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The generic viewpoint
assumption in a framework
for visual perception

William T. Freeman

Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge,
Massachusetts 02139, USA

A VISUAL system makes assumptions in order to interpret visual
data. The assumption of ‘generic view’'™ states that the observer
is not in a special position relative to the scene. Researchers com-
monly use a binary decision of generic or accidental view to dis-
qualify scene interpretations that assume accidental viewpoints® '°.
Here we show how to use the generic view assumption, and others
like it, to quantify the likelihood of a view, adding a new term
to the probability of a given image interpretation. The resulting
framework better models the visual world and reduces the reliance
on other prior assumptions. It may lead to computer vision algo-
rithms of greater power and accuracy, or to better models of human
vision. We show applications to the problems of inferring shape,
surface reflectance properties, and motion from images.
Consider the image of Fig. la. Perceptually, there are two
possible interpretations: a bump, lit from the left, or a dimple,
lit from the right. Yet many shapes and lighting directions (Fig.
1b) could explain the image. How should a visual system choose?
We note that the ridges in shapes 2-4 of Fig. 15 must line up
with the assumed light direction. We can study the ‘accidental-
ness’ of this alignment by exploring how the image of the illumin-
ated shape changes as we perturb the azimuthal light direction.
Figure 1c shows that shape 3 presents images similar to that in
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FIG. 1 a, Perceptually, this image has two possible interpretations. It
could be a bump, lit from the left, or a dimple, lit from the right.
b, Mathematically, there are many possibilities. The five shown here
were found by a linear shape from shading algorithm, assuming shallow
incident light from different azimuthal directions and the boundary con-
ditions described in ref. 8. Shapes 2—4 require coincidental alignment
with the assumed light direction. For shape 3 in ¢, the rendered image
changes quickly with assumed light angle; only a small range of light
angles yields an image like that shown in a. The generic view term of
the scene probability equation, equation (7), penalizes an interpretation
that has high image derivatives with respect to the generic variable, in
this case light direction. For shape 5 in d, a much larger range of light
angles gives the observed image. If all light directions are equally likely,
shape 5 should be the preferred explanation. The probabilities of the
candidate shapes, found using equation (7), are shown in e. The results
favour shapes 1 and 5, in agreement with the perceptual appearance
of a.

Fig. la only for a small range of assumed light directions. The
bump in Fig. 1d (shape 5) presents images like that in Fig. la
over a broader range of light directions. If all azimuthal light
directions are equally likely, shape 5 has more chances to create
the image in Fig. la than does shape 3.

To quantify such probabilities, we use a bayesian framework
(as in ref. 11, for example). This combines the data (Fig. la)
with known or estimated prior probabilities to find the posterior
probability of each candidate shape.

We treat the azimuthal light direction as a random variable,
an example of what we call a generic variable, X, with prior
probability density P«(x). (We use subscripts to distinguish
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FIG. 2 a and b, Two images with intensity vari-

ations along only one dimension. Such images

can be explained by many different combina-

tions of surface reflectance function and shape.

We use a two-parameter family of reflectance
functions (a subset of the model of ref. 21) and

a fixed light position to generate a family of
possible shape and reflectance function expla-

nations for each of a and b. ¢, Visual key to the
parameters provided by showing the appear-

ance of the surface reflectance functions,
rendered on the surface of a sphere. For every
specularity and roughness, shapes exist that
produce image a or b. (For each shape we
assumed boundary conditions of constant

height at the vertical picture edge.) One wants

to choose between these competing explana-

tions without resorting to an ad hoc bias toward

some shapes or reflectance functions. Each of

the explanations will present the images shown

over differing ranges of the generic variables,

taken here to be vertical light angle and object
orientation. The scene probability equation cal-

culates their relative probability densities®>. d
Plots d and e show the probability that the
images a and b, respectively, were created by
each surface reflectance function in the
parameter space and corresponding shape.
The probabilities are the highest for the 1.00
reflectance functions that look like the material
of the corresponding original image (compare
with ¢).

relative
probability

between probability densities, P.) Generic variables can include
viewpoint, lighting direction, or object pose. These are variables
that we do not need to estimate precisely. -

We assume a prior probability density, Ps(f8), for the scene
parameter § we want to estimate. For this example, shapes 1-5
are_assigned equal probabilities. The posterior distribution,
P(B, x| §), gives the probability that scene parameter 8 (shape)
and generic variable x (light direction) created the visual data y
(Fig. 1a). From P(f, X| y), we will find the posterior probability
P(B|y).

We use Bayes’ theorem to evaluate P(f, X|J):
P(j| B. $)P4(B)P<(3)
Py(¥)
where we have assumed that X and Baare independent. The

denominator is constant for all models 8 to be compared.
To find P(f, x| ¥) independently of the value of the generic

variable ¥, we integrate the joint probability of equation (1) over
the possible ¥ values:

P(B, % 5)= M

Ps(B)
Py(y)

We will assume that the prior probability P«(x) of the generic
variables is a constant. The generalization for other priors is
straightforward. P(y| S, X) is large where the scene S and the
value X give an image similar to the observation j. The integral
of equation (2) integrates the area of X for which f yields the
observation. In our example, it effectively counts the frames in
Fig. lc or d, where the rendered image is similar to the input
data.

P(B|3)= P(§| B, $)P«(%) dx o)
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We assume zero mean gaussian observation noise of variance
o, which plays two roles. Tt measures the similarity between
images as the probability that noise accounts for the differences.
It can also model physical noise. For this noise model,

1

(V2raH)
where f(%, f) is a known ‘rendering function’ which gives the
image created by the generic and scene parameters x and §, and
N is the dimensionality of the visual data y.

For the low noise limit, we can find an analytic approximation
to the integral of equation (2). We expand f(%, §) in equation
(3) in a second-order Taylor series,

J@E By =fige. B+ T fili— %o +3 L [ =%l fi[i =%, (4)

P(7 B’ 3= e*\\ﬁ*?(}»‘fi)ﬂzﬂcz (3)

where [ - ]; indicates the ith component of the vector in brackets,
and

. Of (%, B
LB ©)
Xi li=x
and
”u=62j‘()€a B)
S Tox o, e, (6)

We take X, to be the value of X which can best account for the
observed image data; that is, for which [[§—f%, )] is
minimized.

Using equations (3)-(6) to second order in ¥ — X, in the inte-
gral of equation (2), we find the posterior probability for the
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FIG. 3 Showing the need for the generic view
term of equation (7). We compare the probabil-
ity densities of two explanations for the image
in a. The surface in b (shown at 7 x vertical
exaggeration), lit at a grazing angle, yields the
image in d. The surface in ¢ gives the image in
e, which accounts less well for the image in a.
Thus, based on an image fidelity criterion, b is
a better explanation. The common prior
assumption of a smooth surface® would also
favour b (the surface is very smooth at the true
vertical scale). However, the object and light
source must be precisely positioned for the
shape in b to give the image in d; the generic
view term of the scene probability equation (7)
penalizes this. Including the generic view term
makes the overall probability densities (shown
in ), favour the perceptually reasonable expla-
nation of shape ¢ over shape b. (We made this
example by construction. Gaussian random
noise at a 7 dB signal-to-noise ratio was added
to e to make a; b was found from a using a
shape from shading algorithm, assuming con-
stant surface height at the left picture edge®®.
We evaluated the likelihood of b and ¢, assum-
ing both generic object pose and generic light-
ing direction®®. The strength of a prior
preference for smooth surfaces is arbitrary and
none was included in the final densities. The
actual noise variance was used for ¢2 in the
fidelity term of equation (7), although a wide
range of assumed variances would give the
preferences shown here.)

scene parameters § given the visual data y:

) 15— Ao, B , 1
P(ﬂlﬁ)=kexp<W>Pﬁ(ﬁ)m 7

=k (fidelity) (prior probability) (generic view)

where the 7 and jth elements of the matrix C are
Co=/1i 3= (=% B))  f5 (3)
We call equation (7) the scene probability equation. The nor-
malization constant k does not enter into comparisons between
interpretations f3. The exponential term, which we call the image
fidelity term, favours scene hypotheses that have a small mean-
squared difference from the visual data. This and the prior
probability term Pgz(f) are familiar in computational vision.
Regularization, from which many vision algorithms have been
derived'*"*, finds the maximum probability density'*'® using
these two terms, when viewed in a bayesian context. The third,
generic view term, accounts for the assumptions of generic view-
point, pose or lighting position. The scene probability equation
favours interpretations that can generate the observed image
over a relatively large range of generic variables, by penalizing
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large image derivatives with respect to those variables. If the
prior probability of the generic variable were not constant,
then the factor P.(X,) would be included in the prior term of
equation (7).

The generic view term is especially useful when several explan-
ations account equally well for visual data, as occurs commonly
in problems of stereo, shape, motion and colour perception; ref.
16, for example. Then the image fidelity term is the same for
the competing explanations. The prior probabilities may not be
known well®, The generic view term allows a choice based on
the relatively reliable assumptions of generic view, pose, or light
source position.

Our approach relates to bayesian analyses of data interpola-
tion, image restoration and other problems'"'>'". In that work,
as in this, one favours hypotheses that could have generated the
observed data in many ways (see also ref. 18, a related non-
bayesian approach).

Using the scene probability equation (7), we plot in Fig. le
the relative probabilities of shapes 1-5 of Fig. 15. Note the agree-
ment with the bump/dimple shapes perceived to be the true
explanation of Fig. 1a. (Presumably, these are perceptually fav-
oured because they are more probable.) Without the generic
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FIG. 4 Application of the scene probability equation to velocity estima-
tion. a, Within a local aperture, the object velocity direction is
ambiguousig. V., the component of velocity normal to the local con-
trast, is constrained by the measurement, while V| is unconstrained.
b, Line in velocity space of object velocities consistent with observed
normal velocity. High values of V, imply a concidental alignment of
the local contrast orientation with the object velocity direction. In our
framework, the measurement vector y is the normal velocity vector; the
scene parameter f is V,; the generic variable X is the angle 6 between
the object velocity and the orientation of local contrast. The scene
probability equation (7), penalizes high derivatives of the normal velocity
with respect to contrast orientation. ¢, Resulting posterior probability
for V,, showing a bias in favour of the normal velocity (V, =0). This bias
is consistent with psychophysical observations?°.

view term, one would have to state an arbitrary preference for
bumps or dimples to choose between the candidate shapes.

In Fig. 2 we use the scene probability equation to choose
between surface reflectance functions in a case where they would
otherwise be indistinguishable. Figure 3 shows an example in
which both the fidelity and the prior probability terms favour a
perceptually implausible explanation. Only when the generic
view term of equation (7) is included does the perceptually fav-
oured explanation rank higher.

In Fig. 4, we apply the scene probability equation to the prob-
lem of estimating the local image velocity from local measure-
ments of the velocity components normal to the contrast
orientation'®. All velocity components parallel to the local con-

NATURE - VOL 368 - 7 APRIL 1994

trast orientation are possible, but high speeds would imply a
coincidental alignment of the local contrast with the image
velocity. The scene probability equation predicts a bias toward
zero parallel velocity component, which is supported by psycho-
physical evidence™.

From an equation that ranks scene interpretations, such as
the scene probability equation (equation (7)), one can develop
vision algorithms that find an optimum interpretation. Including
the generic view term gives a better statistical model of the visual
world. It may result in more powerful and accurate algorithms
for vision. O
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Direct modulation by Ca** -
calmodulin of cyclic nucleotide-
activated channel of rat
olfactory receptor neurons

Tsung-Yu Chen & King-Wai Yau

Department of Neuroscience and Howard Hughes Medical Institute,
The Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, USA

OLFACTORY receptor neurons depolarize in response to odorant
stimulation of their sensory cilia'. One transduction mechanism
involves a G-protein-mediated increase in adenylate cyclase
activity*®, raising the internal cyclic AMP concentration to open
a cyclic nucleotide-activated cation channel on the plasma
membrane® ™. An influx of Ca®* through this channel, which is
permeable to both monovalent and divalent cations, triggers olfac-
tory adaptation'®, Previous work has indicated that at least part
of this Ca** -mediated adaptation resides in the channel itself'>"",
but the mechanism remains unclear and controversial'®"®, Here
we use the cloned channel from rat'® expressed in a cell line and
the native channel from rat olfactory receptor cells to show that
Ca®* reduces the apparent affinity of the channel for cAMP by
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