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Abstract. Image restoration tasks are ill-posed problems, typicallysolved with
priors. Since the optimal prior is the exact unknown densityof natural images,
actual priors are only approximate and typically restricted to small patches. This
raises several questions: How much may we hope to improve current restoration
results with future sophisticated algorithms? And more fundamentally, even with
perfect knowledge of natural image statistics, what is the inherent ambiguity of
the problem? In addition, since most current methods are limited to finite support
patches or kernels, what is the relation between the patch complexity of natural
images, patch size, and restoration errors? Focusing on image denoising, we make
several contributions. First, in light of computational constraints, we study the re-
lation between denoising gain and sample size requirementsin a non parametric
approach. We present a law of diminishing return, namely that with increasing
patch size, rare patches not only require a much larger dataset, but also gain little
from it. This result suggests novel adaptive variable-sized patch schemes for de-
noising. Second, we study absolute denoising limits, regardless of the algorithm
used, and the converge rate to them as a function of patch size. Scale invariance
of natural images plays a key role here and implies both a strictly positive lower
bound on denoising and a power law convergence. Extrapolating this parametric
law gives a ballpark estimate of the best achievable denoising, suggesting that
some improvement, although modest, is still possible.

1 Introduction

Characterizing the properties of natural images is critical for computer and human vi-
sion [18, 13, 20, 16, 7, 23]. In particular, low level vision tasks such as denoising, su-
per resolution, deblurring and completion, are fundamentally ill-posed since an infinite
number of imagesx can explain an observed degraded imagey. Image priors are crucial
in reducing this ambiguity, as even approximate knowledge of the probabilityp(x) of
natural images can rule out unlikely solutions.

This raises several fundamental questions. First, at the most basic level, what is the in-
herent ambiguity of low level image restoration problems? i.e., can they be solved with
zero error given perfect knowledge of the densityp(x)? More practically, how much
can we hope to improve current restoration results with future advances in algorithms
and image priors?

Clearly, more accurate priors improve restoration results. However, while most image
priors (parametric, non-parametric, learning-based) [2,14, 20, 16, 23] as well as studies



on image statistics [13, 7] are restricted to local image patches or kernels, little is known
about their dependence on patch size. Hence another question of practical importance is
the following: What is the potential restoration gain from an increase in patch size? and,
how is it related to the ”patch complexity” of natural images, namely their geometry,
density and internal correlations.

In this paper we study these questions in the context of the simplest restoration task: im-
age denoising [18, 20, 6, 11, 9, 15, 10, 23]. We build on prior attempts to study the lim-
its of natural image denoising [17, 3, 8]. In particular, on the non-parametric approach
of [14], which estimated the optimal error for the class of patch based algorithms that
denoise each pixel using only a finite support of noisy pixelsaround it. A major limi-
tation of [14], is that computational constraints restricted it to relatively small patches.
Thus, [14] was unable to predict the best achievable denoising of algorithms that are
allowed to utilize the entire image support. In other words,an absolute PSNR bound,
independent of patch size restrictions, is still unknown.

We make several theoretical contributions with practical implications, towards answer-
ing these questions. First we consider non-parametric denoising with a finite external
database and finite patch size. We study the dependence of denoising error on patch
size. Our main result is alaw of diminishing return: when the window size is increased,
the difficulty of finding enough training data for an input noisy patch directly correlates
with diminishing returns in denoising performance. That is, not only is it easier to in-
crease window size for smooth patches, they also benefit morefrom such an increase.
In contrast, textured regions require a significantly larger sample size to increase the
patch size, while gaining very little from such an increase.From a practical viewpoint,
this analysis suggests anadaptive strategywhere each pixel is denoised with a variable
window size that depends on its local patch complexity.

Next, we put computational issues aside, and study the fundamental limit of denois-
ing, with an infinite window size and a perfectly knownp(x) (i.e., an infinite training
database). Under a simplified image formation model we studythe following question:
What is the absolute lower bound on denoising error, and how fast do we converge to
it, as a function of window size. We show that thescale invarianceof natural images
plays a key role and yields a power law convergence curve. Remarkably, despite the
model’s simplicity, its predictions agree well with empirical observations. Extrapolat-
ing this parametric law provides a ballpark prediction on the best possible denoising,
suggesting that current algorithms may still be improved byabout0.5− 1 dB.

2 Optimal Mean Square Error Denoising

In image denoising, given a noisy versiony = x + n of a clean imagex, corrupted
by additive noisen, the aim is to estimate a cleaner versionx̂. The common quality
measure of denoising algorithms is their mean squared error, averaged over all possible
clean and noisyx, y pairs, wherex is sampled from the densityp(x) of natural images

MSE = E[‖x̂− x‖2] =

Z
p(x)

Z
p(y|x)‖x− x̂‖2dydx (1)
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It is known, e.g. [14], that for a single pixel of interestxc the estimator minimizing
Eq. (1) is the conditional mean:

x̂c = µ(y) = E[xc|y] =
∫
p(y|x)
p(y)

p(x)xcdx. (2)

Inserting Eq. (2) into Eq. (1) yields that the minimum mean squared error (MMSE) per
pixel is the conditional variance

MMSE = Ey [V[xc|y]] =

Z
p(y)

Z
p(x|y) (xc − µ(y))2 dxdy. (3)

The MMSE measures theinherent ambiguityof the denoising problem and the statistics
of natural images, as any natural imagexwithin the noise level ofy may have generated
y. Since Eq. (2) depends on the exact unknown densityp(x) of natural images (with full
image support), it is unfortunately not possible to compute. Nonetheless, by definition it
is the theoretically optimal denoising algorithm, and in particular outperforms all other
algorithms, even those that detect the class of a picture andthen use class-specific priors
[3], or those which leverage internal patch repetition [6, 22]. That said, such approaches
can yield significant practical benefits when using a finite data.

Finally, note that the densityp(x) plays adualrole. According to Eq. (1), it is needed for
evaluatinganydenoising algorithm, since the MSE is the average over natural images.
Additionally, it determines the optimal estimatorµ(y) in Eq. (2).

Finite support: First, we consider algorithms that only use information in awindow of
d noisy pixels around the pixel to be denoised. When needed, wedenote byxwd

, ywd

the restriction of the clean and noisy images to ad-pixel window and byxc, yc the pixel
of interest, usually the central one withc = 1. As in Eq. (3), the optimal MMSEd of
any denoising algorithm restricted to ad pixels support is also the conditional variance,
but computed over the space of natural patches of sized rather than on full-size images.

By definition, the optimal denoising error may only decreasewith window sized, since
the best algorithm seeingd + 1 pixels can ignore the last pixel and provide the an-
swer of thed pixels algorithm. This raises two critical questions:how does MMSEd
decrease withd, and what is MMSE∞, namely the best achievable denoising error of
any algorithm (not necessarily patch based) ?

Non-Parametric approach with a finite training set:The challenge in evaluating
MMSEd is that the densityp(x) of natural images is unknown. To bypass it, a non-
parametric study of MMSEd for small values ofd was made in [14], by approximating
Eq. (2) with a discrete sum over a large dataset of cleand-dimensional patches{xi}N

i=1.

µ̂d(y) =
1
N

P
i p(ywd |xi,wd)xi,c

1
N

P
i p(ywd |xi,wd)

(4)

where, for iid zero-mean Gaussian noisen with varianceσ2,

p(ywd |xwd) =
1

(2πσ2)d/2
e
− ‖xwd

−ywd
‖2

2σ2 . (5)
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An interesting conclusion of [14] was that for small patchesor high noise levels, exist-
ing denoising algorithms are close to the optimal MMSEd.

For Eq. (4) to be an accurate estimate ofµd(y), the given dataset must contain many
clean patches at distance(dσ2)1/2 from ywd

, which is the expected distance of the orig-
inal patch,E[‖xwd

− ywd
‖2] = dσ2. As a result, non-parametric denoising requires a

larger training set at low noise levelsσ where the distancedσ2 is smaller, or at larger
patch sizesd where clean patch samples are spread further apart. This curse of dimen-
sionality restricted [14] to small values ofd.

In contrast, in this paper we are interested in the best achievable denoising ofanyalgo-
rithm, without restrictions on support size, namely MMSE∞. We thus generalize [14]
by studying how MMSEd decreases as a function ofd, and as a result provide a novel
prediction of MMSE∞ (see Section 4).

Note that MMSE∞ corresponds to an infinite database of all clean images, which
in particular also includes the original imagex. However, this does not imply that
MMSE∞ = 0, since this database also includes many slight variants ofx, with small
spatial shifts or illumination changes. Any of these variants may have generated the
noisy imagey, making it is impossible to identify the correct one with zero error.

3 Patch Size, Complexity and PSNR Gain

Increasing the window size provides a more accurate prior asit considers the informa-
tion of distant pixels on the pixel of interest. However, in anon-parametric approach,
this requires a much larger training set and it is unclear howsubstantial the PSNR gain
might be. This section shows that this tradeoff depends on “patch complexity”, and
presents alaw of diminishing return: patches that require a large increase in database
size also benefit little from a larger window. This gain is governed by the statistical
dependency of peripheral pixels and the central one: weaklycorrelated pixels provide
little information while leading to a much larger spread in patch space, and thus require
a significantly larger training data.

3.1 Empirical study

To understand the dependence of PSNR on window size, we present an empirical study
with M = 104 clean and noisy pairs{(xj , yj)}M

j=1 andN = 108 samples taken from
the LabelMe dataset, as in [14]. We compute the non-parametric mean (Eq. (4)) at
varying window sizesd. For each noisy patch we determine the largestd at which
estimation is still reliable by comparing the results with different clean subsets1.

1 We divide theN clean samples into 10 groups, compute the non-parametric estimatorµ̂d(yj)
on each group separately, and check if the variance of these 10 estimators is much smaller than
σ2. For smalld, samples are dense enough and all these estimators provide consistent results.
For larged, sample density is insufficient, and each estimator gives a very different result.
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Fig. 1: For patch groupsGℓ of varying complexity, we present PSNR vs. number of pixelsd in
windowwd, whered = 1, . . . , ℓ. Higher curves correspond to smooth regions, which flatten at
larger patch dimensions. Textured regions correspond to lower curves which not only run out of
samples sooner, but also their curves flatten earlier.

We divide theM test patches into groupsGℓ based on the largest window sizeℓ at
which the estimate is still reliable. For each group, Fig. 1 displays the empirical PSNR
averaged over the group’s patches as a function of window sized, for d = 1, . . . , ℓ (that
is, up to the maximal window sized = ℓ at which estimation is reliable), where:

PSNR(Gℓ|wd) = −10 log10

(
1

|Gℓ|
∑
j∈Gℓ

(xj,c − µ̂d(yj))2
)

We further compute for each group its mean gradient magnitude,‖∇ywℓ
‖, and observe

that groups with smaller support sizeℓ, which run more quickly out of training data, in-
clude mostly patches with large gradients (texture). Thesepatches correspond to PSNR
curves that are lower and also flatten earlier (Fig. 1). In contrast, smoother patches are
in groups that run out of examples later (higherℓ) and also gain more from an increase
in patch width: the higher curves in Fig. 1 flatten later. The data in Fig. 1 demonstrates
an important principle:When an increase in patch width requires many more training
samples, the performance gain due to these additional samples is relatively small.

To understand the relation between patch complexity, denoising gain, and required num-
ber of samples, we show that the statistical dependency between adjacent pixels is bro-
ken when large gradients are observed. We sample rows of3 consecutive pixels from
cleanx and noisyy natural images (Fig. 2(a)), discretize them into 100 intensity bins,
and estimate the conditional probabilityp(x1, x3|y1, y2) by counting occurrences in
each bin. When the gradient|y2 − y1| is high with respect to the noise level,x1, x3

are approximately independent,p(x1 = i, x3 = j||y1 − y2| ≫ σ) ≈ p1(i)p3(j), see
Fig. 2(d,f). In contrast, small gradients don’t break the dependency, and we observe a
much more elongated structure, see Fig. 2(b,c,e). For reference, Fig. 2(g) shows the
unconditional joint distributionp(x1, x3), without seeing anyy. Its diagonal structure
implies that while the pixels(x1, x3) are by default dependent, the dependency is bro-
ken in the presence of a strong edge between them. From a practical perspective, if
|y1 − y2| ≫ σ, adding the pixely3 does not contribute much to the estimation ofx1. If
the gradient|y1−y2| is small there is still dependency betweenx3 andx1, so addingy3
does further reduce the reconstruction error. A simple explanation for this phenomenon
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Fig. 2: (a) A clean and noisy 1D signal. (b-g) Joint distribution tables. (b-f)p(x1, x3|y1, y2)
at two noise levels. (g)p(x1, x3), before any observation. While neighboring pixels are depen-
dent in default, the dependency is broken when the observed gradient is high with respect to the
noise(d,f).

is to think of adjacent objects in an image. As objects can have independent colors, the
color of one object tells us nothing about its neighbor on theother side of the edge.
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Fig. 3: A toy example of 2D sample densities.

3.2 Theoretical Analysis

Motivated by Fig. 1 and Fig. 2, we study the implications of partial statistical depen-
dence between pixels, both on the performance gain expectedby increasing the window
size, and on the requirements on sample size.

2D Gaussian case:To gain intuition, we first consider a trivial scenario wherepatch
size is increased from 1 to 2 pixels and distributions are Gaussians. In Fig. 3(a),x1

andx2 are independent, while in Fig. 3(b) they are fully dependentandx1 = x2. Both
cases have the same marginal distributionp(x1) with equal denoising performance for
a 1-pixel window. We drawN = 100 samples fromp(x1, x2) and see how many of
them fall within a radiusσ around a noisy observation(y1, y2). In the uncorrelated case
(Fig. 3(a)), the samples are spread in the 2D plane and therefore only a small portion
of them fall near(y1, y2). In the second case, since the samples are concentrated in a
significantly smaller region (a 1-D line), there are many more samples near(y1, y2).
Hence, in the fully correlated case a non parametric estimator requires a significantly
smaller dataset to have a sufficient number of clean samples in the vicinity ofy.

To study the accuracy of restoration, Fig. 3(c,d) shows the marginal distributions
p(x1|y1, y2). Whenx1, x2 are independent, increasing window size to takey2 into
account provides no information aboutx1, andp(x1|y1) = p(x1|y1, y2). Worse, de-
noising performance decreases when the window size is increased because we now
have fewer training patches inside the relevant neighborhood. In contrast, in the fully
correlated case, addingy2 provides valuable information aboutx1, and the variance of
p(x1|y1, y2) is half of the variance giveny1 alone. This illustrates how high correlation
between pixels yields a significant decrease in error without requiring a large increase
in sample size. Conversely, weak correlation gives only limited gain while requiring a
large increase in training data.

General derivation:We extend our 2D analysis tod dimensions. The following claim,
proved in the appendix, provides the leading error term of the non-parametric estimator
µ̂d(y) of Eq.(4) as a function of training set sizeN and window sized. It is similar to
results in the statistics literature on the MSE of the Nadaraya-Watson estimator.
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Claim. Asymptotically, asN →∞, the expected non-parametric MSE with a window
of sized pixels is

EN [MSEd(y)] = MMSEd(y) + 1
N Vd(y) + o

(
1
N

)
(6)

Vd ≈ V[x1|ywd
] |Φd|

σ2d
, (7)

with V[x1|ywd
] the conditional variance of the central pixelx1 given a windowwd from

y, and|Φd| is the determinant of the locald× d covariance matrix ofp(y),

|Φd|−1 =

˛̨̨̨
−∂

2 log p(ywd)

∂2ywd

˛̨̨̨
. (8)

The expected error is the sum of the fundamental limit MMSEd(y) and a variance term
that accounts for the finite number of samplesN in the dataset. As in Monte-Carlo
sampling, it decreases as1N . When window size increases, MMSEd(y) decreases, but
the varianceVd(y) might increase. The tension between these two terms determines
whether for a constant training sizeN increasing window size is beneficial.

The varianceVd is proportional to the volume ofp(ywd
), as measured by the determi-

nant|Φd| of the local covariance matrix. When the volume of the distribution is larger,
theN samples are spread over a wider area and there are fewer cleanpatches near each
noisy patchy. This is precisely the difference between Fig. 3(a) and Fig.3(b).

For the error to be close to the optimal MMSEd, the termVd/N in Eq. (6) must be
small. Eq. (7) shows thatVd depends on the volume|Φd| and we expect this term to
grow with dimensiond, thus requiring many more samplesN . Both our empirical data
and our 2D analysis show that the required increase in samplesize is a function of the
statistical dependencies of the central pixel with the added one.

To understand the required increase in training sizeN when window size is increased
by one pixel fromd− 1 to d, we analyze the ratio of variancesVd/Vd−1. Let gd(y) be
the gain in performance (for an infinite dataset), which according to Eq. (3) is given by:

gd(y) =
MMSEd−1(y)

MMSEd(y)
=

V[x1|y1, . . . yd−1]

V[x1|y1, . . . yd]
(9)

We also denote byg∗d(y) the ideal gain ifxd andx1 were perfectly correlated, i.e.
r = cor(x1, xd | y1, . . . , yd−1) = 1. The following claim shows that when MMSEd(y)
is most improved, sampling is not harder since the volume andvarianceVd do not grow.
For simplicity, we prove the claim in the Gaussian case.

Claim. Let p(y) be Gaussian. When increasing the patch size fromd − 1 to d, the
variance ratio and the performance gain of the estimators are related by:

Vd

Vd−1
=
g∗d
gd

≥ 1. (10)
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That is, the ratio of variances equals the ratio of optimal denoising gain to the achievable
gain. Whenx1, xd are perfectly correlated,gd = g∗d, we getVd/Vd−1 = 1, and a larger
window gives improved restoration results without increasing the required dataset size.
In contrast, ifxd, x1 are weakly correlated, increasing window size requires a bigger
dataset to keepVd/N small, and yet the PSNR gain is small.

Proof. LetC be the2× 2 covariance ofx1, xd giveny1, . . . , yd−1 (before seeingyd)

C = Cov(x1, xd|y1, . . . yd−1) =

„
c1 c12
c12 c2

«
(11)

and letr = c12/
√
c1c2 be the correlation betweenx1, xd.

Assuming that the distribution is locally Gaussian, upon observingyd, the marginal
variance ofx1 decreases fromc1 to the following expression (see Eq. 2.73 in [5]),

V[x1|y1, . . . , yd] = c1 − c212
c2 + σ

= c1

„
1− c212/c1

c2 + σ2

«
= c1

c2(1− r2) + σ2

c2 + σ2
. (12)

Hence the contribution to performance gain of the additional pixel yd is

gd =
V[x1|y1, . . . yd−1]

V[x1|y1, . . . yd]
=

c2 + σ2

c2(1− r2) + σ2
. (13)

Whenr = 1, the largest possible gain fromyd is g∗d = (c2 + σ2)/σ2. The ratio of best
possible gain to achieved gain is

g∗d
gd

=
c2(1− r2) + σ2

σ2
. (14)

Next, let us compute the ratioVd/Vd−1. For Gaussian distributions, accord-
ing to Eq. 2.82 in [5], the conditional variance ofyd given y1, . . . , yd−1 is
independent of the specific observed values. Further, sincep(y1, . . . , yd) =
p(y1, . . . , yd−1)p(yd|y1, . . . yd−1), we obtain that

|Φd| = V(yd|y1, . . . yd−1)|Φd−1| (15)

This implies that

Vd

Vd−1
=

V(yd|y1, . . . yd−1)

σ2

V[x1|y1, . . . yd]

V[x1|y1, . . . yd−1]
(16)

Next, sinceyd = xd + nd with nd ∼ N(0, σ2) independent ofy1, . . . , yd−1, then
V(yd|y1, . . . yd−1) = c2 + σ2. Thus,

Vd

Vd−1
=
c2 + σ2

σ2

c2(1− r2) + σ2

c2 + σ2
=
g∗d
gd
.

To understand the growth ofVd, consider two extreme cases, similar to Fig. 3. First,
consider a signal whose pixels are all independent with varianceγ. In this caser =

9



σ 20 35 50 75 100
Optimal Fixed32.4 30.1 28.7 27.2 26.0
Adaptive 33.030.5 29.0 27.5 26.4
BM3D 33.2 30.3 28.6 26.9 25.6

Table 1: Adaptive and fixed window denoising results in PSNR.

0 and c2 = γ (since independence implies that seeingy1, . . . yd−1 does not reduce
the variance ofxd), hence for every additional dimensiond, g∗d/gd = (γ + σ2)/σ2.
That is,Vd ∝ ((γ + σ2)/σ2)d increases exponentially with the patch dimension, and
thus, to controlVd/N , there is also an exponential increase in the required number of
samplesN . However, if the pixels are independent there is no point in increasing the
patch size as additional pixels provide no information onx1. At the other extreme, of
a perfectly correlated signal,Vd is constant independent ofd. Moreover, increasing the
patch dimension is very informative and can be done without any further increase in
N . In the intermediate case of partial correlation betweenx1, xd (that is0 < r < 1),
increasing the patch dimension provides limited reductionin error and requires some
increase in sample size. As the error reduction is inverselyproportional to the required
number of samples, weak correlation not only leads to small gains, but also requires a
large number of samples.

3.3 Adaptive Denoising

Our findings above motivate anadaptivedenoising scheme [12] where each pixel is
denoised with a variable patch size that depends on the localimage complexity around
it. To test this idea, we devised the following scheme. Givena noisy image, we denoise
each pixel using several patch widths and multiple disjointclean samples. As before,
we compute the variance of all these different estimates, and select the largest width
for which the variance is still below a threshold. Table 1 compares the PSNR of this
adaptive scheme to fixed window size non-parametric denoising using the optimal win-
dow size at each noise level, and to BM3D [9], a state-of-the-art algorithm. We used
M = 1000 test pixels andN = 7 · 109 clean samples. At all considered noise lev-
els, the adaptive approach significantly improves the fixed patch approach, by about
0.3− 0.6dB. At low noise levels, sample sizeN is too small, and adaptive denoising is
worse than BM3D2. At higher noise levels it increasingly outperforms BM3D.

Fig. 4 visualizes the difference between the adaptive and fixed patch size approaches,
at noise levelσ = 50. When patch size is small, noise residuals are highly visible in
the flat regions. With a large patch size, one cannot find good matches in the textured
regions, and as a result noise is visible around edges. Both edges and flat regions are
handled properly by the adaptive approach. Moreover, underperceptual error metrics

2 The reason is that at this finiteN , withσ = 20 our non-parametric approach uses5×5 patches
at textured regions. In contrast, BM3D uses8× 8 ones, with additional algorithmic operations
which allow it to better generalize from a limited number of samples.
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(a)Original (b)Noisy input (c)Adaptive (d)Fixedk = 5 (e)Fixedk = 6 (f)Fixedk = 10

Fig. 4: Visual comparison of adaptive vs. fixed patch size non parametric denoising (optimal fixed
size results obtained withk = 6). A fixed patch has noise residuals either in flat areas(d,e),or in
textured areas(f).

such as SSIM [21], decreasing the error in the smooth regionsis more important, thus
underscoring the potential benefits of an adaptive approach.

Note that this adaptive non-parametric denoising is not a practical algorithm, as Fig. 4
required several days of computation. Nonetheless, these results suggest that adaptive
versions to existing denoising algorithms such as [11, 9, 15, 10, 23] and other low-level
vision tasks are a promising direction for future research.

Window size and noise variance:Another interesting question is the relation between
the optimal window size and the noise level. Fig. 5(a) shows,for several noise levels,
the percentage of test examples for which the adaptive approach selected a square patch
of width smaller thank. Unsurprisingly, with the same number of samplesN , when the
noise level is high, larger patches are used since the non parametric approach essen-
tially averages all samples within a Gaussian window of varianceσ2 around the noisy
observation, so for large noise the neighborhood definitionis wider and includes more
samples. This property is implicitly used by other denoising algorithms. For example,
BM3D [9] uses8 × 8 windows at noise s.t.d below40 and12 × 12 windows at higher
noise levels. Similarly, Bilateral filtering denoising algorithms [4] estimate a pixel as an
adaptive average of its neighbors, where the neighbor weight is significantly reduced
when an intensity discontinuity is observed. However, the discontinuity measure is rel-
ative to the noise level and only differences above the noisestandard deviation actually
reduce the neighbor weight. Thus, effectively, at higher noise levels Bilateral filtering
averages over a wider area.

Our analysis suggests that this is not only an issue of sampledensity but an inherent
property of the statistics of natural images. At high noise levels larger patches are indeed
useful, while at low noise level increasing the patch size provides less information. One
way to see this is to reconsider the conditional distribution tables of Fig. 2. For low
noise a smaller gradient is sufficient to make thex1, x3 independent. e.g., we display
conditional distribution tables for 2 noise levelsσ = 5 andσ = 10. A gradient of
|y1 − y2| = 40 was enough to make the distribution independent atσ = 5 but not yet
at σ = 10. This is because the amount of noise limits the minimal contrast at which
an edge is identified – gradients whose contrast is below the noise standard deviation
can be explained as noise and not as real edges between different segments. As a result,
the optimal denoising does average the values from the otherside of a low contrast
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Fig. 5: (a) Cumulative histogram of the portion of test examples using patch size belowk, for
varying noise levels. The patch size was selected automatically by the algorithm. When the noise
variance is high larger patches are used. (b) The average gain of the EPLL algorithm in 4 groups
of varying complexity (flatness). Most improvement is in theflat patches of group 4.

edge. This implies that optimal denoising takes into account pixels from the other side
of weak edges and thus, at high noise levels wider regions areuseful. This is also the
case in Bilateral filtering, which averages neighbors from the other side of edges whose
contrast is below the noise standard deviation.

Denoising of smooth regions in previous works An interesting outcome of our analy-
sis is that patch based denoising can be improved mostly in flat areas and less in textured
ones. We now show that this property is implicit in several recent denoising papers.

Patch complexity and the EPLL algorithm:One interesting approach to analyze in this
context is the EPLL algorithm of [23]. The authors learned a mixture of Gaussians
prior over8× 8 image patches, but instead of denoising each patch independently, they
then apply an optimization process to improve the Expected Patch Log Likelihood of
all overlapping patches in the image. What is the actual source of improvement of the
EPLL algorithm? To test that we dividedM = 1000 test examples(xi, yi) to 4 groups
according to the corresponding maximal patch width in our adaptive non-parametric ap-
proach. Effectively, groups 1 and 2 contained mostly textured and edge patches, whereas
groups 3 and 4 contained mostly smooth and flat patches.

We denoised each test exampleyi with the direct GMM prior applied to the8× 8 patch
around it, and compared that with the result after the additional EPLL optimization aim-
ing to achieve agreement between overlapping patches. In accordance with our analysis,
Fig. 5(b) shows that the gain from the EPLL step is larger at flat regions, and almost
insignificant at highly textured ones.

The local patch search:In [22] Zontak and Irani explore the relation between internal
and external patch searches. In particular they observe that for simple flat patches, de-
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noising results of non local means [6] with a small5 × 5 window (which are far from
optimal), can be improved if the internal patch search is notperformed over the entire
image, but is restricted to a local neighborhood around the pixel of interest. The ex-
planation of [22] is that for textured areas the probabilityof finding relevant neighbors
within the local neighborhood patches is too low.

Our analysis provides an alternative explanation for thesefindings. In textured regions
there is inherently far less statistical dependency among local pixels, as compared to
flat regions. The local patch search can be interpreted as a way to use information from
a wider window around the pixel of interest. In flat regions denoising is approximately
equivalent to averaging the pixel values over the whole region. Clearly, averaging over
a wider flat region reduces the error, which is precisely whatis implicitly achieved by
restricting the patch search to a local image neighborhood.

Image dependent optimal denoising:In [8] the authors derived, under some simplify-
ing assumptions, image-specific lower bounds on the optimalpossible denoising. Com-
paring these lower bounds to the results of existing algorithms, [8] concluded that for
textured natural images existing algorithms are close to optimal, whereas for synthetic
piecewise constant images there is still a large room for improvement. These findings
are consistent with our analysis, that in flat regions a largesupport can improve denois-
ing results. Thus, current algorithms, tuned to perform well on textured regions, and
working with fixed small patch sizes, can be improved considerably in smooth image
regions.

4 The Convergence and Limits of Optimal Denoising

In this section, we put computational and database size issues aside, and study the be-
havior of optimal denoising error as window size increases to infinity. Fig. 1 shows
that optimal denoising yields a diminishing return beyond awindow size that varies
with patches. Moreover, patches that plateau at larger window sizes also reach a higher
PSNR. Fig. 2 shows that strong edges break statistical correlation between pixels. Com-
bining the two suggests that each pixel has a finite compact region of informative pixels.
Intuitively, the size distribution of these regions must directly impact both denoising er-
ror vs. window size and its limit with an infinite window.

We make two contributions towards elucidating this question. First we show that a com-
bination of the simplifieddead leavesimage formation model, together withscale in-
varianceof natural images implies both apower-lawconvergence, MMSEd ∼ e+ c/d,
as well as a strictly positive lower bound on the optimal denoising with infinite window,
MMSE∞=e>0. Next, we present empirical results showing that despite the simplicity
of this model, its conclusions match well the behavior of real images.
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4.1 Scale-invariance and Denoising Convergence

We consider adead leavesimage formation model, e.g. [1], whereby an image is a
random collection of piecewise constant segments, whose size is drawn from a scale-
invariant distribution and whose intensity is drawn i.i.d.from a uniform distribution.
This yields perfect correlation between pixels in the same region, as in Fig. 3(b).

To further simplify the analysis, we conservatively assumean edge oracle which gives
the exact locations of edges in the image. The optimal denoising is then to average all
observations in a segment. For a pixel belonging to segment of sizes pixels, the MMSE
is σ2/s. Overall the expected reconstruction error with infinite-sized windows is

MMSE =

Z
p(s)

σ2

s
ds (17)

wherep(s) is the probability that a pixel belongs to a segment withs pixels. The optimal
error is strictly larger than zero if the probability of finite segments is larger than zero.
Without the edge-oracle, the error is even higher.

Scale invariance: A short argument [1] which we review below for completeness,
shows that the probability that a random image pixel belongsto a segment of sizes
is of the formp(s) ∝ 1/s. In a Markov model, in contrast,p(s) decays exponentially
fast withs [19].

Claim. Let p(s) denote the probability that a uniformly sampled pixel belongs to a
segment of sizes pixels in a scale invariant distribution. Then

p(s) ∝ 1

s
. (18)

Proof. Let

F (t1, t2) =

Z t2

t1

p(s)ds (19)

denote the probability of a pixel belonging to an object of size t1 ≤ s ≤ t2. Scale
invariance implies that this probability does not change when the image is scaled, hence
for everya, t1, t2 F (t1, t2) = F (at1, at2). This implies thatZ t2

t1

p(s)ds =

Z at2

at1

p(s)ds (20)

and hencep(s) = ap(as). The only distribution satisfying this property isp(s) ∝ 1/s,
since, e.g. by substitutinga = 1/s we get thatp(s) = 1/s · p(1).

The power law distribution of segment sizes was also previously used [19] to argue that
Markov models cannot capture the distribution of natural images, since in a Markov
model the probability of observing a uniform segment shoulddecay exponentially fast.
To see this, consider 1D signals and letp(xi ≈ xi−1) = a for some constanta. In a first
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Fig. 6: (a) Inverse histograms of segment lengths follow a scale invariant distribution. (b) Inverse
histograms ofσ2/(xi − ŷi)

2 exhibit a power law, similar to the distribution of segment sizes.

order Markov process the probability of observing a segmentof lengthd is proportional
to

Πd
i=1p(xi ≈ xi−1) = ad, (21)

since the memory-less definition of a Markov model implies that the probability of the
i’th pixel depends only on pixeli − 1 and not on any of the previous ones. Thus, the
distribution of segment sizes in a Markov model decays exponentially. This result is not
restricted to the case of a first order Markov model and one canshow that the exponen-
tial decay holds for a Markov model of any order. However, empirically the distribution
of segment areas in natural images decays only polynomiallyand not exponentially fast.

To get a sense of the empirical size distribution of nearly-constant-intensity regions
in natural images, we perform a simple experiment inspired by [1]. For a random set
of pixels {xi}, we compute the sized(i) of the connected region whose pixel values
differ from xi by at most a thresholdT : d(i) = #{xj ||xj − xi| ≤ T }. The empirical
histogramh(d) of region sizes follows a power law behaviorh(d) ∝ d−α with α ≈ 1,
as shown in Fig. 6(a,b), which plots1/h(d).

Optimal denoising as a function of window size:We now compute the optimal de-
noising for the dead leaves model with the scale invariance property. Since1/s is not
integrable, scale invariance cannot hold at infinitely large scales. Assuming it holds up
to a maximal sizeD ≫ 1, gives the normalized probability

pD(s) =
s−1RD

1
s−1ds

=
1

lnD

1

s
. (22)

We compute the optimal error with a window of sized ≪ D pixels. Given the edge
oracle, every segment of sizes ≤ d attains its optimal denoising error ofσ2/s, whereas
if s > d we obtain onlyσ2/d. Splitting the integral in (17) into these two cases gives

MMSEd =
∫ d

1

σ2

s pD(s)ds+
∫ D

d

σ2

d pD(s)ds (23)

=
∫ D

1

σ2

s pD(s)ds+ σ2

∫ D

d

(
1
d − 1

s

)
pD(s)ds

= MMSED + σ2

d

(
1− ln d+1

ln D

)
+ σ2

D ln D ≈ MMSED +
σ2

d
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Fig. 7: PSNR vs. patch dimension. A power law fits the data well, whereas an exponential law fits
poorly. Panels (c) and (d) show| log(MMSEd − e)| v.s.d or log(d). An exponential law should
be linear in the first plot, a power law linear in the second.

For this model, MMSE∞ = MMSED. Thus,the dead leaves model with scale invari-
ance property implies a power law1/d convergence to a strictly positive MMSE∞.

4.2 Empirical validation and optimal PSNR

While dead leaves is clearly an over-simplified model, it captures the salient proper-
ties of natural images. Even though real images are not made of piecewise constant
segments, the results of Sec. 3, and Fig. 6 suggest that each image pixel has a finite
“informative region”, whose pixel values are most relevantfor denoising it. While for
real images, correlations may not be perfect inside this region and might not fully drop
to zero outside it, we now show that empirically, optimal denoising in natural images
indeed follows a power law similar to that of the dead-leavesmodel.

To this end, we apply the method of [14] and compute the optimal patch based MMSEd
for several small window sizesd. Fig. 7(a-b) show that consistent with the dead leaves
model, we obtain an excellent fit to a power law MMSEd = e + c

dα with α ≈ 1. In
contrast, we get a poor fit to an exponential law, MMSEd = e + cr−d, implied by the
common Markovian assumption [19]. In addition, Fig. 7(c,d)show log and log-log plots
of (MMSEd − e), with the best fittede in each case. The linear behavior in the log-log
plot (Fig. 7(d)) further supports the power law.

As an additional demonstration of the scale-invariance of natural images in the de-
noising context, we evaluate the distribution of denoisingerror over pixels. For a large
collection of image pixels{xi} we compute the histogram ofσ2/(xi− ŷi)2. Fig. 6(c,d)
shows that the resulting inverted histogram approximatelyfollows a polynomial curve.
Recall that in the idealized dead-leaves model, a perfectlyuniform segment of sizeℓ
yields an error ofσ2/ℓ. Hence, under scale invariance, we expect a linear fit to the his-
tograms of Fig. 6(c,d). While in real natural images, denoising is not simply an average
over the pixels in each segment, interestingly, the inversehistogram is almost linear,
matching the prediction of the dead-leaves model.

Predicting Optimal PSNR:For small window sizes, using a large database and Eq. (4),
we can estimate the optimal patch-based denoising MMSEd. Fig. 7 shows that the curve
of MMSEd is accurately fitted by a power law MMSEd = e + c/dα, with α ≈ 1. To
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σ 35 50 75 100
Extrapolated bound30.6 28.8 27.3 26.3
KSVD [11] 28.7 26.9 25.0 23.7
BM3D [9] 30.0 28.1 26.3 25.0
EPLL [23] 29.8 28.1 26.3 25.1

Table 2: Extrapolated optimal denoising in PSNR, and the results of recent algorithms.
A modest room for improvement exists.

fit the curve MMSEd robustly, for eachd value we split theN samples to10 different
groups, computePSNRd from each of them, and compute the variance in the estima-
tion η2

d. We used gradient descent optimization to search fore, c, α minimizing

X
d

wd
(−10log10(e + c/dα)− PSNRd)2

η2
(24)

where the weightswd account for the fact that the sample ofd values is not uniform as
we have evaluated onlyd values of the formd = k2 (squared patches).

Given the fitted parameters, the curve MMSEd = e + c/dα, can be extrapolated and
we can predict the value of MMSE∞, which is the best possible error ofany denois-
ing algorithm (not necessarily patch based). Since the power law is only approximate,
this extrapolation should be taken with a grain of salt. Nonetheless, it gives an inter-
esting ballpark estimate on the amount of further achievable gain by any future algo-
rithmic improvements. Table 2 compares the PSNR of existingalgorithms to the pre-
dicted PSNR∞, overM = 20, 000 patches using the power law fit based onN = 108

clean samples3. The comparison suggests that current methods may still be improved
by 0.5− 1dB. While the extrapolated value may not be exact, our analysis does suggest
that there are inherent limits imposed by the statistics of natural images, which cannot
be broken, no matter how sophisticated future denoising algorithms will be.

5 Discussion

In this paper we sted both computational and information aspects of image denoising.
Our analysis revealed an intimate relation between denoising performance and the scale
invariance of natural image statistics. Yet, only few approaches account for it [18].
Our findings suggest that scale invariance can be an important cue to explore in the
development of future natural image priors. In addition, adaptive patch size approaches
are a promising direction to improve current algorithms, such as [11, 9, 15, 10, 23].

Our work also highlights the relation between the frequencyof occurrence of a patch,
local pixel correlations, and potential denoising gains. This concept is not restricted to
the denoising problem, and may have implications in other fields.

3 The numerical results in Tables 1,2 are not directly comparable, since Table 1 was computed
on a small subset of onlyM = 1, 000 test examples, but with a larger sample sizeN .
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6 Appendix

Claim. The error of a non parametric estimator in ak × k patch, can be expressed as

MSENP (y) = V[x|y] + 1

N
V(y) + o

„
1

N

«
(25)

with

V(y) =
pσ∗(y)

(4πσ2)k2/2pσ(y)2
`
Vσ∗ [xc|y] + (Eσ[xc|y]− Eσ∗ [xc|y])2

´
(26)

Wherey is a shorten notation forywk×k
, σ∗ = σ/

√
2, andpσ(·), pσ∗(·),Eσ [·],Eσ∗ [·]

denote probability and expectation of random variables with noise varianceσ, σ∗ re-
spectively.

Proof. The non parametric estimator is defined as

µ̂(y) =
1
N

P
i p(y|xi)xi,c

1
N

P
i p(y|xi)

, (27)

For a particular set ofN samples{xi}, its error is

Eσ

ˆ
(xc − µ̂(y))2|y˜ = Eσ[x2

c |y]− 2Eσ[xc|y]µ̂(y) + µ̂(y)2 (28)

In expectation over all possible sequences ofN samples fromp(x) the estimator error
is

MSENP (y) = EN

[
Eσ

[
(xc − µ̂(y))2|y]] (29)

= Eσ[x2
c |y]− 2Eσ[xc|y]EN [µ̂(y)] + EN [µ̂(y)2]

We thus have to compute what is the expected value ofEN [µ̂(y)],EN [µ̂(y)2]. For ease
of notation, we will sometimes drop theN , σ subscripts.

We denote byA(σ, k) = (4πσ2)−k2/2 and use the following equalities

E[p(y|x)] =
R
p(x)p(y|x)dx = pσ(y)

E[p(y|x)xc] = pσ(y)Eσ[xc|y]
E[p(y|x)x2

c] = pσ(y)Eσ[x2
c|y]

E[p(y|x)2] =
R
p(x) e−‖x−y‖2/σ2

(2πσ2)k2 dx = A(σ, k)pσ∗(y)

E[p(y|x)2xc] = A(σ, k)pσ∗(y)Eσ∗ [xc|y]
E[p(y|x)2x2

c] = A(σ, k)pσ∗(y)Eσ∗ [x
2
c |y]

(30)

The two expressions in Eq.(30) are nothing but the mean of thedenominator and nu-
merator ofµ̂(y), respectively. We thus rewrite the term̂µ(y) as

µ̂(y) =
pσ(y)E[xc|y]

(
1 + 1

N

∑ p(y|xi)xi,c−pσ(y)E[xc|y]
pσ(y)E[xc|y]

)
pσ(y)

(
1 + 1

N

∑ p(y|xi)−pσ(y)
pσ(y)

) (31)
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Next, we assumeN ≫ 1 and that the patchy is not too rare, such that

1
N

∑ p(y|xi)− pσ(y)
pσ(y)

≪ 1

Then, using a Taylor expansion for smallǫ,

1
1 + ǫ

= 1− ǫ+ ǫ2 +O(ǫ3)

we obtain the following asymptotic expansion forµ̂(y),

µ̂(y) ≈ E[xc|y]
 

1 +
1

N

X
i

p(y|xi)xi,c − p(y)E[xc|y]
p(y)E[xc|y]

!

·
 

1− 1

N

X
i

p(y|xi)− p(y)

p(y)
+

 
1

N

X
i

p(y|xi)− p(y)

p(y)

!2! (32)

We now take the expectation of Eq. (32) overx samples. We use the fact thatE[p(y|x)−
p(y)] = 0, E[p(y|x)xc − p(y)E[xc|y]] = 0. We also neglect allO(1/N2) terms.

EN [µ̂(y)] = E[xc|y]
„

1 +
1

N

E[p(y|x)2]
p(y)2

− 1

N

E[p(y|x)2xc]

p(y)2E[xc|y] + o(1/N)

« (33)

Using the identities of Eq. (30) we can express this as

EN [µ̂(y)] = E[xc|y] + ζy(E[xc|y]− Eσ∗ [xc|y]) + o(1/N) (34)

With
ζy =

1

N

A(σ, k)pσ∗(y)

p(y)2
(35)

We now move to computingEN [µ̂(y)2]. Using the identities in Eq. (30), we rewrite the
termµ̂(y)2 as

µ̂(y)2 = E[xc|y]2
“
1 + 1

N

P p(y|xi)xi,c−p(y)E[xc|y]

p(y)E[xc|y]

”2

“
1 + 1

N

P p(y|xi)−pσ(y)
pσ(y)

”2

= E[xc|y]2

·

„
1+ 2

N

P p(y|xi)xi,c−p(y)E[xc|y]

p(y)E[xc|y]
+
“

1
N

P p(y|xi)xi,c−p(y)E[xc|y]

p(y)E[xc|y]

”2
«

„
1 + 2

N

P p(y|xi)−pσ(y)
pσ(y)

+
“

1
N

P p(y|xi)−pσ(y)
pσ(y)

”2
«

≈ E[xc|y]2

·
„
1+ 2

N

P p(y|xi)xi,c−p(y)E[xc|y]

p(y)E[xc|y]
+
“

1
N

P p(y|xi)xi,c−p(y)E[xc|y]

p(y)E[xc|y]

”2
«

·
„

1− 2
N

P p(y|xi)−pσ(y)
pσ(y)

+ 3
N

“P p(y|xi)−pσ(y)
pσ(y)

”2
«

(36)
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Taking expectations over all sequences ofN samples, and omittingO(1/N2) terms, we
get:

EN [µ̂(y)2] = E[xc|y]2
„

1− 4

N

E[p(y|x)2xc]

p(y)2E[xc|y] +
1

N

E[p(y|x)2x2
c]

p(y)2E[xc|y]2

+
3

N

E[p(y|x)2]
p(y)2

+ o(1/N)

« (37)

Using Eqs. (30) and (35) we can simplify Eq. (37) to

EN [µ̂(y)2] = E[xc|y]2

+ ζy

`−4Eσ∗ [xc|y]E[xc|y] + Eσ∗ [x
2
c |y] + 3E[xc|y]2

´
+ o(1/N)

(38)

We now substitute the terms from Eqs. (34) and (38) in Eq. (29), resulting in

MSENP≈E[x2
c |y]− E[xc|y]2 + (39)

ζy
(
Eσ∗ [x2

c |y] + E[xc|y]2 − 2E[xc|y]Eσ∗ [xc|y]
)

=V[xc|y] + (40)

ζy

(
Vσ∗ [xc|y] + (E[xc|y]− Eσ∗ [xc|y])2

)
=V[xc|y] + 1

N
V(y) (41)

Claim. For a Gaussian distribution, the average non parametric variance is

V̄ = Ey[V(y)] =
|Φ|V[xc|y]

σ2d
(42)

Proof. We denote by Φ,Φ∗, Γ, Ψ, Ψ∗ the covariance matrices of
pσ(y), pσ∗(y), p(x), pσ(x|y), pσ∗(x|y) respectively.

We denote by
B(y) = Vσ∗ [xc|y] + (Eσ[xc|y]− Eσ∗ [xc|y])2 (43)

We would like to compute

Ey[V(y)]

=

Z
pσ(y)

pσ∗(y)

(4πσ2)d/2pσ(y)2
B(y)dy

=

Z
pσ∗(y)

(4πσ2)d/2pσ(y)
B(y)dy

=
1

(4πσ2)d/2

(2π)d/2|Φ|1/2

(2π)d/2|Φ∗|1/2

Z
e−

1
2 yT (Φ∗−1−Φ−1)yB(y)dy

(44)

Denoting:

Θ−1 = Φ∗−1 − Φ−1 (45)

Z−1 =
|Φ|1/2|Θ|1/2

(2σ2)d/2|Φ∗|1/2
(46)
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We can write

Ey[V(y)]

=
1

Z

1

(2π)d/2|Θ|1/2

Z
e−

1
2 yT Θ−1yB(y)dy

= Z−1EΘ[B(y)]

(47)

We now note that for Gaussian distributions we can express the relation between the
various covariance matrices as

Φ = Γ + σ2Id

Φ∗ = Γ + σ∗2Id

Ψ =
`
Γ−1 + 1

σ2 Id

´−1

Ψ∗ =
`
Γ−1 + 1

σ∗2 Id

´−1

(48)

Since all this matrices are obtained fromΓ or Γ−1 by adding a scalar matrix, they are
all diagonal in the same basis. We denote by{φℓ}, {φ∗ℓ}, {γℓ}, {ψℓ}, {ψ∗ℓ}, {θℓ} the
eigenvalues ofΦ,Φ∗, Γ, Ψ, Ψ∗, Θ, and by{u1, . . . ud} the joint eigenvectors basis. We
can express the eigenvalues relations as

φℓ = γℓ + σ2

φ∗ℓ = γℓ + σ∗2

ψℓ =
`
γ−1

ℓ + 1
σ2

´−1

ψ∗ℓ =
`
γ−1

ℓ + 1
σ∗2

´−1

θℓ =
“

1
γℓ+σ∗2 − 1

γℓ+σ2

”−1

= (γℓ+σ∗2)(γℓ+σ2)

σ∗2

(49)

We can now expressZ−1 as a product of eigenvalues

Z−1 =

„
Πℓ

φℓθℓ

2σ2φ∗ℓ

«1/2

(50)

By substituting the terms from Eq. (49) in Eq. (50) we get

Z−1 = Πℓ
φℓ

σ2
=

|Φ|
σ2d

(51)

We now want to compute the termEΘ[B(y)]. We denote with̃x, ỹ the transformation
of the signalsx, y to the eigenvectors basis

x̃ℓ = uT
ℓ x, ỹℓ = uT

ℓ y (52)

We can express

Eσ[xc|y] =
∑

ℓ

uℓ,cEσ[x̃ℓ|ỹ] (53)

Eσ∗ [xc|y] =
∑

ℓ

uℓ,cEσ∗ [x̃ℓ|ỹ] (54)

(55)
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whereuℓ,c denote thec entry of the eigenvectoruℓ. In the diagonal basis

Eσ[x̃ℓ|ỹ] =
ψℓ

σ2
ỹℓ, Eσ∗ [x̃ℓ|ỹ] =

ψ∗ℓ

σ∗2
ỹℓ (56)

If we take expectation overy, wheny ∼ N(0, Θ) and recall thatΘ is also diagonal in
the basis{uℓ}, we get

EΘ

ˆ
(Eσ[xc|y]− Eσ∗ [xc|y])2

˜
=
X

ℓ

u2
ℓ,c

„
ψℓ

σ2
− ψ∗ℓ

σ∗2

«2

θℓ (57)

We also use the diagonal basis to express

Vσ∗ [xc|y] =
X

ℓ

u2
ℓ,cψ∗ℓ (58)

Thus

EΘ[B(y)] =
X

ℓ

u2
ℓ,c

 „
ψℓ

σ2
− ψ∗ℓ

σ∗2

«2

θℓ + ψ∗ℓ

!
(59)

Substituting the terms from equation Eq. (49) plus some algebraic manipulations pro-
vides that „

ψℓ

σ2
− ψ∗ℓ

σ∗2

«2

θℓ + ψ∗ℓ = ψℓ (60)

Hence
EΘ[B(y)] =

X
ℓ

u2
ℓ,cψℓ = Vσ[xc|y] (61)

Combining Eqs. (51) and (61) into Eq. (47) we get

Ey[V(y)] =
|Φ|V[xc|y]

σ2d
(62)
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