
INV ITED
P A P E R

Infinite Images: Creating
and Exploring a Large
Photorealistic Virtual Space
This proposed system uses 3-D-based navigation to browse large

photo collections, and arrange them into themes, such as city streets or

skylines, in a large image database.

By Biliana Kaneva, Student Member IEEE, Josef Sivic, Member IEEE,

Antonio Torralba, Member IEEE, Shai Avidan, Member IEEE, and

William T. Freeman, Fellow IEEE

ABSTRACT | We present a system for generating Binfinite[

images from large collections of photos by means of trans-

formed image retrieval. Given a query image, we first transform

it to simulate how it would look if the camera moved sideways

and then perform image retrieval based on the transformed

image. We then blend the query and retrieved images to create

a larger panorama. Repeating this process will produce an

Binfinite[image. The transformed image retrieval model is not

limited to simple 2-D left/right image translation, however, and

we show how to approximate other camera motions like

rotation and forward motion/zoom-in using simple 2-D image

transforms. We represent images in the database as a graph

where each node is an image and different types of edges

correspond to different types of geometric transformations

simulating different camera motions. Generating infinite

images is thus reduced to following paths in the image graph.

Given this data structure we can also generate a panorama that

connects two query images, simply by finding the shortest path

between the two in the image graph. We call this option the

Bimage taxi.[Our approach does not assume photographs are

of a single real 3-D location, nor that they were taken at the

same time. Instead, we organize the photos in themes, such as

city streets or skylines and synthesize new virtual scenes by

combining images from distinct but visually similar locations.

There are a number of potential applications to this technol-

ogy. It can be used to generate long panoramas as well as

content aware transitions between reference images or video

shots. Finally, the image graph allows users to interactively

explore large photo collections for ideation, games, social

interaction, and artistic purposes.

KEYWORDS | Image mosaicing; Internet images; large datasets;

scene recognition; transformed image retrieval; virtual scene

synthesis

I . INTRODUCTION

The number of digital images captured and shared online is
growing at a phenomenal rate. It was recently reported1

that Facebook currently stores 15 billion images (not in-

cluding replications) and 850 million new photographs are

added every month. Facebook is not alone; ImageShack,

the largest photo-sharing service to date, hosts 20 billion

images while News Corp’s PhotoBucket and Yahoo’s Flickr

store 7.2 and 3.4 billion photos, respectively. Internet

Vision is an emerging field at the intersection of computer

Manuscript received April 11, 2009; revised July 15, 2009; accepted August 6, 2009.

Date of publication May 27, 2010; date of current version July 21, 2010. This work was

supported by ARDA VACE, by NGA NEGI-1582-04-0004, by MURI Grant N00014-06-1-

0734, and by ANR project HFIBMR (ANR-07-BLAN-0331-01).

B. Kaneva and A. Torralba are with MIT Computer Science and Artificial

Intelligence Laboratory, Cambridge, MA 02139 USA (e-mail: biliana@csail.mit.edu;

torralba@csail.mit.edu).

J. Sivic is with INRIA, WILLOW Project Team, Laboratoire d’Informatique

de l’Ecole Normale Superieure, CNRS/ENS/INRIA UMR 8548, Paris, France

(e-mail: josef.sivic@ens.fr).

S. Avidan is with Adobe Research, Newton, MA 02466 USA

(e-mail: avidan@adobe.com).

W. T. Freeman is with MIT Computer Science and Artificial Intelligence Laboratory,

Cambridge, MA 02139 USA, and is also with Adobe Research, Newton,

MA 02466 USA (e-mail: billf@csail.mit.edu).

Digital Object Identifier: 10.1109/JPROC.2009.2031133

1TechCrunch: Who Has The Most Photos Of Them All? Hint: It Is
Not Facebook, April 7, 2009.

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 13910018-9219/$26.00 �2010 IEEE

vision and the Internet. It uses computer vision techniques

to exploit this endless stream of images and, on the other

hand, leverages these images to improve computer vision

algorithms.

In this paper, we focus on ways to help users explore

large collections of images using intuitive 3-D controls for

ideation, games, social interaction, and artistic purposes.
As a motivating example, consider Fig. 1. The user starts

with a query image and then wants to naturally navigate

the photo collection. Choosing to move left, for example,

will cause the system to retrieve an image from the

database that can be seamlessly stitched to the query image

and produce the desired motion. The key observation is

that the query and retrieved images do not have to come

from the same 3-D location.
We construct an image graph where each node is an

image and different types of edges correspond to different

types of motions between nodes. Exploring a photo col-

lection thus reduces to traversing the graph. The image

graph can be used for other applications such as creating

infinitely long panoramas by constantly panning the cam-

era, or creating a photorealistic transition between two

images by finding the shortest path connecting them in the
graph. We describe how to construct the image graph,

what are its properties and show a number of applications

that are based on this representation.

On a technical level, this work can be viewed as an

extension of image retrieval techniques. Traditionally,

such systems retrieve images that match the query image.

Here, we are interested in retrieving images that can be

stitched to the query image and create the illusion of a
natural photorealistic 3-D motion. We call our approach

transformed image retrieval. The key challenge is to

establish an edge between two nodes (images) if there is

a smooth, photorealistic 3-D motion between them.

We do this by first applying some geometric transfor-

mation to the query image before performing the query

operation. This transformation lets us predict how the

retrieved image should look, at least in some parts of the

image. We then proceed to retrieving the matching image

from the database using this partial information. We

approximate a number of 3-D camera motions with simple

2-D transformations and compute, for each image in the

graph, its top matched candidates under various motions.

The result is a sparse graph where every node is connected

by a small number of edges (corresponding to different
motion types) to other nodes in the graph.

The structure of the image graph impacts our ability to

create photorealistic tours of the virtual space. If, for

example, the image graph consists of a center node that all

nodes are directly connected to, then all paths from one

image to another will be extremely short and boring. If, on

the other hand, the graph consists of many isolated con-

nected components, then it will not be possible to reach
many nodes in the graph. We analyze the graph and suggest

ways to improve its structure to make paths more appealing.

Several applications can be reduced to finding paths in

the image graph. We have made a Web-based interface that

lets users explore the image collection interactively using

an intuitive 3-D control. In another application, we create

infinite panoramas starting with a query image and

panning from image to image for as long as needed. We
can also create a video clip that is made of the images along

the path, which can be used as a transition effect between

images. For example, we can create infinite zoom effects

that resemble the BDroste effect[2 which has been used by

various artistic groups to generate infinite zooms.3 The

image graph, and transformed image retrieval, may be used

to create large photorealistic environments for applica-

tions such as Second Life or computer games.

II . BACKGROUND

We represent the virtual photorealistic environment with

the image graph and not with a 3-D model. As in other

Fig. 1. Given the user supplied starting image (middle), our system lets the user navigate through a collection of images as if in a 3-D world.

Top row: Snapshots of the synthesized virtual scene. Bottom row: Original images of different real 3-D locations automatically found in

the image collection which were blended together to synthesize the virtual scene.

2http://en.wikipedia.org/wiki/Droste_effect.
3http://zoomquilt2.madmindworx.com/zoomquilt2.swf.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

1392 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

examples of image-based rendering [1], [2], we generate
the output images directly from input images, bypassing

completely the 3-D model as an intermediate step. This is

because capturing images is easy, but constructing 3-D

models is time consuming and prone to errors.

We construct the image graph using image search

methods. These methods can be roughly divided in two

groups: those that use metadata cues such as timestamp,

tags or geo-tagging, and those that rely purely on visual
data. For example, time can be used to cluster images

around events (BMike’s birthday,[BSummer vacation of

1997[) and, with the recent introduction of geo-tagging,

images can be organized based on location (BTrip to

Italy[). Google Street View and Microsoft Virtual Earth

rely on geo-tagging to let users take a virtual trip around

the streets of major cities around the world. Some image

search engines organize images by tags that are either
entered manually by users or collected automatically

from the image caption or the Web page containing the

image. The intersection of metadata cues lets users query

images on a semantic level (BFind all images taken in

New-York in 2004[). Recently, there has been great

progress in the field of object [3] and, in particular, face

detection [4]. Finding faces and automatically adding the

corresponding names as tags to each image extends the
range of queries (BFind pictures of Jonathan taken in

Spain on November 2004[).

In a purely visual search, on the other hand, the user

supplies a query image that is then matched to images in

the database using low level image features such as color,

shape and texture [5], [6]. Image features can be also ex-

tracted with a controlled degree of invariance to viewpoint

and illumination thus enabling viewpoint invariant object
and scene retrieval [7].

In typical image search systems, the retrieved images

are often displayed as thumbnails, which is a practical but

not very engaging way to browse images. If all images are

collected from the same point of view then a big Gigapixel

image can be constructed and viewed interactively using

familiar 2-D image controls [8].

Another option for browsing large collections of images
is to treat images as points in a high dimensional space,

compute the distances between them and use multidi-

mensional scaling to display them in the image plane for

the user to navigate through [9]. However, there is no

effort to create a virtual 3-D world and as a result there is

no sense of Bbeing there.[
If the image dataset consists of a collection of images of

different scenes, taken at different times, one can con-
struct an AutoCollage [10]. This gives visually pleasing

collages, but fails to scale to large collections where

thousands or millions of images are involved.

Alternatively, one can rely on 3-D context to organize

images. This was underscored by the success of the

PhotoTourism system [11]. First, images are retrieved using

tags (BFind all images of Old City in Prague[) and then

calibrated to a common 3-D space. Users can then browse the
image collection by moving in 3-D space. This was later

extended to detect paths in the image collection which gives

a better control in navigating the 3-D scene [12].

Our system is decidedly appearance-based as we only

rely on image content to retrieve images. But unlike other

image retrieval systems, we are not interested in retrieving

similar images. Instead, we are looking for transformed

image retrieval, where the retrieved image should match
the query image after some transformation. Retrieved

images are then linked to each query image, forming a

large image graph.

This paper is an extended version of [13].

III . IMAGE GRAPH

In this section, we describe how we collect and arrange a
large collection of images in an image graph. Each image in

the collection corresponds to a node in the graph and an

edge in the graph represents a transition between a pair of

images. There are different types of edges corresponding to

different camera motions. The image graph is illustrated in

Fig. 2. The images do not need to correspond to a real

unique 3-D space as in Phototourism [11]. Instead, our

images are expected to correspond to unrelated, but
visually similar, places.

To build the image graph we need to find for each

image in the collection a set of candidate images suitable

for a transition using a particular camera motion. These

transitions will then form the edges in the graph. For

instance, we want to find images similar to a photo taken if

Fig. 2. Top: In the image graph, each image is a node and there are

different types of edges (color coded in the illustration) that

correspond to different camera motions. For each motion,

there are several possible transitions to different images and we

typically keep just the top ten transitions for each edge/motion type.

Bottom: Portion of an image graph laid out in a virtual 3-D world.

Relative locations of images are given by the camera motions.

For example, for the forward motion, the next image is

displayed in front of the query image. Here, only some edges

of the graph are shown.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1393

we rotate the camera by 45� with respect to the query

image. We hope that the candidate set contains images that

can be seamlessly blended with the query image after

applying the appropriate camera transformation. We call

this process transformed image retrieval and show how a
simple planar image model can be used to retrieve images

that are related to the query image by 3-D camera

transformations.

A. Image Collection
We collected a dataset of more than 6 million images

from Flickr by querying for suitable image tags and

relevant groups. We queried for particular locations in
conjunction with tags such as BNew York street[or

BCalifornia beach[and also downloaded images from

Flickr groups returned by search on terms relevant to par-

ticular themes, such as BLandscape[or BForest.[The typi-

cal resolution of the downloaded images is 500� 375 pixels.

One million jpeg compressed images takes about 120 GB of

hard-disk space.

B. Transformed Image Retrieval
Our goal is to extend a given image using images

from the image database to give an impression of a par-

ticular camera motion. We consider three camera motions:

i) translation left/right; ii) horizontal rotation (pan); and
iii) zoom (forward motion). The camera motions are

illustrated in Fig. 3. First, we synthesize a new view of the

current image as seen from the new desired camera

location. Camera translation is approximated by a trans-

lation in the image plane, ignoring parallax effects, hori-

zontal camera rotation is achieved by applying appropriate

homography transformation to the image, and zoom is

approximated by scaling the image. For computing the
horizontal camera rotation homography [14, p. 11], we

assume no vertical or in-plane rotation, and set the un-

known camera focal length to be half the image width,

which corresponds to rather wide-angle lens, in order to

exaggerate the image distortion.

We seek to find semantically similar images in the

database coarsely matching the geometry of the observed

Fig. 3. Scene matching with camera view transformations. First row: The input image with the desired camera view overlaid in green.

Second row: The synthesized view from the new camera. The goal is to find images which can fill-in the unseen portion of the image

(shown in black) while matching the visible portion. The third row shows the top matching image found in the dataset of street scenes for

each motion. The fourth row illustrates the induced camera motion between the two pictures. The final row shows the composite after

Poisson blending.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

1394 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

portion of the synthesized view. For example, when the
camera rotation changes a fronto-parallel view of a build-

ing to a view with a strong perspective (as shown in the

middle column of Fig. 3), we find most retrieved images

depict scenes looking down a street.

C. Image Representation and Matching
A key component of our approach is finding a set of

semantically similar images to a given query image. For
example, if the query image contains a cityscape in a sunset

with a park in the foreground, we would like to find a

candidate set of images with similar objects, scene layout,

and lighting.

Semantic scene matching is a difficult task but some

success has been recently shown using large databases of

millions of images [15], [16]. We show that we can also

induce camera transformations without an explicit model
of the 3-D geometry of the scene. Matching results are

sometimes noisy; for example, a river is sometimes mis-

matched for a road. In a recent work on image completion

[15], this issue was addressed by relying on user inter-

action, essentially allowing the user to select a visually

pleasing result among a set of candidate completions. We

wish to find matching images automatically or with mini-

mal user interaction. To reduce the difficulty of scene
matching, we train classifiers to preselect images of par-

ticular scene types or Bthemes[from the entire image

collection. Details are given in Section III-F. Image graphs

are then built only from images of a particular theme or a

combination of themes. Next, we describe the image fea-

tures used for semantic scene matching and their appli-

cation to transformed image retrieval.

Images are represented using the GIST descriptor,
which was found to perform well for scene classification

[17]. The GIST descriptor measures the oriented edge

energy at multiple scales aggregated into coarse spatial

bins. In this work we use three scales with (from coarse to

fine) 4, 8, and 8 filter orientations aggregated into 6 �
4 spatial bins, resulting in a 480-dimensional image

descriptor. While images of similar scenes, for example a

street in New York and a street in London, can have very
different colors and image intensities, we expect the coarse

layout and orientation of image edges to be similar. The

GIST descriptor can match similar scenes imaged under

vastly different illuminations; for example, a street scene

in a bright daylight can be matched reasonably well with a

street scene in night. However, as we want to blend the

matched images into seamless transitions, we would like to

find matching scenes with similar illuminations. Hence,
we also represent a rough spatial layout of colors by down-

sampling each of the RGB channels to 8 � 8 pixels. We

normalize both GIST and the color layout vectors to have

unit norm to make both measures comparable. Similar

image descriptors were used for scene matching in [15].

As illustrated in Fig. 3, not all pixels are observed in the

transformed image and hence only descriptor values

extracted from the observed descriptor cells in the query
image are considered for matching. In this case, the GIST

and the color layout vectors are renormalized to have unit

norm over the visible region.

The distance between two images is evaluated as the

sum of square differences between the GIST descriptors

and the low-resolution color layouts of the two images. We

set the weight between GIST and color to 0.5, which we

found is a good compromise between matching on the
geometric structure of the scene captured by GIST and the

layout of colors. Currently we consider only images in

landscape format with an aspect ratio close to 4 : 3. This

represents about 75% of all collected images.

Fig. 4 shows an example of a query image, the bins used

to compute the image descriptor and the closest matching

images from a dataset of 10 000 street images. The images

returned belong to similar scene categories and have
similar camera properties (same perspective pattern and

similar depth).

D. Creating Seamless Transitions:
Alignment and Compositing

We want to simulate transitions between pairs of

images depicting different places, such as a street in

New York and a street in London. This is a challenging task
as image structures (such as windows on buildings) would

not necessarily be aligned and can have different shapes

and colors. Moreover, images returned by the scene

matcher can still be misaligned as the GIST descriptors

matches only the rough spatial structure given by the

6� 4 grid of cells. For example, in the case of city skylines,

the horizon line can be at a slightly different height.

To address these issues, we first align the matched
image with the query using a global image transformation

(translation and scale change) to compensate for gross

misalignments. Next we find a good seam between the

aligned images. The goal is to transition between the two

images at places where their image intensities are similar.

Finally, to reduce the remaining misalignment artifacts

and differences in color, the two images are blended

together in the gradient domain.
To perform the alignment, we apply a standard gra-

dient descent alignment [14], [18] minimizing the mean of

the sum of squared pixel color differences in the overlap

region between the two images. We search over three

parameters: translation offset in both the x and y direction

and scale. The alignment is performed on images down-

sampled to 1/6 of their original resolution. In the case of

translations and zoom, the alignment search is initialized
by the synthesized view transformation. In the case of

camera rotation, we initialize the alignment with a trans-

lation in the x direction matching the image overlap in-

duced by the rotation, e.g., half the image width for the

example in middle column of Fig. 3. As a result, the camera

rotation is approximated by a translation and scale in the

image domain. The camera rotation is only used in the

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1395

scene matching to induce a change in the geometry of the

scene.

The aligned images are blended along a seam in their

region of overlap using Poisson blending [19]. In the case

of camera translation and rotation, we find a seam running

from the top to the bottom of the overlap region mini-
mizing the sum of absolute pixel color differences by

solving a dynamic program [20]. In the case of zoom,

where images are within each other, we find four seams,

one for each side of the overlap region. In addition, to

preserve a significant portion of the zoomed-in image, we

constrain each seam to lie close to the boundary of the

overlap region. Finally, images are blended in the gradient

domain using the Poisson solver of [21]. Examples of com-
posited images are shown in the bottom row of Fig. 3.

E. Horizon Line Estimation
Although we do not perform a full estimation of the 3-D

geometry of the scene structure, estimation of the horizon

line can improve the quality of image transitions, as illus-

trated in Fig. 5. In this example, we want forward motion to

represent a person walking on the ground plane. As shown

in the top row, if we zoom into the picture by using the

image center as the focus of expansion, we move into the sky

region. However, if we zoom in on the horizon line we
simulate a person moving on the ground plane. It is im-

portant to keep the horizon line within the query region.

We show how to estimate the horizon line from a single

image by learning a regression function on the GIST

descriptor [22], [23]. In contrast to [24] to [25] in which

camera orientation is estimated by an explicit model of the

scene geometry, we use machine learning to train a

regressor. Our method works even when the scene lacks

clear 3-D features such as lines converging towards a

vanishing point. We collected 3000 training images for

which we entered the location of the horizon line manually

(for pictures taken by a person standing on the ground, the

horizon line can be approximated by the average vertical

location of all the faces present in the image). We use a
weighted mixture of linear regressors [26] to estimate the

location of the horizon line from the GIST features as

described in [23].

F. Organizing Images Into Themes
The issue of semantic mismatches in retrieved images

is especially significant in the case of transformed image

retrieval where the information available for matching is

Fig. 5. The top row shows the query region when we take the central

image portion. The bottom row shows the results obtained when

centering the query region on the horizon line. The retrieved images

contain roads taken from similar viewpoints to the input image.

Fig. 4. Each row shows the input image, the 6�4 spatial bins used to compute the GIST descriptor, the best match on a dataset of 10 000 images,

and the next six best matches. Top row: We look for images that match the full GIST descriptor. Bottom row: Result of a query after

simulating a camera rotation. The returned images contain a new perspective, similar to the one that we will have obtained by rotating the

camera 45� to the right.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

1396 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

weaker than the original GIST descriptor (due to the

smaller image overlap after the transformation). This can

result in semantically incoherent transitions between

images.

To augment the GIST descriptor, we train a classifier to

identify images within some semantic theme. The theme

of an image is generally invariant to camera motions. We
can dramatically improve retrieval results by matching

only pictures that belong to the same theme. This also

lowers the memory and CPU requirements as only part of

the database needs to be searched. Examples of themes we

consider in this work are shown in Fig. 6.

To obtain a visually and semantically coherent set of

images for each theme we train theme classifiers from

manually labeled training data in a manner similar to [27]
and [28]. For each theme, we train 1-versus-all nonlinear

Support Vector Machine classifier [29] from about

1000 positive and 2000 negative training images. We have

developed a suitable labeling interface so that the clas-

sifier can be trained interactively. At each iteration, the

most uncertain images are shown to the user for labeling.

The interface also allows the user to visually assess the

classifier performance and label additional images if
needed.

G. Building Image Graphs
We process the image database and create a graph for

each type of camera motion: i) rotate left; ii) rotate right;

iii) move left; iv) move right; and v) move forward. We call

graphs for one type of camera motion a motion graph.

Motion graphs for different motions are combined into a
single image graph, which we refer to as the combined

graph. For each transition between a pair of images

(corresponding to an edge in the graph) we store the
transformation aligning the images, the GIST matching

cost of the two images, and the cost of the seam. In

Section IV we show how to convert these costs into proba-

bilities by manually labeling several examples of good and

poor quality transitions. We typically retain only the top

ten matches measured by the GIST matching cost for each

motion. This gives us a sparse graph that can be easily

stored and allows for further efficient processing. Cur-
rently, we create a separate graph for each theme.

Note that edges in the image graph for each motion are

directed, describing transitions from the query image to

the (top 10) best matches in the database. However, the

direction of each edge could be reversed by reversing its

image transformation. For example, a Brotate left[edge

from image A to image B, could be reversed to a Brotate

right[edge from B to A. Note, however, that image match-
ing is not symmetric, as the fact that B is among the top ten

nearest neighbors of A does not imply that A is among the

top ten nearest neighbors of B.

In terms of computation cost, computing GIST de-

scriptors takes about 0.2 s per image, querying a database

of 100 K images takes about a second in our Matlab im-

plementation, and it takes a couple of seconds to align and

blend the retrieved images with the query image. These
timings are for a 2 GHz machine.

In our current implementation, we do not enforce the

image graph to respect constraints of a real physical space.

Each transition depends only on the particular query image

and there are no additional dependencies on other edges in

the graph. As a result, it is perfectly legal in our image

graph to keep rotating without coming back to the query

image. Similarly, it is possible to start with a query image,
move left, then move right, and not get back to the original

query image.

IV. IMAGE GRAPH PROPERTIES

The motion graphs allow us to create photorealistic tours

of the virtual image space using a single 3-D motion. To

add versatility to our system and make the tours more
interesting, we merge the separate motion graphs into a

single graph where the directed edges correspond to a

particular type of motion and their weights represent the

probability that the edge produces a good quality

transition (Fig. 2). The properties of the resulting image

graph impact the quality of the tours through the image

space. For example, if the graph has nodes with a large

number of incoming edges (hubs), it is likely that most
tours would pass through the same subset of images and

the paths between any pair of nodes would contain only a

small number of transitions. In that case, exploring the

image space can quickly become boring. In this section,

we discuss the presence of such high degree nodes in the

graph and contrast the structure of the image graph to that

of a random graph. Edges with low transition probabilities

Fig. 6. Example of images belonging to different scene themes.

Partitioning a large collection of images improves the quality of the

results. The classification is done automatically. When navigating

through the image collection, it is important to keep the themes

constant when moving from one picture to another to avoid undesired

transitions. The user can also allow transitions across themes.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1397

can also affect the quality of the tours because they can
result in paths connecting semantically incoherent images.

We propose several ways to augment the image graph in

order to produce better tours and discuss how they affect

the connectivity. If the graph has multiple isolated con-

nected components, some portions of the graph would

never be reached. A path leading to a small connected

component could force the user to visit the same nodes

over and over again when trying to generate longer tours.
In discussing graph properties in this section, we analyze a

graph constructed based on the Bstreets[theme that

combines all five types of motionVrotate right, rotate left,

move right, move left, and move forward.

A. Estimating the Probability of a
Good Quality Transition

Each motion graph provides the user with the option to
explore the image space using one particular camera

motion, but to create interesting tours we would like to

simulate different camera motions. As described in

Section III-G, the edges in the graph can be assigned

weights based on the GIST matching cost or the seam cost.

Since these are computed differently for each motion

graph, they are not necessarily comparable. Instead of

using the previously described edge costs for merging the

graphs, we fit a model using logistic regression to convert

the edge cost to a probability of a good transition for each

motion based on 300 hand-labeled training examples. As

training data we randomly picked 300 pairs of nodes from

each motion graph. After stitching and blending the

images using the appropriate motion, we labeled the re-
sults as good or poor quality. Fig. 7 shows examples of

good and poor quality transitions for rotate right, move

right, and move forward camera motions. The labeling is

subjective and was based on the labels of a single user. In

our training data, we have about 50% positive and 50%

negative examples for all motions except move forward

where there are only 35% positive examples. The

distribution of the GIST matching costs of the positive
and negative examples show more overlap than that of the

seam costs (Fig. 8) making it harder to learn a good model.

For the rest of our experiments, we use models mapping

the seam cost (rather than the GIST cost) to the proba-

bility of a good transition as shown in Fig. 9(a). The

difference in models for different motions shows that using

the seam cost directly to determine transition probabilities in

a combined graph would give unequal weights for different
camera motions.

Fig. 8. (a) Fitted models mapping seam cost to probability of a good

transition based on 300 labeled examples for each motion graph.

(b) Histograms of edge probabilities in 1 K, 10 K, and 100 K graphs.

Fig. 7. Examples of good (top row) and poor (bottom row) quality

transitions for different motion graphs. (a) Rotate right graph.

(b) Move forward graph. (c) Move right graph.

Fig. 9. Edge cost distribution for the 300 manually labelled good and

poor quality transitions in the ‘‘rotate left’’ graph. (a) Seam cost.

(b) GIST matching cost. Lower cost should correspond to better quality

transitions.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

1398 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

B. Combining the Motion Graphs
We use the learned models for mapping the seam cost

to the probability of a good quality transition to assign new

weights to the edges of the different motion graphs. With

comparable edge weights, we then can merge the motion

graphs into a single graph. The directed edges in the new

image graph correspond to the different types of motion

and the weights refer to the probability that the given

motion produces a good quality transition. If there is an
edge between a given pair of images in multiple motion

graphs, we retain only the edge for the motion that results

in the best quality transition. We consider the distribution

of the edge weights in graphs with 1 K, 10 K, and 100 K

nodes. The images of the 1 K and 10 K graphs were a

random subset of the images of the 100 K graph. Intui-

tively, we expect that adding more images to the graph will

increase the probability of finding good quality transitions
between images. The distribution of the edge weights, in-

deed, shifts with the increase in graph size [Fig. 9(b)]. The

100 K graph contains a larger proportion of edges with

higher probability of producing a good transition than do

the smaller image graphs.

C. Popular Images
An interesting aspect of the graph is the node degree

for the incoming edges. The number of outgoing edges in

the combined graph is almost constant because for each

motion graph we only keep a subset of the edges corre-
sponding to the top 10 matches measured by the GIST

matching cost. The number of incoming edges, however,

varies significantly [Fig. 10(a)]. The majority of the nodes

have 50 or fewer incoming edges with 5–8% of nodes

having one or none. There are also a number of very well

connected nodes with thousands of incoming edges in a

graph with 100 K nodes. A sample of the popular images in

different motion graphs is shown in Fig. 11(a). Most of the
images are very textured, especially those from the forward

motion graph, or have a lot of structure. They also have

very similar color layout. It is likely that if there is no good

match in the database for a given query image, due to their

regularity and uniform lighting these images can give good

matching costs even though they may not be semantically
correct. Even if the transitions to a popular image are

semantically correct, too many paths going through one

image would make the image space exploration uninter-

esting. The popular images from the forward motion graph

are clearly incorrect semantically. Interestingly, in the

combined graph, none of them are amongst the top most

high-degree nodes. Most of the popular nodes seem to

come from the rotate and translate motion graphs. This
can be explained by the fact that we have two graphs for

both rotate and translate motions and all four of them favor

images with similar structure thereby preserving the

connectivity of their popular nodes. A sample of images

with no incoming edges are juxtaposed with the popular

ones in Fig. 11. The images with no connections show wide

color and lighting variation in comparison to the dull

colors and uniform lighting of their popular counterparts.
To further understand the distribution of edges in the

image graph, we constructed a random graph. First we

created a graph for each motion by adding 10 randomly

chosen outgoing edges to each node and assigning the edge

weights to values between 0 and 1 by randomly drawing

from the uniform distribution. The graphs were then

merged together to create the random combined graph.

The distribution of the incoming edges in the random
graph is quite different from that in the image graph. Here,

we have no nodes with fewer than 20 and with more than

80 incoming edges [Fig. 10(b)]. The properties of similar

types of random graphs have been studied in e.g., [30]. The

emergence of highly connected nodes in random and real-

world graphs was recently studied in [31].

D. Graph Connectivity
To ensure versatility of the tours of the virtual space,

we would like to be able to reach a node from any other

node in the image graph. In graph theory terms, the image

graph should be strongly connected [32]. We already saw

that there is a small percentage of nodes in the image graph

that have no incoming edges. Unless we start the explora-

tion of the image space from one of those nodes, we will

never be able to visit them. It is possible that the image
graph is not well connected, i.e., it could have several

isolated strongly connected subgraphs. Our tours will then

be limited to one portion of the graph which would be

undesirable. We consider the size of the largest connected

component in the graph. Ideally, most nodes, with the ex-

ception of those with no incoming edges, will be part of it.

Fig. 12 shows that over 90% of the nodes lie in the largest

strongly connected subgraph.
We wish to improve the quality of the transitions but at

the same time retain the ability to travel through a large

portion of the image graph. One option is to remove edges

with low probability of producing a good quality transition.

It appears that we can safely discard about 30% of those

edges without significantly reducing the size of the largest

connected component [Fig. 12(a)]. In contrast, we can
Fig. 10. Histograms of incoming edges. (a) 100 K image graph.

(b) 100 K random graph.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1399

remove almost 90% of the poor quality edges in the ran-

dom graph, before the graph becomes disconnected at all

[Fig. 12(a)]. This behavior can be attributed to the uniform

distribution of edges and edge weights in the random

graph. In contrast, edge occurrences (and their weights) in
the image graph are likely to be correlated and dependent

on the type and content of the query image.

Another option for improving the tours through the

image space is to reduce the number of times we pass

through the same node. To achieve this, we can remove

nodes with many incoming edges. At the same time, we

would like to preserve the proportion of nodes that belong

to the largest connected component in the resulting sub-
graph. Fig. 12(b) shows the percentage of nodes left in the

Fig. 11. Sample images with (a) many or (b) no incoming edges in different motion graphs. Top row: Forward motion.

Second row: Rotate right motion. Third row: Move left motion. Bottom row: Combined motions.

Fig. 12. Percentage of nodes in the largest connected component of the

100 K image and random graphs. (a) After removing edges with

low probability of a good transition. (b) After removing nodes with the

highest number of incoming edges.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

1400 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

largest connected component after removing a given num-
ber of high-degree nodes from the graph. We can safely

discard about 20% of the most popular nodes without

significantly affecting the connectedness of the image

graph. This suggests that the high-degree nodes are not

central to the graph connectivity. As we observed earlier,

the random graph is much better connected than the image

graph. Due to the uniform distribution of edges in the

random graph, even removing 80% of the high-degree
nodes still leaves the remaining graph well connected.

E. Path Properties
Our system can be used for finding tours between

a given pair of images (Bimage taxi[described in

Section V-B) or providing transitions between images of a
personal collection. In both scenarios, we would like to

find a path with edges that have high probability of providing

a good transition. We use the Dijkstra’s shortest path

algorithm [32] to find the best path between a pair of nodes

selecting the best quality edge at each step. In the image taxi

scenario in particular, we prefer longer but still good quality

paths. We already know that our graph is well connected as

discussed in Section IV-D. The question we ask now is: How
far away each node is from all other nodes?

We computed the average length of the best path to 1000

randomly sampled nodes in image graphs with 1 K, 10 K,

and 100 K nodes [Fig. 13(a)]. It takes on average 4–6

transitions to reach a node from any given node. This

suggests that no two nodes lie very far from each other,

which can be explained by the portion of very high-degree

nodes in the image graph. In the random graph, on the
other hand, the average path has about twice as many

transitions as those in the image graph. Despite the fact that

the random graph is better connected, its nodes lie farther

apart from each other because there are no hubs in it. The

number of transitions also increases as we add more nodes

to the graph since the number of outgoing edges for each

node does not vary. This effect is more pronounced in the

random graph but it can be also seen in the image graph.

V. APPLICATIONS OF THE
IMAGE GRAPH

Once the image graph is constructed, we can use it to
create different applications using the same basic

machineryVfinding paths in the graph. We present an

interactive Web interface that allows the user to navigate

the image space using intuitive 3-D controls. We also use

the graph to create Binfinite[panoramas starting from a

given query image and traversing the graph using a par-

ticular camera motion. The image taxi tool allows the user

to generate a tour between two images by finding a good
quality path between the corresponding nodes in the

graph. Finally, the graph could be augmented to include a

personal photo collection that can later be viewed by using

images from the graph as transition Bfiller[images.

We use three different camera motions in the proposed

applications: translation, rotation, and forward motion.

When creating smooth transitions (see the accompanying

video [33]), the camera translation is simulated by
translating with constant per pixel speed between the

pair of input images (also applying small scale changes if

the consecutive images are of different size). The case of

camera rotation is similar to translation but, in addition, we

display the resulting images on a cylinder [14]. In the case

of forward motion, we apply constant scale change between

the two images to create an impression of a person walking

at a constant speed in the 3-D world. The focus of expansion
for the forward motion is at the center of the next aligned

image, which can result in (typically small) changes in

forward motion direction between consecutive images.

As mentioned in Section II, in the case of photographs

of the same 3-D scene, smooth paths between images can

also be defined based on actual (reconstructed) camera

positions in the 3-D space [12].

A. Infinite Panoramas
One application of the image graph is to create an

infinite panorama by starting with a query image and

Fig. 13. Average path length to a given node from all other nodes in the graph (sample of 1000 nodes). (a) Image graph. (b) Random graph.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1401

following the Bcamera translate[edge from image node to

image node. Each retrieved image is then blended with the

query image to create an ever larger panorama. Fig. 14

shows examples of long panoramas created for various

semantic themes.
We can create panoramas for each of the three camera

motions: translation, rotation, and forward motion as is

demonstrated in Figs. 15(a), 15(b), and 16, respectively.

These panoramas were created from the Bstreets[theme

by starting with a query image and following the same

camera motion edge from node to node. Note that the left/

right translation motion tends to preserve the camera

orientation with respect to the scene (the scene remains
roughly fronto-parallel), while the rotation motion induces

a change in perspective between consecutive images

(Fig. 17). The translation and rotation sequences were

produced fully automatically. The forward motion se-

quence was produced interactively by letting the user spe-

cify the direction of the motionVtoward the horizon of the

image. Because it is difficult to display an infinite zoom on

paper, please refer to the accompanying video [33]. As
mentioned earlier, there is no restriction in our represen-

tation for a rotation panorama to go beyond 360� without
returning to the first query image.

B. Image Taxi: Finding a Path Between Two Images
The image taxi tool lets the user specify the first and

last images of a tour and then computes the shortest path

in the image graph that connects the two end images. This

option can be used to generate smooth transitions between

images from a private photo collection, using a large,

generic image database, or to generate a smooth transition

between two video shots. Given two input images, we first
connect them to the graph and then find the shortest path

between them using the Dijkstra algorithm [32]. We then

follow the path creating a tour based on the different edges

along the way. We demonstrate the image taxi in the

accompanying video [33].

The video also contains the different tours generated by

our system. All the sequences presented in the video were

generated automatically, except for the BHollywood[and
BWindows[sequences where the user had to choose the

best match out of the top five candidates.

C. Interactive System
We have designed an interactive viewer that allows

exploring the image graph using intuitive 3-D commands

(move left/right, zoom, rotate left/right). The viewer is

implemented in Flex and runs using Flash Player 10 in a
standard Web browser. The user can select a particular

image graph (theme) to explore. After choosing an image

that serves as a gateway to the virtual 3-D space [Fig. 18(a)],

s/he can start navigating interactively. Five regions of the

screen correspond to the different motions the user can

take. Moving the mouse displays the top matching image for

each motion overlaid on the current image [Fig. 18(b)]. The

Fig. 14. Various panoramas created by our system. The top two panoramas were created automatically from the ‘‘landscape’’ and ‘‘skyline’’

themes, respectively. The bottom three panoramas were created interactively from the ‘‘people,’’ ‘‘forest,’’ and ‘‘graffiti’’ themes, respectively.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

1402 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

system automatically moves to the image selected by the

user [Fig. 18(f)–(h)]. If the user is not satisfied with the top

matching image he can choose a different image from the

top ten matching images [Fig. 18(e)]. The system also allows

to undo a transition providing the user with an opportunity

to explore alternate routes [Fig. 18(d)].

The transition between every pair of images must be

smooth to give the impression of Bbeing there.[Thus, it is

important to be able to synthesize each intermediate image

frame efficiently. The images in the graph have already

been aligned offline (Section III-D), therefore, to stitch

two images we only need to compute on demand the best

Fig. 15. Two sequences generated from a large database of street images by inducing two camera motions. (a) Camera translation.

Each consecutive image was obtained by inducing camera translation by half the image size as illustrated in Fig. 3. (b) Camera rotation.

Each consecutive image was obtained by inducing camera rotation of 45 degrees as illustrated in Fig. 3. This produces changes in the

perspective between consecutive images.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1403

seam in their region of overlap and blend them. To ensure

real-time transitions, we use the fast pyramid blending

instead of the more expensive Poisson blending to con-

struct the blended composite [34] and we apply the blend-
ing only on the region of overlap between the two images.

The intermediate frames of the motion are synthesized

from the composite image. To achieve smooth transitions,

we use kernels written in Adobe’s Pixel Bender language

for hardware-independent description of image processing

algorithms [35] to perform the pyramid blending and the

synthesis of the intermediate frames. The Pixel Bender

kernels can be compiled efficiently for the CPU and/or the
GPU and allow significant speed-up of computationally

intensive image processing tasks. Currently, Flash Player

supports only limited set of features and does not support

kernels running on the GPU but if the extra features are

added, it will lead to even faster transitions. The com-

putations are memory intensive and are performed on the

client machine, therefore they require about 500 MB–1 GB

available memory to run smoothly.

Fig. 16. Forward motion sequence of 16 images. (a) The query image. (b) The query image composited with the consecutive images in the

sequence. (c) Image boundaries of the following images in the sequence overlaid over the composited image (b). (d) Masks indicating areas

in (b) coming from different images. (e) Images 2–6 of the forward motion sequence. Top row: Original images. Middle row: Masks.

Bottom row: Composited images. Note that the entire sequence contains perspective views of streets. Each consecutive image was

obtained by inducing camera forward motion as illustrated in Fig. 3.

Fig. 17. A camera rotation can be used to generate from a

single picture a good guess of the surrounding environment not

covered by the camera. Here, the system is hallucinating what could

be behind the camera (original image marked with a frustum).

Note that the back of the camera is also a perspective street,

aligned with the camera view.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

1404 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

After a transition is complete, the image displayed to

the user is a blend of two images from the databaseVthe
original query and the retrieved image. To produce the

next transition, we use the actual retrieved image rather

then the displayed blend as the next query. This allows us

to take advantage of the pre-computed image graph.

Despite the fact that the query image is not identical to the

one displayed to the user, we found that it serves as a good

enough proxy.

The system also has a noninteractive mode where the
next image is chosen automatically by selecting the edge

and camera motion type with the highest probability of a

good transition. If the user likes a particular sequence, it

can be saved as a Btrip.[The trips can be chained

together to create a much larger tour that can also be

played automatically. This way, the user can build a

library of trips and then mix and match them to achieve a

particular tour.

D. Touring Personal Photo Collections
We can also augment the image graph with images

from a personal photo collection. The user could then view

their photo collection in the interactive Web interface in a

manner similar to the image taxi tool. Photos in the

personal photo collection can be arranged in any order.

Then a new tour is created by finding the shortest path

between each pair of images in the collection. The tour can

be played automatically in the interactive Web interface.

Images from the personal photo collection are highlighted
while those from the original image graph serve as

transition Bfiller[images. Augmenting the image graph

needs to be done offline before the photo collection can be

viewed. Fig. 19 provides an example of a five image

personal photo collection from street scenes of Barcelona.

The image in the first column shows the interface for

placing the images in the personal collection in the desired

viewing order. The other columns in Fig. 19 show a path

Fig. 18. A screen shot of the interactive system. (a) Selecting an image to start browsing. (b) The current image is shown in the center

and the next image for each motion (forward, rotate left/right, translate left/right) is shown as an inset. (c) Selecting rotate right motion.

(d) The user can undo the current transition. (e) The next image for a particular motion (here move right) can be also interactively

chosen from the top 10 matching images displayed on the side. (f)–(h) Show the first, middle, and last frame of a rotate right motion

sequence.

Fig. 19. Viewing a personal photo collection in the interactive tool. Column 1 shows the interface for placing the images from the

personal collection in the desired viewing order. Columns 2–5 show a path between two of the images in the personal collection containing

one transition ‘‘filler’’ image. Note the second transition (rotate left) does not bring us back to the starting image since we do not

enforce spatial consistency in the graph.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1405

between two of the images in the personal collection that
only contains one transition Bfiller[image. Notice that the

motions used to travel from the start to the end image are

rotate right and rotate left. As mentioned in Section III-G,

the image graph does not preserve spatial consistency. The

rotate left motion does not bring us back to the start image

but instead we arrive at a new location.

VI. LIMITATIONS

The system is only as good as the underlying database is.
The larger the database, the better the results. We found

that there are three typical failure modes. The first is

when a semantically wrong image is retrieved. This is

mitigated by the use of themes but still sometimes occurs.

Second, compositing two distinct images is always a

challenge and at times, the seam is quite visible. Finally,

there are cases in which the seam runs through important

objects in the image which produces noticeable artifacts.

VII. CONCLUSION

The proposed system offers an intuitive 3-D-based

navigation approach to browsing large photo collections.
Our system arranges the images into semantic themes

and performs transformed image retrieval to simulate

various camera motions within the large image database.

Matches are precomputed offline and the image

collection is organized into an image graph, where

images correspond to nodes and edges in the graph

correspond to transitions between images using different

camera motions. We examined properties of the image
graph and their effect on tours of the image database.

We used the image graph to create synthetic panoramas,

interactively tour the virtual 3-D space, or create an

image taxi tour from one image to another through the

dataset. These tools enable intuitive interaction with

large image datasets and may enhance interactive games,

movies, photo-sharing Web sites and personal photo

collections. h

REF ERENCE S

[1] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and
M. F. Cohen, BThe lumigraph,[in
SIGGRAPH ’96: Proc. 23rd Annu. Conf.
Computer Graphics and Interactive Techniques,
New York, 1996, pp. 43–54.

[2] M. Levoy and P. Hanrahan, BLight field
rendering,[in SIGGRAPH ’96: Proc.
23rd Annu. Conf. Computer Graphics
and Interactive Techniques, New York,
1996, pp. 31–42.

[3] J. Ponce, M. Hebert, C. Schmid, and
A. Zisserman, Towards Category-Level
Object Recognition. New York: Springer,
2006, vol. 4170.

[4] P. A. Viola and M. J. Jones, BRobust
real-time face detection,[Int. J. Comput.
Vis., vol. 57, no. 2, pp. 137–154,
2004.

[5] M. Flickner, H. Sawhney, W. Niblack,
J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and
P. Yanker, BQuery by image and video
content: The QBIC system,[IEEE Computer,
vol. 28, no. 9, pp. 23–32, 1995.

[6] N. Vasconcelos, BFrom pixels to semantic
spaces: Advances in content-based image
retrieval,[IEEE Computer, vol. 40, no. 7,
pp. 20–26, 2007.

[7] J. Sivic and A. Zisserman, BEfficient visual
search for objects in videos,[Proc. IEEE,
vol. 96, no. 4, pp. 548–566, Apr. 2008.

[8] J. Kopf, M. Uyttendaele, O. Deussen, and
M. Cohen, BCapturing and viewing gigapixel
images,[ACM Trans. Graphics, vol. 26, no. 3,
2007.

[9] Y. Rubner, C. Tomasi, and L. J. Guibas,
BAdaptive color-image embeddings for
database navigation,[in Proc. Asian Conf.
Computer Vision, 1998, pp. 104–111.

[10] C. Rother, L. Bordeaux, Y. Hamadi, and
A. Blake, BAutocollage,[in Proc. ACM
SIGGRAPH, 2006.

[11] N. Snavely, S. M. Seitz, and R. Szeliski,
BPhoto tourism: Exploring photo collections
in 3D,[in Proc. ACM SIGGRAPH, 2006.

[12] N. Snavely, R. Garg, S. Seitz, and R. Szeliski,
BFinding paths through the world’s

photos,[ACM Trans. Graphics, vol. 27,
no. 3, pp. 11–21, 2008.

[13] J. Sivic, B. Kaneva, A. Torralba, S. Avidan, and
W. T. Freeman, BCreating and exploring a
large photorealistic virtual space,[in Proc.
1st IEEE Workshop on Internet Vision,
Ancorage, AK, Jun. 2008.

[14] R. Szeliski, BImage alignment and stitching:
A tutorial,[Found. Trends Comput. Graph.
Comput. Vis., 2006.

[15] J. Hays and A. A. Efros, BScene completion
using millions of photographs,[ACM
Trans. Graphics, vol. 26, no. 3, pp. 4:1–4:7,
2007.

[16] A. Torralba, R. Fergus, and W. T. Freeman,
B80 million tiny images: A large dataset
for non-parametric object and scene
recognition,[IEEE Trans. Pattern Anal.
Machine Intell., vol. 30, no. 11, pp. 1958–1970,
Nov. 2008.

[17] A. Oliva and A. Torralba, BModeling the
shape of the scene: A holistic representation
of the spatial envelope,[Int. J. Comput. Vis.,
vol. 42, no. 3, pp. 145–175, 2001.

[18] B. D. Lucas and T. Kanade, BAn iterative
image registration technique with an
application to stereo vision,[in Proc.
7th Int. Joint Conf. Artificial Intelligence,
1981, pp. 674–679.

[19] P. Perez, M. Gangnet, and A. Blake, BPoisson
image editing,[ACM Trans. Graphics,
vol. 22, no. 3, pp. 313–318, 2003.

[20] A. A. Efros and W. T. Freeman,
BImage quilting for texture synthesis
and transfer,[in Proc. ACM SIGGRAPH,
2001.

[21] A. Agrawal, R. Raskar, and R. Chellappa,
BWhat is the range of surface reconstructions
from a gradient field?[in Proc. Eur. Conf.
Computer Vision, 2006.

[22] J. F. Lalonde, D. Hoiem, A. A. Efros,
C. Rother, J. Winn, and A. Criminisi,
BPhoto clip art,[ACM Trans. Graphics,
vol. 26, no. 3, pp. 3:1–3:10, 2007.

[23] A. Torralba and P. Sinha, BStatistical context
priming for object detection,[in Proc.
IEEE Int. Conf. Computer Vision, 2001,
pp. 763–770.

[24] J. Coughlan and A. L. Yuille, BManhattan
world: Orientation and outlier detection
by bayesian inference,[Neural Comput.,
vol. 15, pp. 1063–1088, 2003.

[25] J. Deutscher, M. Isard, and J. MacCormick,
BAutomatic camera calibration from a
single manhattan image,[in Proc. Eur. Conf.
Computer Vision, 2002, pp. 175–188.

[26] N. Gershenfeld, The Nature of Mathematical
Modeling. Cambridge, U.K.: Cambridge
Univ. Press, 1998.

[27] A. Bosch, A. Zisserman, and X. Munoz,
BScene classification using a hybrid
generative/discriminative approach,[
IEEE Trans. Pattern Anal. Machine
Intell., vol. 30, no. 4, pp. 712–727,
Apr. 2008.

[28] S. Lazebnik, C. Schmid, and J. Ponce,
BBeyond bags of features: Spatial pyramid
matching for recognizing natural scene
categories,[in Proc. IEEE Conf. Computer
Vision and Pattern Recognition,
2006.

[29] B. Scholkopf and A. Smola, Learning
With Kernels. Cambridge, MA: MIT Press,
2002.

[30] P. Erdos and A. Renyi, BRandom graphs,[
Publ. Math. Inst. Hungarian Acad. Sci., vol. 5,
pp. 17–61, 1960.

[31] M. Radovanovic, A. Nanopoulos, and
M. Ivanovic, BNearest neighbors in
high-dimensional data: The emergence
and influence of hubs,[in Proc. Int. Conf.
Machine Learning, 2009.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest,
and C. Stein, Introduction to Algorithms,
2nd ed. Cambridge, MA: MIT Press,
2001.

[33] [Online]. Available: http://people.csail.
mit.edu/biliana/papers/pieee2009/
pieee_video.avi

[34] P. J. Burt and E. H. Adelson,
BThe Laplacian pyramid as a compact
image code,[IEEE Trans. Commun.,
vol. COM-31, no. 4, pp. 532–540, 1983.

[35] Adobe Pixel Bender, 2009. [Online]. Available:
http://labs.adobe.com/technologies/
pixelbender/

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

1406 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

ABOUT T HE AUTHO RS

Biliana Kaneva (Student Member, IEEE) received

the B.A. degree in computer science and mathe-

matics from Smith College in 2000 and the M.S.

degree in computer science from the University

of Washington in 2005. Currently, she is working

towards the Ph.D. degree at the Computer

Science and Artificial Intelligence Laboratory

(CSAIL), Massachusetts Institute of Technology,

Cambridge.

Prior to joining MIT, she worked as a Software

Design Engineer at Microsoft from 2000 to 2006. Her research interests

include computer vision, computer graphics, computational photogra-

phy, and machine learning.

Ms. Kaneva received a Xerox Fellowship in 2009.

Josef Sivic (Member, IEEE) received a degree

from the Czech Technical University, Prague,

Czech Republic, in 2002 and the Ph.D. degree

from the University of Oxford, Oxford, U.K., in

2006. His thesis dealing with efficient visual

search of images and videos was awarded the

British Machine Vision Association 2007 Sullivan

Thesis Prize and was short listed for the British

Computer Society 2007 Distinguished Dissertation

Award.

After spending six months as a Postdoctoral Researcher at the

Computer Science and Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, Cambridge, he is currently an INRIA Researcher

at the Departement d’Informatique, Ecole Normale Superieure, Paris,

France. His research interests include visual search and object recogni-

tion applied to large image and video collections.

Antonio Torralba (Member, IEEE) received the

degree in telecommunications engineering from

Telecom BCN, Spain and the Ph.D. degree in signal,

image, and speech processing from the Institut

National Polytechnique de Grenoble, France.

He is an Associate Professor of Electrical

Engineering and Computer Science at the Com-

puter Science and Artificial Intelligence Laborato-

ry (CSAIL), Massachusetts Institute of Technology

(MIT), Cambridge. He spent postdoctoral training

at the Brain and Cognitive Science Department and the Computer Science

and Artificial Intelligence Laboratory at MIT.

Shai Avidan (Member, IEEE) received the Ph.D.

degree from the Hebrew University, Jerusalem,

Israel, in 1999.

He joined Adobe in 2007 as a Senior Re-

searcher and is currently an Assistant Professor

at the Department of Electrical EngineeringV

Systems, Tel-Aviv University, Tel Aviv, Israel. In

the past, he was a Researcher at Mitsubishi

Electric Research Labs (MERL), a Project Leader

at MobilEye, and a Postdoctoral Fellow at Micro-

soft Research. Between 2002 and 2004, he was a faculty member at the

School of Computer Science, Interdisciplinary Center, Herzliya, Israel.

His research interests include image editing, tracking, and multicamera

systems.

William T. Freeman (Fellow, IEEE) is a Professor

of Electrical Engineering and Computer Science at

the Computer Science and Artificial Intelligence

Laboratory (CSAIL), Massachusetts Institute of

Technology, Cambridge, joining the faculty in

2001. His current research interests include ma-

chine learning applied to computer vision and

graphics, and computational photography. From

1981 to 1987, he worked at the Polaroid Corpora-

tion, developing image processing algorithms for

electronic cameras and printers. In 1987–1988, he was a Foreign Expert

at the Taiyuan University of Technology, China. From 1992 to 2001, he

worked at Mitsubishi Electric Research Labs (MERL), Cambridge, MA,

most recently as Senior Research Scientist and Associate Director. He

holds 25 patents.

Dr. Freeman was an Associate Editor of the IEEE Transactions on

Pattern Analysis and Machine Intelligence and a member of the IEEE

PAMI TCAwards Committee. He is active in the program and organizing

committees for Computer Vision and Pattern Recognition (CVPR), the

International Conference on Computer Vision (ICCV), Neural Information

Processing Systems (NIPS), and SIGGRAPH. He was the Program Co-Chair

for ICCV 2005.

Kaneva et al. : Infinite Images: Creating and Exploring a Large Photorealistic Virtual Space

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1407

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

