approach both result in incorrect estimates. Despite the

low prior probabilities, however, the Bayesian approach using spatio-spectral basis functions

allows us to locate the correct illuminant for each draw. This illustrates that thelikelihood term

does dominate our estimate, as we would expect.
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(a) using spatio-spectral basis functions
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(b) standard Bayesian approach
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(c) Gray World algorithm

Figure 10: Results of color constancy applied to a natural image. Each algorithm was run 15 times,
with results shown in dotted lines. The mean illumination from the prior is given in the dashed line
as reference, and the true illuminant is marked by circles.

6 Conclusions

We have studied the effect of using spatio-spectral surface reflectance basis functions to find a

low-dimensional estimate of surface reflectance characteristics.

These basis functions can convert the color constancy problem from an under-determined

problem to an over-determined one. We can see this in the curvature characteristics of the
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log-likelihood function at parameter local maxima.

For natural images, pre-processed to restrict the surface reflectance variations to be ex-

plained by an average of 11 basis functions per2 × 2 pixel block, we find that using spatio-

spectral basis functions allows for very accurate estimates of the global illumination spectrum

(and therefore of surface reflectance spectra, too). For the same images, using purely spectral

basis functions results in an underdetermined problem, with much higher estimation error for

the optimal Bayesian estimate.
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APPENDIX: The Hessian of the Log Likelihood Func-

tions with Bilinear Forms
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