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Abstract. Image restoration tasks are ill-posed problems, typicsolyed with
priors. Since the optimal prior is the exact unknown densftpatural images,
actual priors are only approximate and typically restddi® small patches. This
raises several questions: How much may we hope to improvertuestoration
results with future sophisticated algorithms? And moredamentally, even with
perfect knowledge of natural image statistics, what is tieient ambiguity of
the problem? In addition, since most current methods ariédlihto finite support
patches or kernels, what is the relation between the pateiplexity of natural
images, patch size, and restoration errors? Focusing a@eigenoising, we make
several contributions. First, in light of computationahstraints, we study the re-
lation between denoising gain and sample size requirenreateion parametric
approach. We present a law of diminishing return, namely \hth increasing
patch size, rare patches not only require a much largeretatag also gain little
from it. This result suggests novel adaptive variableeizatch schemes for de-
noising. Second, we study absolute denoising limits, iigas of the algorithm
used, and the converge rate to them as a function of patchSgsaée invariance
of natural images plays a key role here and implies both etlstpositive lower
bound on denoising and a power law convergence. Extrapglétis parametric
law gives a ballpark estimate of the best achievable demmisiuggesting that
some improvement, although modest, is still possible.

1 Introduction

Characterizing the properties of natural images is ctifeacomputer and human vi-
sion [18, 13,20, 16, 7, 23]. In particular, low level visicasks such as denoising, su-
per resolution, deblurring and completion, are fundampntaposed since an infinite
number of images can explain an observed degraded imagenage priors are crucial
in reducing this ambiguity, as even approximate knowledgée probabilityp(z) of
natural images can rule out unlikely solutions.

This raises several fundamental questions. First, at thst basic level, what is the in-
herent ambiguity of low level image restoration problems? tan they be solved with
zero error given perfect knowledge of the densgity:)? More practically, how much
can we hope to improve current restoration results withreuadvances in algorithms
and image priors?

Clearly, more accurate priors improve restoration restiltavever, while most image
priors (parametric, non-parametric, learning-based)4220, 16, 23] as well as studies



on image statistics [13, 7] are restricted to local imagelped or kernels, little is known
about their dependence on patch size. Hence another quespoactical importance is
the following: What is the potential restoration gain fromiacrease in patch size? and,
how is it related to the "patch complexity” of natural imagaamely their geometry,
density and internal correlations.

In this paper we study these questions in the context of thplest restoration task: im-
age denoising [18, 20,6, 11,9, 15, 10, 23]. We build on pritanapts to study the lim-
its of natural image denoising [17, 3, 8]. In particular, be hon-parametric approach
of [14], which estimated the optimal error for the class dichébased algorithms that
denoise each pixel using only a finite support of noisy pigetsund it. A major limi-
tation of [14], is that computational constraints resétttt to relatively small patches.
Thus, [14] was unable to predict the best achievable dempisi algorithms that are
allowed to utilize the entire image support. In other womisabsolute PSNR bound,
independent of patch size restrictions, is still unknown.

We make several theoretical contributions with practiogllications, towards answer-
ing these questions. First we consider non-parametricigiegowith a finite external
database and finite patch size. We study the dependence oiSthgnerror on patch
size. Our main result islaw of diminishing returnwhen the window size is increased,
the difficulty of finding enough training data for an input spppatch directly correlates
with diminishing returns in denoising performance. Thatist only is it easier to in-
crease window size for smooth patches, they also benefit frmresuch an increase.
In contrast, textured regions require a significantly laggmple size to increase the
patch size, while gaining very little from such an incredg®m a practical viewpoint,
this analysis suggests adaptive strategwhere each pixel is denoised with a variable
window size that depends on its local patch complexity.

Next, we put computational issues aside, and study the faadtl limit of denois-
ing, with an infinite window size and a perfectly knowf) (i.e., an infinite training
database). Under a simplified image formation model we stiuelyollowing question:
What is the absolute lower bound on denoising error, and lasivdo we converge to
it, as a function of window size. We show that tbeale invarianceof natural images
plays a key role and yields a power law convergence curve.drahly, despite the
model’s simplicity, its predictions agree well with empal observations. Extrapolat-
ing this parametric law provides a ballpark prediction oa kiest possible denoising,
suggesting that current algorithms may still be improveabyut0.5 — 1 dB.

2 Optimal Mean Square Error Denoising

In image denoising, given a noisy versign= = + n of a clean imager, corrupted
by additive noisen, the aim is to estimate a cleaner versianThe common quality
measure of denoising algorithms is their mean squared, eweraged over all possible
clean and noisy, y pairs, wherer is sampled from the densip(z) of natural images

MSE= B[ ~ al*| = [ p(o) [ polo)]c - o] *dyda (1)
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It is known, e.g. [14], that for a single pixel of interest the estimator minimizing
Eqg. (1) is the conditional mean:

A p(y|)
Te = =Elz.|ly| = / T)r.dx. 2
y) = Elzcly] ) p(z) )
Inserting Eq. (2) into Eq. (1) yields that the minimum meaunasgd error (MMSE) per
pixel is the conditional variance

MMSE = E, [V]ze|y]] = / () / p(aly) (ze — p(y))? dudy. 3)

The MMSE measures thieherent ambiguityf the denoising problem and the statistics
of natural images, as any natural imageithin the noise level off may have generated
y. Since Eq. (2) depends on the exact unknown depsity of natural images (with full
image support), itis unfortunately not possible to comphtmetheless, by definition it
is the theoretically optimal denoising algorithm, and imtgailar outperforms all other
algorithms, even those that detect the class of a picturémduse class-specific priors
[3], or those which leverage internal patch repetition [, Zhat said, such approaches
can yield significant practical benefits when using a finite.da

Finally, note that the densipyx) plays adualrole. According to Eq. (1), it is needed for
evaluatinganydenoising algorithm, since the MSE is the average over ahimages.
Additionally, it determines the optimal estimaofy) in Eq. (2).

Finite support: First, we consider algorithms that only use information imiadow of

d noisy pixels around the pixel to be denoised. When neededienete byzr,,,, yu,

the restriction of the clean and noisy images tbixel window and byz.., y. the pixel

of interest, usually the central one with= 1. As in Eq. (3), the optimal MMS[ of
any denoising algorithm restricted talgixels support is also the conditional variance,
but computed over the space of natural patches ofsiather than on full-size images.

By definition, the optimal denoising error may only decreaih window sized, since
the best algorithm seeing + 1 pixels can ignore the last pixel and provide the an-
swer of thed pixels algorithm. This raises two critical questiolgw does MMSE
decrease withi, and what is MMSE,, namely the best achievable denoising error of
any algorithm (not necessarily patch based) ?

Non-Parametric approach with a finite training setThe challenge in evaluating
MMSE, is that the density(x) of natural images is unknown. To bypass it, a non-
parametric study of MMSfor small values ofl was made in [14], by approximating
Eq. (2) with a discrete sum over a large dataset of cledimensional patchese; } ¥ ;.

7 _ % Zip(ywd|xi,wd)xi,c
Nd(y) - 1 (4)
N Zz p(ywd |xi,wd)
where, for iid zero-mean Gaussian noiswith variancer?,

1 Crwy —vwy 1

P(Ywg|Tw,) = (@ron)a® S ®)
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An interesting conclusion of [14] was that for small patcbekigh noise levels, exist-
ing denoising algorithms are close to the optimal MMSE

For Eq. (4) to be an accurate estimateugfy), the given dataset must contain many
clean patches at distangér2)'/2 fromy,,,,, which is the expected distance of the orig-
inal patch,E[||z, — yw,||?] = do?. As a result, non-parametric denoising requires a
larger training set at low noise leveiswhere the distancés? is smaller, or at larger
patch sizesl where clean patch samples are spread further apart. This ofidimen-
sionality restricted [14] to small values df

In contrast, in this paper we are interested in the best @able denoising odnyalgo-
rithm, without restrictions on support size, namely MMSEWNe thus generalize [14]
by studying how MMSE decreases as a function@fand as a result provide a novel
prediction of MMSE,, (see Section 4).

Note that MMSE, corresponds to an infinite database of all clean images,hwhic
in particular also includes the original image However, this does not imply that
MMSE,, = 0, since this database also includes many slight variants wfth small
spatial shifts or illumination changes. Any of these vatsamay have generated the
noisy imagey, making it is impossible to identify the correct one withaerror.

3 Patch Size, Complexity and PSNR Gain

Increasing the window size provides a more accurate prigrassiders the informa-
tion of distant pixels on the pixel of interest. However, in@-parametric approach,
this requires a much larger training set and it is unclear sstantial the PSNR gain
might be. This section shows that this tradeoff depends @atctpcomplexity”, and
presents daw of diminishing returnpatches that require a large increase in database
size also benefit little from a larger window. This gain is goed by the statistical
dependency of peripheral pixels and the central one: weakiselated pixels provide
little information while leading to a much larger spread aigh space, and thus require

a significantly larger training data.

3.1 Empirical study

To understand the dependence of PSNR on window size, wep@sempirical study
with M = 10* clean and noisy pair§(z;, y;)} 12, andN = 10% samples taken from
the LabelMe dataset, as in [14]. We compute the non-par&magan (Eq. (4)) at
varying window sizes!. For each noisy patch we determine the largést which
estimation is still reliable by comparing the results witfietent clean subsets

! we divide theN clean samples into 10 groups, compute the non-parametingager /14 (y; )
on each group separately, and check if the variance of tieestimators is much smaller than
o?. For smalld, samples are dense enough and all these estimators provisistent results.
For larged, sample density is insufficient, and each estimator givesradifferent result.
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Fig. 1. For patch groupsG, of varying complexity, we present PSNR vs. number of pikeis
windowwg, whered = 1, ..., ¢. Higher curves correspond to smooth regions, which flatten a
larger patch dimensions. Textured regions correspond welocurves which not only run out of
samples sooner, but also their curves flatten earlier.

We divide theM test patches into groups, based on the largest window sizeat
which the estimate is still reliable. For each group, Figisplhys the empirical PSNR
averaged over the group’s patches as a function of windawisiord = 1, ..., ¢ (that
is, up to the maximal window sizé= /¢ at which estimation is reliable), where:

PSNR Gelus) = 1010810 (g 3 (a3~ )

JEGY

We further compute for each group its mean gradient magajti™dy.,, ||, and observe
that groups with smaller support sizewhich run more quickly out of training data, in-
clude mostly patches with large gradients (texture). Tipasehes correspond to PSNR
curves that are lower and also flatten earlier (Fig. 1). Intremt, smoother patches are
in groups that run out of examples later (higipand also gain more from an increase
in patch width: the higher curves in Fig. 1 flatten later. Thgadn Fig. 1 demonstrates
an important principleWWhen an increase in patch width requires many more training
samples, the performance gain due to these additional ssmplelatively small.

To understand the relation between patch complexity, d@mpgain, and required num-
ber of samples, we show that the statistical dependencyeleetadjacent pixels is bro-
ken when large gradients are observed. We sample rowscohsecutive pixels from
cleanx and noisyy natural images (Fig. 2(a)), discretize them into 100 intgrisns,
and estimate the conditional probabilityx;, z3]y1, y2) by counting occurrences in
each bin. When the gradiehf, — 1] is high with respect to the noise level;, z3
are approximately independeptz, = i,23 = jl||ly1 — y2| > o) = p1(i)ps(j), see
Fig. 2(d,f). In contrast, small gradients don’t break thpetelency, and we observe a
much more elongated structure, see Fig. 2(b,c,e). Forarfer Fig. 2(g) shows the
unconditional joint distribution(x1, x3), without seeing any. Its diagonal structure
implies that while the pixeléz,, z3) are by default dependent, the dependency is bro-
ken in the presence of a strong edge between them. From acptgmtrspective, if
ly1 — y2| > o, adding the pixel; does not contribute much to the estimatiorcef If
the gradienty; — y»| is small there is still dependency betwegrandz,, so addingys
does further reduce the reconstruction error. A simpleangtion for this phenomenon



ly1 — y2| =10 [y1 — y2| = 40 lyr — y2| = 80
(b)o = 10 ©o =10 (d)o = 10

x
W
w-

w

[y1 — 2| =10 |y1 — ya| = 40 unconstrained
(e)o =5 Ho=5 (9)

Fig. 2: (a) A clean and noisy 1D signal. (b-g) Joint distribution led (b-f)p(x1, z3|y1, y2)

at two noise levels. (@)(z1, x3), before any observation. While neighboring pixels are depe
dent in default, the dependency is broken when the obseraelitgt is high with respect to the
noise(d,f).

is to think of adjacent objects in an image. As objects car iredependent colors, the
color of one object tells us nothing about its neighbor ondtier side of the edge.
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Fig. 3: A toy example of 2D sample densities.

3.2 Theoretical Analysis

Motivated by Fig. 1 and Fig. 2, we study the implications oftjgé statistical depen-
dence between pixels, both on the performance gain expbgtadreasing the window
size, and on the requirements on sample size.

2D Gaussian caseTo gain intuition, we first consider a trivial scenario wheach
size is increased from 1 to 2 pixels and distributions aresSians. In Fig. 3(a)y
andzx, are independent, while in Fig. 3(b) they are fully dependentz; = x,. Both
cases have the same marginal distribup¢m, ) with equal denoising performance for
a 1-pixel window. We drawN = 100 samples fronp(x1, x2) and see how many of
them fall within a radiug around a noisy observatidp;, y2). In the uncorrelated case
(Fig. 3(a)), the samples are spread in the 2D plane and tirerefly a small portion
of them fall nean(y1, y2). In the second case, since the samples are concentrated in a
significantly smaller region (a 1-D line), there are many ensamples neafy;, y2).
Hence, in the fully correlated case a non parametric estimagjuires a significantly
smaller dataset to have a sufficient number of clean samplbg ivicinity ofy.

To study the accuracy of restoration, Fig. 3(c,d) shows tlagimal distributions
p(z1|y1, y2). Whenzy, 2, are independent, increasing window size to tgkeinto
account provides no information abatit, andp(z1|y1) = p(z1|y1,y=2). Worse, de-
noising performance decreases when the window size isdsetebecause we now
have fewer training patches inside the relevant neightmthim contrast, in the fully
correlated case, adding provides valuable information abowut, and the variance of
p(z1]y1, y2) is half of the variance givem, alone. This illustrates how high correlation
between pixels yields a significant decrease in error witheguiring a large increase
in sample size. Conversely, weak correlation gives onlytéichgain while requiring a
large increase in training data.

General derivation:We extend our 2D analysis tbdimensions. The following claim,
proved in the appendix, provides the leading error termehibn-parametric estimator
i1qa(y) of Eq.(4) as a function of training set si2é and window sizel. It is similar to
results in the statistics literature on the MSE of the Naga\&atson estimator.



Claim. Asymptotically, asV — oo, the expected non-parametric MSE with a window
of sized pixels is

En[MSEi(y)] = MMSEi(y) + £ Va(y) + o0 (+) 6)
Yy W7 (7)

with V[z1 |y, ] the conditional variance of the central pixglgiven a windoww,; from
y, and|®,| is the determinant of the locdlx d covariance matrix op(y),

~ 9*10g p(Yuw,)

&yt :‘ ) 8
[Pal Py, (8)

The expected error is the sum of the fundamental limit MM@# and a variance term
that accounts for the finite number of samplgsin the dataset. As in Monte-Carlo
sampling, it decreases &s. When window size increases, MMg(g) decreases, but
the variance/;(y) might increase. The tension between these two terms detesmi
whether for a constant training si2é increasing window size is beneficial.

The variance/; is proportional to the volume qf(y,,, ), as measured by the determi-
nant|®,| of the local covariance matrix. When the volume of the disttion is larger,
the N samples are spread over a wider area and there are fewepd&dues near each
noisy patchy. This is precisely the difference between Fig. 3(a) and B{b).

For the error to be close to the optimal MMgEhe termV,;/N in Eq. (6) must be

small. Eq. (7) shows that; depends on the volume,| and we expect this term to
grow with dimensiond, thus requiring many more samplas Both our empirical data
and our 2D analysis show that the required increase in sasigglas a function of the

statistical dependencies of the central pixel with the dduee.

To understand the required increase in training $izashen window size is increased
by one pixel fromd — 1 to d, we analyze the ratio of varianc®s/V,_1. Letg,(y) be
the gain in performance (for an infinite dataset), which adic to Eq. (3) is given by:

_ MMSEs_1(y) _ Viza|yr, .. ya1]
ga4(y) = MMSE,(y) - Vizi|yi, - - yd] ©)

We also denote by (y) the ideal gain ifz; andz; were perfectly correlated, i.e.
r = cor(x1,x4|y1,...,ya—1) = 1. The following claim shows that when MMSEy)
is most improved, sampling is not harder since the volumevanidnce); do not grow.
For simplicity, we prove the claim in the Gaussian case.

Claim. Let p(y) be Gaussian. When increasing the patch size fdom 1 to d, the
variance ratio and the performance gain of the estimatersedated by:

Vi _ 94 5 (10)
Vi1 ga



That s, the ratio of variances equals the ratio of optimabiing gain to the achievable
gain. Wheney, 24 are perfectly correlatedy = g, we getV;/Vy—1 = 1, and a larger
window gives improved restoration results without inciegshe required dataset size.
In contrast, ifzy, 21 are weakly correlated, increasing window size requiresggéyi
dataset to keep,; /N small, and yet the PSNR gain is small.

Proof. Let C' be the2 x 2 covariance ofcy, z4 givenys, . . ., yqs—1 (before seeing,)

C =Cov(zi,zalyr,...Yi-1) = ( ‘1 012) (11)

Ci12 C2
and letr = ¢12//c1¢2 be the correlation between, z.

Assuming that the distribution is locally Gaussian, uposeskingy,, the marginal
variance ofr; decreases from to the following expression (see Eq. 2.73 in [5]),

2 2 2 2
—012 = C1 (1 — 012/01 > =C1 02(1 " )+U . (12)

v seesYdl =c1 —
w1l yal = e c2+o0 c2 + o2 c2 +a?

Hence the contribution to performance gain of the addifipneel y, is

Vizilyr, - - - Ya—1] _ ¢y + o2
Viz1|yi, - - - yd] c2(1—72) + 02

ga = (13)

Whenr = 1, the largest possible gain frop is g;; = (c2 + 0?)/0?. The ratio of best
possible gain to achieved gain is
gi _ c2(l=r)+o (14)

Next, let us compute the ratid’;/V,—1. For Gaussian distributions, accord-

ing to Eq. 2.82 in [5], the conditional variance af; given yi,...,yq4—1 IS
independent of the specific observed values. Further, sp@g,...,vs) =
(Y1 .-y Ya—1)p(Ydly1, - - . ya—1), we obtain that

|Pa| = V(yalyr, - ya—1)|Pa—1] (15)

This implies that

Va _ Valyr, .. ya—1) Viza|ys, .. ya]

16
Va1 o? Vizilyr, - - Ya—1] (16)
Next, sinceyq = xq + ng With nq ~ N(0,0?%) independent oy, ..., y4—1, then
V(yalyr, .. -Ya—1) =c2+ 2. Thus,
Vi _ctd’el-r)+d® gi
Va1 02 Cy + o2 g4

To understand the growth af;, consider two extreme cases, similar to Fig. 3. First,
consider a signal whose pixels are all independent withamag~. In this caser =



o |20 35 50 75 100
Optimal Fixed32.4 30.1 28.7 27.2 26.0
Adaptive 33.030.529.027.526.4
BM3D 33.230.328.6 26.925.6

Table 1: Adaptive and fixed window denoising results in PSNR.

0 andcy; = ~ (since independence implies that seeing. ..yq—1 does not reduce
the variance ofr,;), hence for every additional dimensidng’/gs = (v + 02)/0?.
Thatis,Va o< ((7 + 02)/0?)? increases exponentially with the patch dimension, and
thus, to control,;/N, there is also an exponential increase in the required noofbe
samplesN. However, if the pixels are independent there is no poinhareasing the
patch size as additional pixels provide no informatiomgnAt the other extreme, of
a perfectly correlated signaly is constant independent df Moreover, increasing the
patch dimension is very informative and can be done withoytfarther increase in
N. In the intermediate case of partial correlation betwegn:,; (that isO < r < 1),
increasing the patch dimension provides limited reduciioarror and requires some
increase in sample size. As the error reduction is inveys@lportional to the required
number of samples, weak correlation not only leads to snaafisgy but also requires a
large number of samples.

3.3 Adaptive Denoising

Our findings above motivate aadaptivedenoising scheme [12] where each pixel is
denoised with a variable patch size that depends on theilnegle complexity around
it. To test this idea, we devised the following scheme. Ga@oisy image, we denoise
each pixel using several patch widths and multiple disjoleain samples. As before,
we compute the variance of all these different estimated,safect the largest width
for which the variance is still below a threshold. Table 1 pames the PSNR of this
adaptive scheme to fixed window size non-parametric dempissing the optimal win-
dow size at each noise level, and to BM3D [9], a state-ofétiealgorithm. We used
M = 1000 test pixels andV = 7 - 10° clean samples. At all considered noise lev-
els, the adaptive approach significantly improves the fixatdtpapproach, by about
0.3 — 0.6dB. At low noise levels, sample siZ¢€ is too small, and adaptive denoising is
worse than BM3B. At higher noise levels it increasingly outperforms BM3D.

Fig. 4 visualizes the difference between the adaptive aredl fpatch size approaches,
at noise leveb = 50. When patch size is small, noise residuals are highly \asitol
the flat regions. With a large patch size, one cannot find goaitimes in the textured
regions, and as a result noise is visible around edges. Blofbseand flat regions are
handled properly by the adaptive approach. Moreover, updereptual error metrics

2 The reason is that at this finifé, with o = 20 our non-parametric approach uges5 patches
at textured regions. In contrast, BM3D uses 8 ones, with additional algorithmic operations
which allow it to better generalize from a limited number afrgples.
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(a)0Original  (b)Noisy input (c)Adaptive (d)Fixdd= 5 (e)Fixedk =6 (f)Fixedk = 10

Fig. 4: Visual comparison of adaptive vs. fixed patch size non patrémenoising (optimal fixed
size results obtained with = 6). A fixed patch has noise residuals either in flat areas(ayeh
textured areas(f).

such as SSIM [21], decreasing the error in the smooth redgsiomere important, thus
underscoring the potential benefits of an adaptive approach

Note that this adaptive non-parametric denoising is notatmal algorithm, as Fig. 4
required several days of computation. Nonetheless, thessats suggest that adaptive
versions to existing denoising algorithms such as [11, 910523] and other low-level
vision tasks are a promising direction for future research.

Window size and noise variancé&nother interesting question is the relation between
the optimal window size and the noise level. Fig. 5(a) shdarsseveral noise levels,
the percentage of test examples for which the adaptive apprselected a square patch
of width smaller thark. Unsurprisingly, with the same number of sampléswhen the
noise level is high, larger patches are used since the n@mmdric approach essen-
tially averages all samples within a Gaussian window ofarszes? around the noisy
observation, so for large noise the neighborhood definisamder and includes more
samples. This property is implicitly used by other den@safgorithms. For example,
BM3D [9] uses8 x 8 windows at noise s.t.d below) and12 x 12 windows at higher
noise levels. Similarly, Bilateral filtering denoising alithms [4] estimate a pixel as an
adaptive average of its neighbors, where the neighbor w&gignificantly reduced
when an intensity discontinuity is observed. However, tise@htinuity measure is rel-
ative to the noise level and only differences above the reimedard deviation actually
reduce the neighbor weight. Thus, effectively, at highésaevels Bilateral filtering
averages over a wider area.

Our analysis suggests that this is not only an issue of sadggisity but an inherent
property of the statistics of naturalimages. At high noésels larger patches are indeed
useful, while at low noise level increasing the patch sizwjgles less information. One
way to see this is to reconsider the conditional distributiables of Fig. 2. For low
noise a smaller gradient is sufficient to make thexs independent. e.g., we display
conditional distribution tables for 2 noise leveis= 5 ando = 10. A gradient of
ly1 — y2| = 40 was enough to make the distribution independeiat at 5 but not yet
ato = 10. This is because the amount of noise limits the minimal @sttat which
an edge is identified — gradients whose contrast is below diserstandard deviation
can be explained as noise and not as real edges betweeruiffegments. As a result,
the optimal denoising does average the values from the sitlerof a low contrast

11
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Fig. 5: (a) Cumulative histogram of the portion of test examplesgigiatch size belowk, for
varying noise levels. The patch size was selected autcaigtiny the algorithm. When the noise
variance is high larger patches are used. (b) The average gaihe EPLL algorithm in 4 groups
of varying complexity (flatness). Most improvement is infldtgpatches of group 4.

edge. This implies that optimal denoising takes into actpixels from the other side
of weak edges and thus, at high noise levels wider regionasetil. This is also the
case in Bilateral filtering, which averages neighbors fromdther side of edges whose
contrast is below the noise standard deviation.

Denoising of smooth regionsin previousworks An interesting outcome of our analy-
sis is that patch based denoising can be improved mostlytiaras and less in textured
ones. We now show that this property is implicit in severakrg denoising papers.

Patch complexity and the EPLL algorithn®ne interesting approach to analyze in this
context is the EPLL algorithm of [23]. The authors learned iatane of Gaussians
prior over8 x 8 image patches, but instead of denoising each patch indepéndhey
then apply an optimization process to improve the ExpectgdhPLog Likelihood of
all overlapping patches in the image. What is the actualcgaf improvement of the
EPLL algorithm? To test that we divided = 1000 test exampleéz;, y;) to 4 groups
according to the corresponding maximal patch width in oapgiste non-parametric ap-
proach. Effectively, groups 1 and 2 contained mostly teedand edge patches, whereas
groups 3 and 4 contained mostly smooth and flat patches.

We denoised each test examplavith the direct GMM prior applied to th& x 8 patch
around it, and compared that with the result after the amfufitiEPLL optimization aim-
ing to achieve agreement between overlapping patchesctm@ance with our analysis,
Fig. 5(b) shows that the gain from the EPLL step is larger atrélgions, and almost
insignificant at highly textured ones.

The local patch searchin [22] Zontak and Irani explore the relation between ingrn
and external patch searches. In particular they observéathsimple flat patches, de-
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noising results of non local means [6] with a sniak 5 window (which are far from

optimal), can be improved if the internal patch search ispgsformed over the entire
image, but is restricted to a local neighborhood around tkel pf interest. The ex-

planation of [22] is that for textured areas the probabiityinding relevant neighbors
within the local neighborhood patches is too low.

Our analysis provides an alternative explanation for tliesings. In textured regions
there is inherently far less statistical dependency amoaoal Ipixels, as compared to
flat regions. The local patch search can be interpreted ay éowese information from
a wider window around the pixel of interest. In flat regionsaaising is approximately
equivalent to averaging the pixel values over the wholeoregClearly, averaging over
a wider flat region reduces the error, which is precisely visanplicitly achieved by
restricting the patch search to a local image neighborhood.

Image dependent optimal denoisinin [8] the authors derived, under some simplify-
ing assumptions, image-specific lower bounds on the opgiosdible denoising. Com-
paring these lower bounds to the results of existing algors, [8] concluded that for
textured natural images existing algorithms are close tor@h, whereas for synthetic
piecewise constant images there is still a large room foravgment. These findings
are consistent with our analysis, that in flat regions a latgmgort can improve denois-
ing results. Thus, current algorithms, tuned to performl weltextured regions, and
working with fixed small patch sizes, can be improved considly in smooth image
regions.

4 The Convergence and Limits of Optimal Denoising

In this section, we put computational and database sizessaside, and study the be-
havior of optimal denoising error as window size increasemtinity. Fig. 1 shows
that optimal denoising yields a diminishing return beyondiadow size that varies
with patches. Moreover, patches that plateau at largerawrgizes also reach a higher
PSNR. Fig. 2 shows that strong edges break statisticallatime between pixels. Com-
bining the two suggests that each pixel has a finite compgicmef informative pixels.
Intuitively, the size distribution of these regions musedtily impact both denoising er-
ror vs. window size and its limit with an infinite window.

We make two contributions towards elucidating this questirst we show that a com-
bination of the simplifiedlead leavedgmage formation model, together wititale in-
varianceof natural images implies bothppwer-lawconvergence, MMSE~ e + ¢/d,
as well as a strictly positive lower bound on the optimal deing with infinite window,
MMSE,, =e> 0. Next, we present empirical results showing that despéesiimplicity
of this model, its conclusions match well the behavior of ieages.
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4.1 Scale-invariance and Denoising Conver gence

We consider adead leavesmage formation model, e.g. [1], whereby an image is a
random collection of piecewise constant segments, whaseisidrawn from a scale-
invariant distribution and whose intensity is drawn i.ifichm a uniform distribution.
This yields perfect correlation between pixels in the saeggon, as in Fig. 3(b).

To further simplify the analysis, we conservatively asswamedge oracle which gives
the exact locations of edges in the image. The optimal démpis then to average all
observations in a segment. For a pixel belonging to segnisiza®s pixels, the MMSE
is 02 /s. Overall the expected reconstruction error with infinieed windows is

MMSEZ/p(s)%st (17)

wherep(s) is the probability that a pixel belongs to a segment witlixels. The optimal
error is strictly larger than zero if the probability of fieisegments is larger than zero.
Without the edge-oracle, the error is even higher.

Scale invariance: A short argument [1] which we review below for completeness,
shows that the probability that a random image pixel beldngs segment of size

is of the formp(s) « 1/s. In a Markov model, in contrasp(s) decays exponentially
fast with s [19].

Claim. Let p(s) denote the probability that a uniformly sampled pixel belerto a
segment of size pixels in a scale invariant distribution. Then

p(s) o é (18)

Proof. Let
to
F(tnt2) = [ pl)ds (19)
t1

denote the probability of a pixel belonging to an object aegi; < s < ty. Scale
invariance implies that this probability does not changemthe image is scaled, hence
for everya, t1,to F(t1,t2) = F(aty,ats). This implies that

to ato

[ pors= [ pis)as (20)
t1 atq

and hence(s) = ap(as). The only distribution satisfying this propertypgs) o« 1/s,

since, e.g. by substituting= 1/s we get thap(s) = 1/s - p(1).[]

The power law distribution of segment sizes was also preslyoused [19] to argue that
Markov models cannot capture the distribution of naturages, since in a Markov
model the probability of observing a uniform segment shalgday exponentially fast.
To see this, consider 1D signals anddét; ~ x;_1) = a for some constant. In a first
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Fig. 6: (a) Inverse histograms of segment lengths follow a scabriant distribution. (b) Inverse
histograms ob2/(z; — ;)* exhibit a power law, similar to the distribution of segmeiaes.

order Markov process the probability of observing a segrotleingthd is proportional
to

Hlep(xi R Ti—1) = ad7 (21)
since the memory-less definition of a Markov model impliest the probability of the
i'th pixel depends only on pixel — 1 and not on any of the previous ones. Thus, the
distribution of segment sizes in a Markov model decays e&ptally. This result is not
restricted to the case of a first order Markov model and onesbaw that the exponen-
tial decay holds for a Markov model of any order. However, gioally the distribution
of segment areas in naturalimages decays only polynonaiathnot exponentially fast.

To get a sense of the empirical size distribution of neadgstant-intensity regions
in natural images, we perform a simple experiment inspingfilth For a random set
of pixels {z;}, we compute the sizé(i) of the connected region whose pixel values
differ from x; by at most a threshold: d(i) = #{x;||x; — ;| < T'}. The empirical
histogrami(d) of region sizes follows a power law behaviofd) o d=* with o ~ 1,

as shown in Fig. 6(a,b), which plotgh(d).

Optimal denoising as a function of window siz#/e now compute the optimal de-
noising for the dead leaves model with the scale invariameperty. Sincel /s is not
integrable, scale invariance cannot hold at infinitely éesgales. Assuming it holds up
to a maximal sizeD > 1, gives the normalized probability

st 1 1

= — = —— -, 22
les*lds InD s (22)

pp(s)

We compute the optimal error with a window of side< D pixels. Given the edge
oracle, every segment of size< d attains its optimal denoising error of /s, whereas
if s > d we obtain onlys?/d. Splitting the integral in (17) into these two cases gives

d D
MMSE,4 :/ %pp(s)ds—&—/ Zrpp(s)ds (23)
1 d

D R D
= [ Zootoiis +o* [ (4
1 d
2

= MMSEp + & (1 - B2) + 58 ~ MMSEp + =

W =

)pD(s)ds
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For this model, MMSE, = MMSEp. Thus,the dead leaves model with scale invari-
ance property implies a power laly'd convergence to a strictly positive MMSE

4.2 Empirical validation and optimal PSNR

While dead leaves is clearly an over-simplified model, ittaegs the salient proper-
ties of natural images. Even though real images are not mhg&cewise constant
segments, the results of Sec. 3, and Fig. 6 suggest that magje ipixel has a finite
“informative region”, whose pixel values are most releviamtdenoising it. While for
real images, correlations may not be perfect inside thi®negnd might not fully drop
to zero outside it, we now show that empirically, optimal dising in natural images
indeed follows a power law similar to that of the dead-leaveslel.

To this end, we apply the method of [14] and compute the optratch based MMSE

for several small window sizes Fig. 7(a-b) show that consistent with the dead leaves
model, we obtain an excellent fit to a power law MMSE e + 4= with a ~ 1. In
contrast, we get a poor fit to an exponential law, MMSE e + c¢r—¢, implied by the
common Markovian assumption [19]. In addition, Fig. 7(skidw log and log-log plots

of (MMSE, — e), with the best fitted in each case. The linear behavior in the log-log
plot (Fig. 7(d)) further supports the power law.

As an additional demonstration of the scale-invarianceaifiral images in the de-
noising context, we evaluate the distribution of denoigngr over pixels. For a large
collection of image pixel§z; } we compute the histogram of /(x; — 4;)?. Fig. 6(c,d)
shows that the resulting inverted histogram approximdtglgws a polynomial curve.
Recall that in the idealized dead-leaves model, a perfectiiorm segment of sizé
yields an error ot /¢. Hence, under scale invariance, we expect a linear fit toithe h
tograms of Fig. 6(c,d). While in real natural images, deingiss not simply an average
over the pixels in each segment, interestingly, the invaismgram is almost linear,
matching the prediction of the dead-leaves model.

Predicting Optimal PSNRFor small window sizes, using a large database and Eq. (4),
we can estimate the optimal patch-based denoising MMBIg. 7 shows that the curve
of MMSE,; is accurately fitted by a power law MMSE= ¢ + ¢/d®, with « =~ 1. To
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o |35 50 75 100
Extrapolated boun@0.6 28.8 27.3 26.3

KSVD [11] 28.7 26.9 25.0 23.7
BM3D [9] 30.0 28.1 26.3 25.0
EPLL [23] 20.8 28.1 26.3 25.1

Table 2: Extrapolated optimal denoising in PSNR, and the resulteoént algorithms.
A modest room for improvement exists.

fit the curve MMSE robustly, for eachi value we split theV samples td 0 different
groups, computé® SN R, from each of them, and compute the variance in the estima-
tion n2. We used gradient descent optimization to search fara minimizing

S (—10log10(e 4 ¢/d*) — PSNRy)? (24)

d 772
where the weighta); account for the fact that the sampled¥alues is not uniform as
we have evaluated onlyvalues of the formi = k2 (squared patches).

Given the fitted parameters, the curve MMSE e + ¢/d*, can be extrapolated and
we can predict the value of MMSE, which is the best possible error ahy denois-
ing algorithm (not necessarily patch based). Since the ptameis only approximate,
this extrapolation should be taken with a grain of salt. Nbakess, it gives an inter-
esting ballpark estimate on the amount of further achievghin by any future algo-
rithmic improvements. Table 2 compares the PSNR of exisgiggrithms to the pre-
dicted PSNR,, over M = 20, 000 patches using the power law fit based ®n= 10%
clean samplée’s The comparison suggests that current methods may stithpeoived
by 0.5 — 1dB. While the extrapolated value may not be exact, our arstiges suggest
that there are inherent limits imposed by the statisticsabfiral images, which cannot
be broken, no matter how sophisticated future denoisingrithans will be.

5 Discussion

In this paper we sted both computational and informatioreetspof image denoising.
Our analysis revealed an intimate relation between demgpsrformance and the scale
invariance of natural image statistics. Yet, only few apggttes account for it [18].
Our findings suggest that scale invariance can be an imgartemto explore in the
development of future natural image priors. In additiorg@t/e patch size approaches
are a promising direction to improve current algorithmslsas [11,9, 15,10, 23].

Our work also highlights the relation between the frequesfoyccurrence of a patch,
local pixel correlations, and potential denoising gairtsisiconcept is not restricted to
the denoising problem, and may have implications in othé&tdie

3 The numerical results in Tables 1,2 are not directly comtglaraince Table 1 was computed
on a small subset of only/ = 1, 000 test examples, but with a larger sample ske

17



AcknowladgmentsWe thank ISF, BSF, ERC, Intel, Quanta and NSF for funding.

References

=

L. Alvarez, Y. Gousseau, and J. Morel. The size of objettstural images, 1999.
. S. Arietta and J. Lawrence. Building and using a datab&sme trillion natural-image
patchesIEEE Computer Graphics and Applicatigri011.
3. S. Baker and T. Kanade. Limits on super-resolution andtedweak themPAMI, 2002.
4. D. Barash and D. Comaniciu. A common framework for nordimndiffusion, adaptive
smoothing, bilateral filtering and mean shiftnage Vision Compyt2004.
5. C. M. Bishop.Pattern recognition and machine learnin§pringer, 2006.
6. A. Buades, B. Coll, and J. Morel. A review of image dendaisinethods, with a new one.
Multiscale Model. Simul2005.
7. D.Chandler and D. Field. Estimates of the informationtenhand dimensionality of natural
scenes from proximity distributiong. Opt. Soc. Am2007.
8. P. Chatterjee and P. Milanfar. Is denoising deH2E Trans Image Processing010.
9. K.Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Imagendesing by sparse 3-d transform-
domain collaborative filteringlEEE Trans Image Processing007.
10. W. Dong, X. Li, L. Zhang, and G. Shi. Sparsity-based imdgeoising vis dictionary learn-
ing and structural clustering. @BVPR 2011.
11. M. Elad and M. Aharon. Image denoising via sparse andnaght representations over
learned dictionariedEEE Trans Image Processing006.
12. C. Kervrann and J. Boulanger. Optimal spatial adaptdtiopatch-based image denoising.
ITIP, 2006.
13. A. Lee, K. Pedersen, and D. Mumford. The nonlinear stesi®f high-contrast patches in
natural imageslJCV, 2003.
14. A.Levin and B. Nadler. Natural image denoising: optityaind inherent bounds. I8VPR
2011.
15. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. ZisseriHan:local sparse models for image
restoration. IHCCV, 20009.
16. S. Osindero and G. Hinton. Modeling image patches witirectkd hierarchy of markov
random fieldsNIPS 2007.
17. J. Polzehl and V. Spokoiny. Image denoising: Pointwilsatve approachAnnals of Statis-
tics, 31:30-57, 2003.
18. J. Portilla, V. Strela, M. Wainwright, and E. Simoncellinage denoising using scale mix-
tures of gaussians in the wavelet domdBEE Trans Image Processing003.
19. X. Ren and J. Malik. A probabilistic multi-scale modet fmntour completion based on
image statistics. lECCV, 2004.
20. S.Roth and M.J. Black. Fields of experts: A frameworkiéarning image priors. ICVPR
2005.
21. Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.atyje quality assessment: From
error visibility to structural similaritylEEE Trans. on Image Processing004.
22. M. Zontak and M. Irani. Internal statistics of a singléunal image. InCVPR 2011.
23. D. Zoran and Y. Weiss. From learning models of naturalginpatches to whole image
restoration. IHCCV, 2011.

N

18



6 Appendix

Claim. The error of a non parametric estimator ik & k patch, can be expressed as

MSE™T () = Viely] + V) +o (3 ) @5)
with »
_ Pox Y 2
V(y) - W (VU* [xc|y] + (]EU [‘rc|y] - ]EO'* [xc|y]) ) (26)

Wherey is a shorten notation fay,, .., o* = o/v/2, andp, (), po=(-), Es[-], Eg=[]
denote probability and expectation of random variable$ witise variance, o* re-
spectively.

Proof. The non parametric estimator is defined as

i(y) = M2 PWlzITec

27
~ 2 p(yle:) .

For a particular set oV sampleqz; }, its error is
Eo [(ze — i(y))*ly] = Eolaly] — 2Eo[eclylly) + ily)® (28)

In expectation over all possible sequenced&vo$amples fronp(x) the estimator error
is

MSENP(y) =En [Eo [(ze — 2(y))?|y]] (29)
= Eo[22]y] — 2Eq [z [y|En[(y)] + Enli(y)?]

We thus have to compute what is the expected valigndfi(y)], Ex[i(y)?]. For ease
of notation, we will sometimes drop the, , subscripts.

We denote byA (o, k) = (470%)~**/2 and use the following equalities

Elp(ylz)] = [p(@)plyle)dz = ps(y)

Elp(ylz)ze] = po(y)Ec|rc|y]

Elp(y|z)zl] = po(y)Eq[z2|y] 20
Elp(yia)?] = [ o) e = Ao, K)poe(v) (%0
Bl

Elp(y|x)? wc]—A( 2 K)Dos (Y) Eox [2c|y]

yle)?2Z] = Ao, k)pou(y )Eo*[wi\y]

The two expressions in Eq.(30) are nothing but the mean oflédm@minator and nu-
merator ofii(y), respectively. We thus rewrite the tefiy) as

1 pylzi)zi,c—po (YE[zc|y]
) = P (Y)E[z.|y] (1 +v 2 e (WElze]y] ) 31)
1 Plzi)—po(y)
Do (y) (1 + ¥ Z P (Y) )
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Next, we assumé&/ > 1 and that the patch is not too rare, such that

szy|mz Po )<<1

Then, using a Taylor expansion for small

1
1+e€

we obtain the following asymptotic expansion fofy),

fi(y) ~ E[zcly] (1 + = Z b y'“”l ””Z e =Py )E[%‘cy}>

Elzcly]

( szylx (szylwz )>2>

We now take the expectation of Eq. (32) ovesamples. We use the fact thgp(y|x) —
p(y)] = 0, E[p(y|z)z. — p(y)E[z.|y]] = 0. We also neglect alD(1/N?) terms.

En[i(y)] = E[zcly] (1 + %%

=1—c+e+0(?)

32

L Elp(yla)’a] e
N e o)
Using the identities of Eq. (30) we can express this as
En{i(y)] = Elzely] + ¢y (Elzc|y] — Eox[ze|y]) 4+ o(1/N) (34)
With
Cy _ 1 A(U7 k)pg* (y) (35)

We now move to computingy [f1(y)?]. Using the identities in Eq. (30), we rewrite the
termi(y)? as

(1+ ZP ylzi)zic— p(y)ﬂf[m\y])

p(y)E[zc|y]

p(lzi)—po (y)
(1+ by Po(y) )

2 pylzi)rs . —p(y)E[zc|y] pylzi)ri . —p(Y)E[zc|y] 2
x> (o) ElweTo] ( = () ElzeTo] )

Po(y) Po(y)

( Z&M+( ZM)) (36)

~ Elz.|y)?
p(ylzi)zi o p(y)E[zc\y] p(ylzi)zi c—p(y)E[zc|y]
( +3 2 e ( 2 T R TY] ) >

2 pylzi)—po(y) p(Wlzi)—po(y)
N X B ) R (Z po () ) )
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Taking expectations over all sequencedosamples, and omitting(1/N?) terms, we
get:

Enla)] = B (1 - A BBl 1 EDlyly'a]

N p(y)%Elecly] N p(y)Elzly)® 37)
3 Epwle] 0w )
TN T pw? p(y)? W/
Using Egs. (30) and (35) we can simplify Eq. (37) to
En[i(y)®] = E[zc[y)* (38)
+ Gy (—4Eo[zc|y] Elzey] + Eox[z2]y] + 3E[zc|y]*) + o(1/N)
We now substitute the terms from Egs. (34) and (38) in Eq., (28)lting in
MSENPRE[22|y] — Elz.|y]? + (39)
Gy (Bo- [221y] + Elzely)® — 2B[ze|y]Eo- [zc|y])
=V[zc|y] + (40)
Gy (Vo [ely] + (Bleely] — o [rely))?)
=Vlzely] + V() (41)
0
Claim. For a Gaussian distribution, the average non parametrianee is
- D|V[z,
V=E,(y) = D] (@2)

Proof. We  denote by &, ¢ I'"w. W, the covariance matrices of
Po (y)v Do+ (y)v p($), Po (x|y), Do~ ((E|y) respectively.

We denote by
B(y) = Vor [zcly] + (o [zcly] — Eo[wcy])® (43)

We would like to compute

Ey[V(y)]

_ Po(Y)

- /po‘(y) (4702)d/2po—(y)23(y)dy

_ Ppo-(y) (44)

- | Gty P

1 @m)*21®'2 [ 1 rer-1_goy,

= (40?2 (2m) 272|812 / e’ *B(y)dy
Denoting:

O lt=9¢p""' ! (45)
o |e]'2le)?

= (202)1/2| |12 (46)
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We can write

Ey[V(y)]

1 1 1, Tpo—1,
-z e | < 1)

=Z 'Eo[B(y)]

We now note that for Gaussian distributions we can expresseiation between the
various covariance matrices as

& =T+,
P = F+a*21d
v o= (1! o Id)
v = (I'"

~1 (48)
)—1
Since all this matrices are obtained frdfnor I'~! by adding a scalar matrix, they are
all diagonal in the same basis. We denote{by}, {¢*,}, {ve}, {te}, {t«,}, {0¢} the

eigenvalues o, o*, I, ¥, ¥,, O, and by{u,,...uq} the joint eigenvectors basis. We
can express the eigenvalues relations as

be =y +0°
¢*g = +0'*2
Ve = () (49)
Vo= (0 )
0, :(ﬁ_%)*lzw
Ye¥o Yeto =

We can now expresg&—! as a product of eigenvalues

1 o0 \'?
2 = (5255 0
By substituting the terms from Eq. (49) in Eq. (50) we get
- ¢z ||
A e (51)

We now want to compute the terBy[B(y)]. We denote withz, § the transformation
of the signalse, y to the eigenvectors basis

Fe=uim,  Ge=upy (52)
We can express
IEo’ [mc|y Z Upg, c xély (53)
Eq $C|y Zulc o* xg|y (54)
(55)
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whereu, . denote the: entry of the eigenvectar,. In the diagonal basis

Eolodi] = Sie,  Eorlodli] = 2t (56)

If we take expectation ovey, wheny ~ N(0,©) and recall tha® is also diagonal in
the basis{u,}, we get

Bo [(Bxlocly] — Eo-locl)?] = S i (% - 4 00 (57)

0-*2
4

We also use the diagonal basis to express

Vo [zely] = Y uf et (58)
4
Thus
e (e )
Eo[Bw)] =D juic| (5~ %) O tvu (59)
14
Substituting the terms from equation Eq. (49) plus somebatje manipulations pro-
vides that )
(L - 24) o0t = (60)
Hence
Eo[B(y)] =Y up.cthe = Volze|y] (61)
4
Combining Egs. (51) and (61) into Eq. (47) we get
D|V[z.
E, V)] = Vel (62
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