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Abstract

Two paradigms for visual analysis are top-down, starting from high-level models or
information about the image, and bottom-up, where little is assumed about the image
or objects in it. We explore a local, bottom-up approach to image analysis. We
develop operators to identify and classify image junctions, which contain important

visual cues for identifying occlusion, transparency, and surface bends.

Like the human visual system, we begin with the application of linear �lters which
are oriented in all possible directions. We develop an e�cient way to create an oriented
�lter of arbitrary orientation by describing it as a linear combination of basis �lters.
This approach to oriented �ltering, which we call steerable �lters, o�ers advantages

for analysis as well as computation. We design a variety of steerable �lters, including
steerable quadrature pairs, which measure local energy. We show applications of these
�lters in orientation and texture analysis, and image representation and enhancement.

We develop methods based on steerable �lters to study structures such as contours

and junctions. We describe how to post-�lter the energy measures in order to more

e�ciently analyze structures with multiple orientations. We introduce a new detector
for contours, based on energy local maxima. We analyze contour phases at energy

local maxima, and compare the results with the prediction of a simple model.

Using these tools, we analyze junctions. Based on local oriented �lters, we develop

simple mechanisms which respond selectively to \T", \L", and \X" junctions. The
T and X junctions may indicate occlusion and transparency, respectively. These

mechanism show that detectors for important, low-level visual cues can be built out
of oriented �lters and energy measures, which resemble responses found in the visual

cortex.

We present a second approach to junction detection based on salient contours. We
combine our contour detector with the structural saliency algorithm of Shashua and

Ullman, which �nds visually salient contours. To improve its descriptive power, we

include a competitive mechanism in the algorithm. From the local con�guration of

saliencies, we form simple detectors which respond to cues for occlusion, transparency

and surface bending. Using the saliency values and curve linking information, we can
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propagate this information along image contours.

For both algorithms, we show successful results on simple synthetic and natural

images. We show results for more complicated scenes and discuss the methods do

not work, and why. Each algorithm uses only local calculations applied in paral-

lel throughout the image, and assumes little prior information about the objects it

expects to see.

Thesis Supervisor: Edward H. Adelson

Associate Professor,

MIT Media Laboratory and Dept. of Brain and Cognitive Sci-
ences
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Chapter 1

Introduction

1.1 The Problem

Humans see e�ortlessly. Re
ectance, shading, and illumination e�ects all change the

observed light intensities, yet we can sort out which e�ects are responsible for which

changes in the images we observe.

Computers can not yet do as well. The simple images of Fig. 1-1 (a) { (c) would

stump virtually all image analysis programs. The center portions of each �gure have

identical intensities (see (d) { (f)), yet each one gives a very di�erent visual percept

to a human. In Fig. 1-1 (a), the center bar appears to be occluding a rectangle behind

it. Figure 1-1 (b) looks like two overlaid transparent rectangles. Figure 1-1 (c) looks

like a folded sheet.

Most image interpretation programs assign only one meaning to all intensity

changes, and could never come up with the correct interpretation for all three images.

Shape-from-shading programs exist which treat all intensity variations as evidence for

shading, which would interpret Fig. 1-1 (c) correctly but all the other images incor-

rectly. An algorithm which could parse transparent overlays would only interpret

Fig. 1-1 (b) correctly. An unsolved problem is how to decide what process caused the

observed image intensities{are they due to shading, re
ectance, or lighting changes,

or transparency? Essential to solving this problem is to identify and categorize the

physical origin of the di�erent junctions and contours in Fig. 1-1. Identifying those

physical origins is the goal of this work.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1-1: Illustration showing the insu�ciency of image interpretation
based on local image intensities. (a) { (c) have the same image intensities
in their centers, as shown in (d) { (f). However, we assign very di�erent
interpretations to these same intensities{ (a) occlusion, (b) transparency, and

(c) a surface bend.

1.2 Our Approach

We want to work with digitized images using local, biologically plausible operations.

We will not attempt to model the visual system. However, in restricting ourselves

to some of the same constraints and representations as we believe the brain uses, we

hope to gain insight into problems the brain may have to solve or approaches it may

use.

Some computer vision systems are model based, and can exploit top-down reason-

ing to interpret visual information. In this work, we take the opposite approach and

explore what can be done with purely bottom-up processing. This allows us to make
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few assumptions about what we expect to see. We expect that a better understand-

ing of the bottom-up part will lead to better general vision systems which use both

bottom-up and top-down analysis.

We will analyze images based on the local cues which junctions provide. Junctions

can indicate, among other things, occlusion, transparency or surface bending. We be-

gin with the same initial processing step that it is thought that the brain uses|linear

�ltering by a bank of oriented �lters (see, e.g., [79]). In Chapter 2 we study how to

apply oriented �lters over a continuum of orientations. We develop an approach to

oriented �ltering which we call steerable �lters. This method is e�cient and analyt-

ically useful. These results have applications in many areas of image processing and

computer vision.

In Chapter 3, as a �rst step in analyzing contours and junctions, we use steerable

�lters to analyze orientation in regions with one or more orientations. We identify

an artifact particular to regions of multiple orientations, and propose a post-�ltering

step to remove the e�ect. The post-�ltering increases the e�ciency of the oriented

�lters. These mathematical results apply to the analysis of junctions in images, as

well as the analysis of occlusion and transparency in moving sequences.

In Chapter 4 we build a contour detector from oriented �lters which responds

properly to lines, edges, and image contours of phase intermediate between those

two. We also study statistical properties of the local phase along image contours.

We then build two di�erent types of junction detectors. The �rst, described

in Chapter 5, follows the orientation and contour analysis by steerable �lters with

additional local �ltering steps. It successfully detects and categorizes junctions in

simple images, showing that this important function can be done with simple �lter-

like operations.

The second junction detector, developed in Chapter 6, is based on salient contours

and has some advantages over the �rst approach. We modify an existing salient

curve �nder to improve its performance near curves and junctions. The output gives

a local indicator for nearby curves. By analyzing the con�guration of the saliency

outputs we form a junction detector with improved performance in the presence of

incomplete or noisy image data. The curve-�nder provides a simple way to propagate

the identi�cation made at junctions along the appropriate contours.

The resulting methods can interpret the causes of the junctions and contours

10



in images such as Fig. 1-1. The algorithms and tools developed in this bottom-up

approach are general and apply to other systems for image processing and analysis.
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Chapter 2

Tools for Image Analysis {

Steerable Filters

2.1 Introduction

Oriented �lters are used in many vision and image processing tasks, such as tex-

ture analysis, edge detection, image data compression, motion analysis, and image

enhancement [70, 27, 20, 43, 89, 33, 45, 4, 38, 57, 60]. In many of these tasks, it

is necessary to apply �lters of arbitrary orientation under adaptive control, and to

examine the �lter output as a function of both orientation and phase. We will discuss

techniques that allow the synthesis of a �lter at arbitrary orientation and phase, and

develop methods to analyze the �lter outputs. We will also describe e�cient archi-

tectures for such processing, develop 
exible design methods for the �lters in two and

three dimensions, and apply the �lters to several image analysis tasks. Other reports

of this work appear in [31, 32, 33].

One approach to �nding the response of a �lter at many orientations is to apply

many versions of the same �lter, each di�erent from the others by some small rotation

in angle. A more e�cient approach is to apply a few �lters corresponding to a few

angles and interpolate between the responses. One then needs to know how many

�lters are required and how to properly interpolate between the responses. With the

correct �lter set and the correct interpolation rule, it is possible to determine the

response of a �lter of arbitrary orientation without explicitly applying that �lter.

We use the term steerable �lter to describe a class of �lters in which a �lter of
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arbitrary orientation is synthesized as a linear combination of a set of basis �lters.

We will show that two-dimensional functions are steerable (see [87, 33] for higher

dimensional cases), and will show how many basis �lters are needed to steer a given

�lter.

2.2 An Example

As an introductory example, consider the 2-dimensional, circularly symmetric Gaus-

sian function, G, written in Cartesian coordinates, x and y:

G(x; y) = e
�(x2+y2)

; (2:1)

where scaling and normalization constants have been set to 1 for convenience. The

directional derivative operator is steerable as is well-known [25, 31, 43, 54, 60, 61,

62, 63, 73, 85]. Let us write the nth derivative of a Gaussian in the x direction as

Gn. Let (: : :)� represent the rotation operator, such that, for any function f(x; y),

f
�(x; y) is f(x; y) rotated through an angle � about the origin. The �rst x derivative

of a Gaussian, G0�
1 , is

G
0�

1 =
@

@x

e
�(x2+y2) = �2xe�(x

2+y2)
: (2:2)

That same function, rotated 90 degrees, is:

G
90�

1 =
@

@y

e
�(x2+y2) = �2ye�(x

2+y2)
: (2:3)

These functions are shown in Fig. 2-1 (a) and (b). It is straightforward to show

that a G1 �lter at an arbitrary orientation � can be synthesized by taking a linear

combination of G0�
1 and G90�

1 :

G
�

1 = cos(�)G0�

1 + sin(�)G90�

1 : (2:4)

Since G0�
1 and G90�

1 span the set of G�

1 �lters we call them basis �lters for G�

1. The

cos(�) and sin(�) terms are the corresponding interpolation functions for those basis

�lters.
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a b c

d e f g

Figure 2-1: Example of steerable �lters. (a) G0�
1 , �rst derivative with respect

to x (horizontal) of a Gaussian. (b) G90�
1 , which is G0�

1 , rotated by 90
�. From a

linear combination of these two �lters, one can create G�

1, an arbitrary rotation

of the �rst derivative of a Gaussian. (c) G30�
1 , formed by 1

2
G

0�
1 +

p
3
2
G

90�
1 . The

same linear combinations used to synthesize G�

1 from the basis �lters will also

synthesize the response of an image to G�

1 from the responses of the image to

the basis �lters: (d) Image of circular disk. (e) G0�
1 (at a smaller scale than

pictured above) convolved with the disk, (d). (f) G90�
1 convolved with (d). (g)

G
30�
1 convolved with (d), obtained from 1

2 [image e] +
p
3
2 [image f].
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Because convolution is a linear operation, we can synthesize an image �ltered at

an arbitrary orientation by taking linear combinations of the images �ltered with G0�
1

and G90�
1 . Letting � represent convolution, if

R
0�

1 = G
0
1 � I (2.5)

R
90�

1 = G
90
1 � I (2.6)

then

R
�

1 = cos(�)R0�

1 + sin(�)R90�

1 : (2.7)

The derivative of Gaussian �lters o�er a simple illustration of steerability. In the

next section, we generalize these results to encompass a wide variety of �lters. (See

also [87, 103] for recent extensions of this approach.)

2.3 Steering Theorems

We want to �nd the conditions under which any function, f(x; y), steers, i.e., when

it can be written as a linear sum of rotated versions of itself.

The steering constraint is

f
�(x; y) =

MX
j=1

kj(�)f
�j (x; y): (2:8)

We want to know what functions f(x; y) can satisfy Eq. (2.8), how many terms, M ,

are required in the sum, and what the interpolation functions, kj(�), are.

We will work in polar coordinates r =
p
x
2 + y

2 and � = arg(x; y). Let f be any

function which can be expanded in a Fourier series in polar angle, �:

f(r; �) =
NX

n=�N
an(r)e

in�
: (2:9)

Through using the Fourier expansion for f , Eq. (2.9), in the steering constraint,

Eq. (2.8), one can show [33] the following:

Theorem 1 The steering condition, Eq. (2.8), holds for functions expandable in the
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form of Eq. (2.9) if and only if the interpolation functions kj(�) are solutions of:

0
BBBBBB@

1

e
i�

: : :

e
iN�

1
CCCCCCA
=

0
BBBBBBB@

1 1 : : : 1

e
i�1

e
i�2

: : : e
i�M

...
...

...
...

e
iN�1

e
iN�2

: : : e
iN�M

1
CCCCCCCA

0
BBBBBBB@

k1(�)

k2(�)
...

kM (�)

1
CCCCCCCA
: (2:10)

If, for any n, an(r) = 0, then the corresponding (nth) row of the left hand side

and of the matrix of the right hand side of Eq. (2.10) should be removed.

We are interested in the minimum number of basis functions which are required

to steer a particular function, f(r; �). Let T be the number of positive or negative

frequencies �N � n � N for which f(r; �) has non-zero coe�cients an(r) in a

Fourier decomposition in polar angle. For example, cos(�) = e
i�+e�i�

2
has T = 2 and

cos(�)+1 = e
i�+e�i�

2 +e0 has T = 3. By making projections onto complex exponentials

and analyzing the ranks of matrices, one can derive the minimum number of basis

�lters of any form which will steer f(r; �) [33], i.e., for which the following equation

holds:

f
�(r; �) =

MX
j=1

kj(�)gj(r; �); (2:11)

where the gj(r; �) can be any set of functions. Theorem 2 gives the result:

Theorem 2 Let T be the number of non-zero coe�cients an(r) for functions f(r; �)

expandable in the form of Eq. (2.9). Then the minimum number of basis functions

which are su�cient to steer f(r; �) by Eq. (2.11) is T , i.e., M in Eq. (2.11) must be

� T .

Using rotated versions of the function itself as the basis functions, as in Eq. (2.8),

the T basis function orientations �j must be chosen so that the columns of the matrix

in Eq. (2.10) are linearly independent. In practice, for reasons of symmetry and

robustness against noise, we choose basis functions spaced equally in angle between 0

and �. Note that the interpolation functions kj(�) do not depend on the values of the

non-zero coe�cients an(r) in the Fourier angular decomposition of the �lter f(r; �).

A 1-D bandlimited function can be represented by a �nite number of samples

corresponding to the number of Fourier terms, which is the number of degrees of

16



freedom. Theorems 1 and 2 show that angularly bandlimited functions behave the

same way.

We illustrate the use of Theorem 1 by re-deriving the steering equation for G1. In

polar coordinates, the �rst derivative of a Gaussian is

G
0�

1 (r; �) = �2re�r
2

cos(�) = �re�r
2

(ei� + e
�i�): (2:12)

Since G0�
1 (r; �) has two non-zero coe�cients in a Fourier decomposition in polar

angle �, by Theorem 1, two basis functions su�ce to synthesizeG�

1. The interpolation

functions are found from Eq. (2.10), with all entries but the second row removed:

�
e
i�

�
=
�
e
i�1

e
i�2

�0@ k1(�)

k2(�)

1
A
: (2:13)

If we pick one basis function to be oriented at �1 = 0� and the other at �2 = 90�,

then Eq. (2.13) gives k1(�) = cos(�) and k2(�) = sin(�). Thus, Theorem 1 tells us

that G�

1 =
P2

j=1 kj(�)G
�j

1 = cos(�)G0�
1 + sin(�)G90�

1 , in agreement with Eq. (2.4).

Figure 2-2 shows 1-D cross-sections of some steerable basis �lters, plotted as a

function of angle � at a constant radius. An arbitrary translation of any one curve

can be written as a linear combination of the basis curves shown on the graph (ro-

tation of the �lter corresponds to translation on these graphs). Figure 2-2 (a) shows

the sinusoidal variation of 1-D slices of G0�

1 and G90�

1 , plotted at a constant radius. In

this case, the steering property is a re-statement of the fact that a linear combination

of two sinusoids can synthesize a sinusoid of arbitrary phase. Figure 2-2(b) and (c)

are 1-D cross-sections of steerable basis sets for functions with the azimuthal distri-

bution 0:25 cos(3�) + 0:75 cos(�) and 0:25 cos(3�) � 1:25 cos(�), respectively. Since

each function has non-zero Fourier coe�cients for two frequencies, by Theorem 1,

four basis functions su�ce for steering. Because both functions contain sinusoids of

the same frequencies (even though of di�erent amplitudes), they use the same kj(�)

interpolation coe�cients.

It is convenient to have a version of Theorem 1 for functions expressed as polyno-

mials in Cartesian coordinates x and y [31]. Applying Theorem 1 to the polynomial

in polar coordinates, one can show [33] the following:

Theorem 3 Let f(x; y) = W (r)PN (x; y), where W (r) is an arbitrary windowing
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-pi pi

-1

-0.5

0.5

1

c

-pi pi

-1

-0.5

0.5

1

b

-pi pi

-1

-0.5

0.5

1

a

Figure 2-2: Three sets of steerable basis functions, plotted as a function

of azimuthal angle, �, at a constant radius. An arbitrary angular o�set

of each function (linear shift, as plotted here) can be obtained by a linear

combination of the basis functions shown. (a) G1 steerable basis set. (b)

four basis functions for 0:25 cos(3�) + 0:75 cos(�); (c) four basis functions for

0:25 cos(3�) � 1:25 cos(�). The same interpolation functions apply for (b) as

for (c).
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function and PN (x; y) is an Nth order polynomial in x and y, whose coe�cients may

depend on r. Linear combinations of 2N + 1 basis functions are su�cient to synthe-

size f(x; y) = W (r)PN (x; y) rotated to any angle. Eq. (2.10) gives the interpolation

functions, kj(�). If PN (x; y) contains only even [odd] order terms (terms xnym for

n +m even [odd]), then N + 1 basis functions are su�cient, and Eq. (2.10) can be

modi�ed to contain only the even [odd] numbered rows (counting from zero) of the left

hand side column vector and the right hand side matrix.

Theorem 3 allows steerable �lters to be designed by �tting the desired �lters with

polynomials times rotationally symmetric window functions, which can be simpler

than using a Fourier series in polar coordinates. However, Theorem 3 is not guaran-

teed to �nd the minimum number of basis functions which can steer a �lter. Repre-

senting the function in a Fourier series in angle makes explicit the minimum number

of basis �lters required to steer it. In a polynomial representation, the polynomial

order only indicates a number of basis functions su�cient for steering. For example,

consider the angularly symmetric function, x2+ y
2, written in a polar representation

as r2e0�. Theorem 2 would say that only one basis function is required to steer it;

Theorem 3, which uses only the polynomial order, merely says that a number of basis

functions su�cient for steering is 2 + 1 = 3.

The above theorems show that steerability is a property of a wide variety of

functions, namely all functions which can be expressed as a Fourier series in angle,

or in a polynomial expansion in x and y times a radially symmetric window function.

Derivatives of Gaussians of all orders are steerable because each one is a polynomial

(the Hermite polynomials [78]) times a radially symmetric window function.

Figure 2-3 shows a general architecture for using steerable �lters. (cf. Koenderink

and van Doorn [61, 62, 63], who used such an architecture with derivatives of Gaus-

sians, and Knutsson et al. [60] who used it with related �lters.) The front end consists

of a bank of permanent, dedicated basis �lters, which always convolve the image as

it comes in; their outputs are multiplied by a set of gain masks, which apply the

appropriate interpolation functions at each position and time. The �nal summation

produces the adaptively �ltered image.

An alternative approach to the steerable �lters presented here would be to project

all rotations of a function onto a complete set of orthogonal basis functions, such as

the Hermite functions, or the polynomials used in the facet model [43]. One could
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ki(θ)

Figure 2-3: Steerable �lter system block diagram. A bank of dedicated �lters

process the image. Their outputs are multiplied by a set of gain maps which

adaptively control the orientation of the synthesized �lter.
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then steer the �lter by changing the expansion coe�cients. Such expansions allow


exible control over the �lter, but for purposes of steering they generally require more

basis functions than the minimum number given by Theorem 2. For example, 2N +1

basis functions are su�cient to steer any Nth order polynomial, while a complete set

of 2-D polynomial basis functions would require (N+1)(N+2)=2 basis functions (n+1

basis functions for every order 0 � n � N). Furthermore, a general decomposition

may require extra basis functions in order to �t a rotationally symmetric component

of the function, which requires no extra basis functions for steering when using rotated

versions of the function itself as basis functions.

2.4 Designing Steerable Filters

All functions which are bandlimited in angular frequency are steerable, given enough

basis �lters. But in practice the most useful functions are those which require a small

number of basis �lters.

As an example, we will design a steerable quadrature pair based on the frequency

response of the second derivative of a Gaussian, G2. A pair of �lters is said to be in

quadrature if they have the same frequency response but di�er in phase by 90� (i.e.

are Hilbert transforms of each other [17]). Such pairs allow for analyzing spectral

strength independent of phase, and allow for synthesizing �lters of a given frequency

response with arbitrary phase. They have application in motion, texture, shape, and

orientation analysis [4, 7, 16, 30, 37, 36, 35, 45, 47, 57, 77, 94]. Gaussian derivatives

are useful functions for image analysis [61, 62, 63, 116] and a steerable quadrature

pair of them would be useful for many vision tasks.

First, we design a steerable basis set for the second derivative of a Gaussian,

f(x; y) = G
0
�

2 = (4x2 � 2)e�(x
2+y2) . This is the product of a second order, even

parity polynomial and a radially symmetric Gaussian window, so, by Theorem 3,

three basis functions su�ce. Equation (2.10) for the interpolation functions, kj(�),

becomes 0
@ 1

e
i2�

1
A =

0
@ 1 1 1

e
i2�1

e
i2�2

e
i2�3

1
A
0
BBB@
k1(�)

k2(�)

k3(�)

1
CCCA : (2:14)

Requiring that both the real and imaginary parts of Eq. (2.14) agree gives a system
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of three equations. Solving the system, using �1 = 0�, �2 = 60�, �3 = 120�, yields

kj(�) =
1

3
[1 + 2 cos(2(� � �j))]; (2:15)

and we have

G
�

2 = k1(�)G
0�

2 + k2(�)G
60�

2 + k3(�)G
120�

2 : (2:16)

We can form an approximation to the Hilbert transform of G2 by �nding the least

squares �t to a polynomial times a Gaussian. We found a satisfactory level of approx-

imation (total error power was 1% of total signal power) using a 3rd order, odd parity

polynomial, which is steerable by four basis functions. We refer to this approximation

as H2. Its steering formula is given with that for several other polynomial orders in

[33].

Figures 2-4 (a) and (b) show 1-D slices of G2 and H2. The quality of the �t of H2

to the Hilbert transform of G2 is fairly good, as shown by the smooth, Gaussian-like

energy function (G2)
2+(H2)

2, (c), and the closeness of the magnitudes of the Fourier

spectra for each function, (d).

The seven basis functions of G2 and H2 are su�cient to shift G2 arbitrarily in

both phase and orientation. Those seven basis functions, and the magnitudes of

their Fourier transforms, are shown in Fig. 2-5. The appendix of [33] lists several

quadrature pairs, based on several orders of derivatives of Gaussians and �ts to their

Hilbert transforms.

2.5 Designing Separable Steerable Filters

For most steerable �lters, the basis �lters are not all x-y separable, which can present

high computational costs. For machine vision applications, we would like to have

only x-y separable basis functions.

We �rst note that for all functions f which can be written as a polynomial in x

and y, there is an x-y separable basis, although it may have many basis functions.

Applying the rotation formula to each x and y term of the polynomial will result in

a sum of products of powers of x and y, with coe�cients which are functions of the

rotation angle:

f
�(x; y) =

X
l

X
j

klj(�)x
l
y
j
: (2:17)
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Figure 2-4: (a) G2, 2nd derivative of Gaussian (in 1 dimension). (b) H2, �t

of 3rd order polynomial (times Gaussian) to the Hilbert transform of (a). (c)
energy measure: (G2)

2 + (H2)
2. (d) magnitudes of Fourier transforms of (a)

and (b).

23



(a) G2 Basis Set

(b) G2 Amplitude Spectra

(c) G2 X-Y Separable Basis Set

(d) H2 Basis Set

(e) H2 Amplitude Spectra

(f) H2 X-Y Separable Basis Set

Figure 2-5: G2 and H2 quadrature pair basis �lters (rows (a) and (d)). The

�lters in rows (a) and (d) span the space of all rotations of their respective
�lters.. G2 and H2 have the same amplitude spectra (rows (b) and (e)), but

90� shifted phase. Steerable G2 and H2 �lters can measure local orientation

direction and strength, and the phase at any orientation. Rows (c) and (f)

show equivalent x-y separable basis functions which can also synthesize all

rotations of G2 and H2, respectively.
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Each x and y product in the rotated polynomial can be thought of as an x-y separable

basis function, with its coe�cient klj(�) the interpolation function.

In many cases, however, there exists an x-y separable basis set which contains

only the minimum number of basis �lters, yet spans the space of all rotations for the

function of interest. Such a separable basis allows steerable �lters to be applied with

high computational e�ciency. Rows (c) and (f) of Fig. 2-5 show x-y separable basis

sets for the G2 and H2 �lters. Reference [33] gives a derivation of the steering formulas

for these x-y separable functions, shows how to �nd the separable basis functions, and

gives the functional forms and digital �lter values for x-y separable versions of the G2,

H2, and G4 and H4 basis �lters. See also [87] for how to make x-y separable versions

of a single oriented �lter.

2.6 Discrete Space Filters

The steering theorems have been derived for continuous functions, and one might be

concerned that new di�culties would arise when one worked with discretely sampled

functions. But if a continuous function is steerable, then a sampled version of it

is steerable in exactly the same fashion, because the order of spatial sampling and

steering are interchangeable. The weighted sum of a set of spatially sampled basis

functions is equivalent to the spatial sampling of the weighted sum of continuous basis

functions. So one can obtain digital steerable �lters by simply sampling a continuous

�lter. Spatially sampled versions are given for G2, H2, G4 and H4 in [33].

Filters can also be designed in the frequency domain, where one may separate

the radial and angular parts of the design [57]. Conventional �lter design techniques

[64, 82] allow the design of a circularly symmetric 2-D �lter with a desired radial

response. Then, one can impose on that �lter the angular variation needed to make

a steerable basis set by frequency sampling [64] (if the angular response is relatively

smooth). Inverse transforming the frequency sampled response gives the �lter kernel.

Figure 2-6 shows an example of this. The �lter was designed to be part of a

steerable, self-inverting pyramid image decomposition [103], described below. The

constraints on the multi-scale decomposition lead to the radial frequency response

shown in Fig. 2-6 (a). We used the frequency transformation method [64] to convert

the 1-D �lter to a nearly angularly symmetric 2-D �lter, Fig. 2-6 (b).
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Having selected a radial frequency band, we next divided the band into four

oriented subbands by imposing an angular variation of cos3(�), where � is azimuthal

angle in frequency. This function has four angular frequencies (�3 and �1) and so, by

Theorem 1, requires four basis functions to steer. We Fourier transformed the radially

symmetric kernel, multiplied by the four desired cos3(� � �j) angular responses, and

inverse transformed to obtain the basis �lter impulse responses. Figure 2-6 (c - f)

shows the frequency amplitude responses of the resulting digital steerable �lters.

2.7 Steerable Pyramid for Multi-Scale Decompo-

sition

The steerable �lters described above were designed to form a multi-scale, self-inverting

pyramid decomposition [103]. Applying each �lter of the decomposition once to the

signal gives the transform coe�cients; applying each �lter a second time (with �lter

tap values re
ected about the origin) and adding the results reconstructs a low-passed

version of the image. Because all of the �lters of the pyramid are bandpass, a high-pass

residue image must be added back in to reconstruct the original image (as with [109])

. To implement this decomposition, we designed the angular and radial components

of the polar separable design so that the squares of the responses of each �lter added

to unity in the frequency plane.

Figure 2-7 shows the steerable pyramid representation. The four bandpass �lters

at each level of the pyramid form a steerable basis set. The pyramid basis �lters were

oriented at 0�, 45�, 90�, 135�, but the coe�cients for any �lter orientation can be found

from a linear combination of the four basis �lter outputs. When the basis �lters are

applied again at each level, the pyramid collapses back to a �ltered version of the

original image with near-perfect agreement. The steerable pyramid image transform

allows control over orientation analysis over all scales.

The steerable pyramid is an image transform for which all of the basis functions

are derived by dilation, translation, and rotation of a single function, and therefore

it may be considered to be a wavelet transform [41, 71]. Most work on wavelet image

decomposition has involved discrete orthogonal wavelets, in particular those known

as quadrature mirror �lters (QMF's) [29, 71, 101, 107]. Pyramids made from QMF's

and other wavelets can be extremely e�cient for image coding applications. Such
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representations are usually built with x-y separable �lters on a rectangular lattice

[6, 71, 115], which signi�cantly limits the quality of orientation tuning that can be

achieved. Simoncelli and Adelson [6, 100] have devised QMF pyramids based on �lters

placed on a hexagonal lattice; in addition to being orthogonal and self-similar, these

pyramids have good orientation tuning in all bands. However, the basis functions

are not steerable, so the representation is not optimal for orientation analysis. Non-

orthogonal pyramids with orientation tuning have been described by [27, 38, 74, 109].

Unlike the pyramids based on QMF's, the steerable pyramid described here is sig-

ni�cantly overcomplete: not counting the residual image, there are 51
3
times as many

coe�cients in the representation as in the original image (11
3
times over-complete, as

with the Laplacian pyramid [19], but for each of 4 orientations). The overcomplete-

ness limits its e�ciency but increases its convenience for many image processing tasks.

Although it is non-orthogonal, it is still self-inverting, meaning that the �lters used

to build the pyramid representation are the same as those used for reconstruction.

2.8 Summary of Steerable Filters

Steerable �lters can be used for a variety of operations involving oriented �lters. The

oriented �lter, rotated to an arbitrary angle, is formed as a linear combination of basis

�lters. Once the basis �lter responses are known, the response of the �lter steered

(rotated) to an arbitrary angle, can easily be found. A similar technique can be used

to control the phase of the �lters. We have shown that most �lters can be steered

in this manner, given enough basis �lters, and have described how to determine the

minimum number of basis functions required, and how to interpolate between them

in angle.

Steerable �lters can be applied to many problems in early vision and image analy-

sis, including texture and orientation analysis, image enhancement, motion analysis,

noise removal, image representation, and shape from shading [57, 58, 33, 103, 36, 89].

Figures 2-8, 2-10, and 2-9 show some examples. Because the synthesis of the rotated

�lter is analytic and exact, steerable �lters o�er advantages for image analysis over

ad hoc methods of combining oriented �lters at di�erent orientations. Many process-

ing schemes require no additional convolution after the initial pass through the basis

�lters. Even to use a �lter at just one orientation, it will often be more e�cient to

apply the entire x-y separable basis set and steer the �lter to that orientation than
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to apply the non-separable �lter.

We designed steerable quadrature pair �lters which we will use later to analyze

orientation and phase and to �nd contours. We also built a self-similar steerable

pyramid representation, allowing the analysis and manipulation of oriented structures

at all scales. [103, 33] describe applications of the steerable pyramid to multi-scale

stereo matching, noise removal, and shape from shading.

In the two next chapters, in preparation for analyzing junctions, we use steerable

�lters to analyze orientation, contours, and phase.
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Figure 2-6: Frequency domain �lter response plots, illustrating design pro-

cedure for digital steerable �lter. (a) Desired radial frequency distribution,

plotted from 0 to �. (b) Desired angularly symmetric two-dimensional fre-
quency response, obtained through frequency transformation. The pro�le in

(b) was multiplied by the desired cos3(��n�) angular frequency responses and
inverse transformed to yield the steerable basis set. (c) { (f) The imaginary

component of the frequency responses of the resulting steerable �lters.
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(a) (g)
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(c)

(d)

(e)

(f)

Figure 2-7: Steerable image transform. (a) Low-pass �ltered original image.

(b) Odd-phase analyzing �lters, oriented at 0�, 45�, 90�, 135�. These four �lters
form a steerable basis set; any orientation of this �lter can be written as a linear

combination of the basis �lters. (c) - (e) Steerable, bandpass coe�cients in

a multi-scale pyramid representation of (a). A linear combination of these
transform coe�cients will synthesize the transform coe�cient for analyzing

�lters oriented at any angle. (f) Low-pass image. (g) Image reconstructed

from the pyramid representation, showing near-perfect agreement with (a).
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Figure 2-8: Noise removal example using steerable �lters. Figures on the

right are enlarged portions of those on the left. (a) The original noise-free
image. (b) The image corrupted by noise. SNR is 12.42 dB. (c) Results of

image restoration using steerable pyramid. The image was decomposed into
the multi-resolution oriented sub-bands of the steerable pyramid and processed

to remove noise in a way that independent of the image orientation. See [103]
for complete description. The processing substantially removes the noise, while
leaving important image features intact. The SNR of the processed image is

23.0 dB. For comparison, the results of image restoration using a Wiener �lter
are shown in (d). The visual appearance of the noise is much worse, while the

image structures are more blurred. SNR is 19.24 dB.
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(a)

(b)

(c)

Figure 2-9: Example showing the use of steerable �lters in shape-from-

shading analysis. (a) Image input for (b) Range map resulting from linear
shape-from-shading analysis [86] using steerable pyramid. The approxima-
tions used in the linear shading algorithm apply for oblique illumination. The

result is displayed as a low-resolution 3-D plot. Steering was used to accom-
modate di�erent light directions, as described in [33]. (c) Same range map,

with pixel intensity showing surface height. This simple mechanism correctly

derived the image surface characteristics.
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Figure 2-10: Example of a three-dimensional steerable �lter. Surfaces of

constant value are shown for the six basis �lters of a second derivative of
a three-dimensional Gaussian. Linear combinations of these six �lters can
synthesize the �lter rotated to any orientation in three-space. Such three-
dimensional steerable �lters are useful for analysis and enhancement of motion

sequences or volumetric image data, such as MRI or CT data. For discussions

of steerable �lters in three or more dimensions, see [59, 58, 33, 89]. (Martin

Friedmann rendered this image with the Thingworld program).
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Chapter 3

Analyzing Orientation

3.1 Analyzing the Dominant Orientation

Orientation analysis is an important task in early vision [54, 57, 60, 117, 112]. Knutsson

and Granlund [57] devised an elegant method for combining the outputs of quadra-

ture pairs to extract a measure of orientation. We describe a related method which

makes optimal use of the �lters designed in Section 2.4. We measure the orientation

strength along a particular direction, �, by the squared output of a quadrature pair

of bandpass �lters steered to the angle �. We call this spectral power the oriented

energy, E(�).

Using the nth derivative of a Gaussian and its Hilbert transform as our bandpass

�lters, we have:

En(�) = [G�

n
]2 + [H�

n
]2: (3:1)

Writing G�

n
and H�

n
as a sum of basis �lter outputs times interpolation functions,

Eq. (3.1) simpli�es to a Fourier series in angle, where only even frequencies are present,

because of the squaring operation:

En(�) = C1 + C2 cos(2�) + C3 sin(2�) + [higher order terms : : : ]: (3:2)

We use the lowest frequency term to approximate the direction, �d and strength,
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S, of the dominant orientation (the orientation which maximizes En(�)),

�d =
arg[C2; C3]

2
(3.3)

S =
q
C

2
2 + C

2
3 : (3.4)

This approximation is exact if there is only one orientation present locally.

Figure 3-1 (b) shows an orientation map derived using this method, using G2 and

H2 to measure E2(�). The line lengths are proportional to S, the contrast along that

orientation. The measured orientations and strengths accurately re
ect the oriented

structures of the input image. This measurement of orientation angle was made

directly from the basis �lter outputs, without having to actually perform the steering

operation. [33] lists C2 and C3 as functions of the basis �lter outputs for x-y separable

G2 and H2 basis �lter outputs.

One can remove noise and enhance oriented structures by angularly adaptive �l-

tering [60, 53, 73]. Steerable �lters o�er an e�cient method for such processing. We

took the appropriate combinations of the G2 basis �lter outputs for Fig. 3-1 (a) to

adaptively steer G2 along the local direction of dominant orientation. No additional

�ltering was required for this step. To enhance local contrast, we divided the �ltered

image by a local average of its absolute value. The result, Fig. 3-1 (c), enhances

the oriented structures of Fig. 3-1 (a) which lie within the G2 passband. The entire

process of �nding the dominant orientation, steering G2 along it, and deriving the

enhanced image involved only a single pass of the image through the basis �lters.

3.2 Analyzing Multiple Local Orientations

Junctions, certain textures, and transparent or overlapping objects all may contain

more than one local orientation. The 3-dimensional version of this also occurs in

motion analysis [4, 45], for example in the presence of occlusion or transparency. Fil-

ters with broad orientation tuning, such as G2 and H2, typically give oriented energy

responses which do not re
ect the orientations at these regions. Most researchers

[88, 98, 99, 102, 48, 33] therefore use �lters of tight orientation tuning to analyze

regions with multiple orientations. The price for that is more basis �lters. We will

show later an alternate approach which uses the basis �lters more e�ciently. First,
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(a)

(b) (c)

Figure 3-1: (a) Original image of Einstein, (b) Orientation map of (a) made
using the lowest order terms in a Fourier series expansion for the oriented
energy as measured with G2 and H2. (c) Image of Einstein with oriented

structures enhanced. The G2 basis �lter outputs were combined to adaptively

steer G2 so that it lined up with the dominant orientation everywhere. Both

operations, �nding the orientation map and the adaptive �ltering, required

only one pass through the steerable basis �lters.
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let us explore the use of more tightly tuned �lters.

3.2.1 Using Narrow Filters

A steerable �lter with a narrower frequency tuning, such as the fourth derivative of

a Gaussian, G4, will give a higher resolution analysis of orientation. The �lter taps

and analytical form for the steerable quadrature �lter pair G4 and H4 are given in

[33]. (H4 is the least squares �t of a 5th order polynomial times a Gaussian to the

Hilbert transform of G4.)

Figure 3-2 shows two test images, a vertical line, and a cross, and their oriented

energy as a function of angle, measured at the center using a G4, H4 quadrature

pair, plotted in both Cartesian and polar coordinates. Note that the steerable �lters

adequately describe the multiple orientations of the cross, as seen by the 
oret shape.

Fig. 3-3 shows a test image, (a), and several measures of its oriented energy,

using the G4, H4 quadrature pair. Fig. 3-3 (b) shows the DC component of oriented

energy, the angular average of Eq. (3.1). Because we are using a quadrature pair,

the energy measure responds to both lines and edges. Fig. 3-3 (c) is a measure

of orientation where only one orientation is allowed at each point, calculated from

the lowest order Fourier terms of Eq. (3.1). No dominant orientation is detected at

intersections of oriented structures. Fig. 3-3 (d) shows polar plots of the oriented

energy distribution for various points in the image. Note that this measure captures

the multiple orientations present at intersections and corners, shown by the 
orets

there. These measures could all be calculated by constructing a di�erent quadrature

pair for each orientation observed; however, using the steerable �lters greatly reduces

the computational load.

Figure 3-4 shows a detail from a texture, and the corresponding polar orientation

maps at every pixel in the texture image, o�ering a rich description of the textural

details. Note that 
orets of one dominant orientation are separated from 
orets of

another dominant orientation by 
orets where both orientations are present.

3.2.2 Removing Interference E�ects

Using �lters of sharp orientation tuning to analyze regions of multiple orientations has

a drawback: it requires many �lters to make a steerable basis set. The approach we
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Figure 3-2: Test images of (a) vertical line and (b) intersecting lines. (c) and
(d): Oriented energy as a function of angle at the centers of test images (a)
and (b). Oriented energy was measured using the G4, H4 quadrature steerable

pair. (e) and (f): polar plots of (c) and (d).

describe here requires fewer basis �lters and is therefore more e�cient. Alternatively,

one can use this approach to increase the angular resolution of a given set of analyzing

�lters.

An implicit assumption made when using energy measures to analyze multiple

orientations in space or space-time is that the energy of the multiple structures is the

sum of the energies of the structures taken individually [88, 98, 99, 48, 33]. Of course,

this is not the case in general: linear superposition holds for the �lter amplitude

responses, but not for the sum of their squares.

A frequency domain analysis of the energy measure lets us see the problem and

a remedy. First, let us �nd the Fourier transform of the energy measure. Suppose

we have a quadrature pair of oriented, bandpass �lters, called G and H. The energy

38



a b

c d

Figure 3-3: Measures of orientation derived from G4 and H4 steerable �l-

ter outputs. (a) Input image for orientation analysis (b) Angular average of

oriented energy as measured by G4, H4 quadrature pair. (c) Dominant ori-

entation plotted at each point. No dominant orientation is found at the line
intersection or corners. (d) Oriented energy as a function of angle, shown as

a polar plot for a sampling of points in the image (a). Note the multiple ori-
entations found at intersection points of lines or edges and at corners, shown

by the 
orets there.
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measure derived from the quadrature pair is G2 +H
2. If the �lter G has even sym-

metry, then the transforms, Ĝ and Ĥ , will be as shown schematically in Fig. 3-5 (a)

and (b). Ĝ is real and even and Ĥ is imaginary and odd, shown by the lobes being

labelled \plus, plus" and \minus, plus", for Ĝ and Ĥ, respectively.

By the convolution theorem, cG2 = Ĝ � Ĝ, where � represents convolution. That is

shown in Fig. 3-6 (a) and (b), along withdH2 = Ĥ � Ĥ. Each has a center lobe, which

is the autocorrelation function of a single lobe of the bandpass �lter responses, and

two side lobes, from the interaction of one bandpass lobe with another. The lobes

in Ĝ � Ĝ and Ĥ � Ĥ are identical, except for the signs shown in the �gure. In the

transform of the energy measure G2 +H
2, the side lobes cancel exactly, and one is

left with the single lobe shown in Fig. 3-6 (c), which is the autocorrelation function

of a single lobe of the transform of the bandpass �lters G or H. This lobe, centered

at DC, has been demodulated down from its original bandpass response.

Having found the transform of the energy measure, let us suppose we apply the

energy measure in a region of two orientations, such as that shown in Fig. 3-7 (a).

The Fourier transform of the two intersecting lines is as shown in Fig. 3-7 (b), two

lines perpendicular to each of the other two. The response of �lter G will be as

shown in Fig. 3-7 (c). The energy measure G2 + H
2 will be the center lobe of the

autocorrelation of Fig. 3-7 (d), shown in Fig. 3-7 (e).

The energy response of Fig. 3-7 (e) has contributions at three di�erent frequen-

cies. The DC term arises when Fig. 3-7 (d) and its copy are superimposed in the

autocorrelation. This is a point by point squaring of the power at each frequency in

Fig. 3-7 (d). For this term, superposition does hold|the sum of the squared power

from each line is equal to the squared power from the two lines. The other two fre-

quency contributions are interference terms coming from the interaction of one line

with another in the autocorrelation of Fig. 3-7 (d). These are not present in the

energy response of either line by itself and they cause the superposition principal to

fail for the energy measure of the two lines. Thus, the components for which super-

position holds and those for which it does not are at di�erent spatial frequencies. A

linear �lter can separate one from the other. Low-pass �ltering the energy outputs

will substantially remove interference e�ects from the energy measure. Only the DC

term of the autocorrelation of Fig. 3-7 (d) will remain, for which the principle of

superposition applies.

We con�rm the above theoretical analysis experimentally. Figure 3-8 (a) and (c)
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show a horizontal and a vertical line. (b) and (d) are their respective 
oret polar

plots showing orientation strength as a function of angle, measured using the G2, H2

energy measure. The cross in Fig. 3-9 (a) is the sum of the two lines. To analyze

this junction, we would like the energy measure for the cross to give the sum of

the energy measures for the horizontal and vertical lines of which it is composed.

However, that is not the case; the 
oret polar plot (b) is a complex �gure with some


orets showing the correct orientations, some the wrong ones, and some showing no

preferred orientations at all. For comparison, (c) illustrates what the linear sum of

the horizontal and vertical line oriented energies would look like, if we were only able

to measure it. However, if we low-pass �lter the energy outputs of the cross, we obtain

the simple 
oret plot shown in (d). Each 
oret shows the orientations of the two lines

which make up the cross. This result is virtually identical to the desired sum of the

blurred energies of the horizontal and vertical lines, (e).

To blur the 
oret plots, one could �nd the energy at each orientation to be plotted

in the 
oret, spatially blur it, and plot the resulting point in the energy 
oret. How-

ever, because we are using steerable �lters, that is not necessary. The G2 �lter only

has angular Fourier frequencies 0 and �2. Its squared energy G2
2 +H

2
2 can therefore

only have Fourier frequencies 0, �2, and �4. Thus, the energy at 5 orientations

speci�es the energy at all orientations and we only need to spatially blur the energy

outputs at those 5 basis �lters. Theorem 1 (or the formulas of Table 1 in [33]) let one

interpolate in angle between the basis responses.

We have found a post-processing step which allows us to treat the oriented ener-

gies of overlapping structures as a sum of the energies of the individual parts. Before,

we needed to use narrowly tuned �lters to do this; now we can use the more e�cient,

broadly tuned �lters. An analysis for which superposition holds is essential for the

proper processing of junctions. This analysis also applies to other algorithms which

involve squaring bandpass �lter outputs (or derivatives) in regions of multiple orien-

tations. An important case includes motion analysis in the presence of occlusion or

transparency.

Comparison of the two methods

From Figs. 3-8 and 3-9 one can see how narrowing the angular tuning of the �lters

allows superposition to approximately hold for the oriented energies: if the bandpass
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�lters cover only one oriented structure in frequency, then there will be no interference

e�ects in the energy term, Fig. 3-9 (b). However, this requires using far more �lters

than are necessary to represent the two or three oriented structures which may be

present at a junction. By blurring the G2, H2 energy measures, we could easily

represent the two orientations in Fig. 3-9 (a).

One could object that blurring the oriented energies will lower the spatial reso-

lution; however using narrow �lters may lower the spatial resolution by at least as

much. Let the separation in frequency of the transforms of the two oriented struc-

tures at the passband of the analyzing �lters be D. To avoid interference e�ects, the

narrow �lters must be substantially con�ned within a length D in frequency. By the

uncertainty relation [17], this will require �lters of a spatial size
>� 1

D
. Our preferred

approach, blurring the more coarsely tuned energy outputs, requires a low-pass �lter

with a width in frequency of � 2D, or a spatial extent of
>� 1

2D . Thus, blurring the

coarsely tuned energy outputs could actually give a higher resolution description of

the image structure than using the energy measure from the narrowly tuned �lters.

We note that with either approach there is a tradeo� between spatial and angular

resolution: to remove interference e�ects from two lines which are close together in

angle, one must apply a very severe low-pass �lter to the coarsely tuned energies, or

alternatively use very narrowly tuned energy �lters. Either results in a large positional

uncertainty. This agrees with the intuitive notion that it should require a large area

to resolve two oriented structures which are close to each other in angle.
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(a) (b)

(c) (d)

Figure 3-4: (a) Texture image; (b) Polar plots of oriented energy of (a) at
every fourth pixel. Each plot is normalized by the average over all angles of
the oriented energy. (c) Detail of (a) (zoomed and blurred); (d) Normalized

polar plots showing oriented energy of (c) at every pixel.
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+ + fx

fy

- + fx

fy

(a)  Frequency response of even filter, G
(real)

(b)  Frequency response of odd filter, H
(imaginary)

Figure 3-5: Frequency content of two bandpass �lters in quadrature. (a) even
phase �lter, called G in text, and (b) odd phase �lter, H. Plus and minus sign

illustrate relative sign of regions in the frequency domain. See Fig. 3-6 for

calculation of the frequency content of the energy measure derived from these

two �lters.
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fy

(a) Fourier transform of G*G

+ + fx
+

fy

(b) Fourier transform of H*H

- + fx-

fy

(c)  Fourier transform of G*G  + H*H

+ fx

Figure 3-6: Derivation of energy measure frequency content for the �lters
of Fig. 3-5. (a) Fourier transform of G � G. (b) Fourier transform of H �
H. Each squared response has 3 lobes in the frequency domain, arising from

convolution of the frequency domain responses. The center lobe is modulated
down in frequency while the two outer lobes are modulated up. (There are

two sign changes which combine to give the signs shown in (b). To convolve
H with itself, we 
ip it in fx and fy, which interchanges the + and � lobes of

Fig. 3-5 (b). Then we slide it over an un
ipped version of itself, and integrate

the product of the two. That operation will give positive outer lobes, and
a negative inner lobe. However, H has an imaginary frequency response, so

multiplying it by itself gives an extra factor of �1, which yields the signs

shown in (b)). (c) Fourier transform of the energy measure, G � G +H �H.
The high frequency lobes cancel, leaving only the baseband spectrum, which

has been demodulated in frequency from the original bandpass response. This
spectrum is proportional to the sum of the auto-correlation functions of either

lobe of Fig. 3-5 (a) and either lobe of Fig. 3-5 (b).
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(a)

(b)

(c)

(d)

(e)interference
terms

Figure 3-7: Showing the origin of interference e�ects when using energy
measures to analyze regions of multiple orientations. (a) Test image of two
intersecting lines. (b) Fourier transform of (a). (c) Part of (b) seen by the

bandpass �lters. (d) Frequency spectrum of energy measure applied to image

(a). This is proportional to the auto-correlation of either one of the two lobes
of (b). The result has 3 dominant contributions. The middle blob at DC
is the integral of the squared frequency response over the bandpass region.

For this term, superposition holds, and the energy of the sum of two images

(non-overlapping in the frequency domain) will be the sum of the energies of
each individual image. The other two terms are interference terms, arising

from interactions between the Fourier transforms of the two images. Low-pass

�ltering the squared energy output can remove those terms while retaining
the term for which superposition holds. Note this is not the same as low-pass

�ltering the linear �lters before taking the energy.
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(a) (b)

(c) (d)

Figure 3-8: The problem with using energy measures to analyze a structure
of multiple orientations, and how to solve it (part one). (a) Horizontal line
and (b) 
oret polar plot of G2 and H2 quadrature pair oriented energies as a

function of angle and position. The same for a vertical line are shown in (c)
and (d). Continued in Fig. 3-9
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(a) (b) (c)

(d) (e)

Figure 3-9: The problem with using energy measures to analyze a structure

of multiple orientations, and how to solve it (part two). (a) Cross image (the
sum of Fig. 3-8 (a) and (c)). The oriented energy (b) of the cross is not the
sum of the energies of the horizontal and vertical lines, Fig. 3-8 (b) and (d),

due to an e�ect analogous to optical interference. Many of the 
orets do not
show the two orientations which are present; several show angularly uniform

responses. For comparison, (c) shows the sum of energies Fig. 3-8 (b) and

(d). Floret polar plot of energies after spatial blurring, (d), are predicted to
remove interference e�ects, as described in text. Note that the energy local
maxima correspond to image structure orientations. These 
orets are nearly

identical to the sum of blurred energies of the horizontal and vertical lines, (e),

showing that superposition nearly holds. (The agreement is not exact because
the low-pass �lter used for the blurring was not perfect).
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Chapter 4

Contours and Phase

Armed with the analytical tools of the previous chapter, we can analyze local image

structure. Based on quadrature pairs of oriented �lters, we will develop the tools

which we will use to analyze junctions. Because contours form junctions, we �rst

study contours and their phase characteristics in this chapter.

4.1 Contour Detection { Energy Maxima

Filters with orientation tuning are often used in the detection of lines and edges

[20, 43]. One feature detector that has gained popularity is Canny's edge operator

[20], which is optimized to detect step edges; Canny's system can also be used with

di�erent �lter choices to detect features other than step edges.

A �lter that is optimized for use with an edge will give spurious responses when

applied to features other than edges. For example, when the Canny edge �lter is

applied to a line rather than an edge, it produces two extrema in its output rather

than one, and each is displaced to the side of the actual line position. On the other

hand, if a �lter is optimized for detecting lines, it will give spurious responses with

edges. Since natural images contain a mixture of lines, edges, and other contours, it is

often desirable to �nd a contour detector that responds appropriately to the various

contour types. A linear �lter cannot serve this task, but a local energy measure

derived from quadrature pairs can serve it quite well. Morrone et al. [77, 76] have

shown that local energy measures give peak response at points of constant phase as

a function of spatial frequency, and that they correspond to the points where human
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observers localize contours. Perona and Malik [89] have shown that energy measures

are optimal with respect to a variety of edge types. We have already described the

extraction of local energy measures with quadrature pairs of steerable �lters. We now

wish to use steerable energy measures to generate sparse image descriptions, and to

compare the results with those of a system such as Canny's.

In making this comparison we must keep in mind that Canny's full scheme involves

three stages: a �ltering stage, an initial decision stage, and a complex post-processing

stage which cleans up the candidate edges. The �lters are merely the front end to a

considerable battery of post-processing machinery. Therefore to make our comparison

we removedCanny's �ltering stage and substituted the outputs of our steerable energy

measures; we left the post-processing stages intact. We obtained Lisp code for the

Canny edge detector from the MIT Arti�cial Intelligence Laboratory.

For the contour detector, we use the G2 and H2 quadrature steerable basis set.

We �rst �nd at every position the angle of dominant orientation, �d, by the angle

of maximum response of the steerable quadrature pair, as described in Section 3.1.

We then �nd the squared magnitude of the quadrature pair �lter response, steered

everywhere in the direction of dominant orientation, E2(�d) = [G�d
2 ]

2+[H�d
2 ]2. A given

point, (x0, y0), is a potential contour point if E2(�d) is at a local maximum in the

direction perpendicular to the local orientation, �d. (Another approach, described by

Perona and Malik [89] and which we will use in Chapter 6, is to mark as contour points

those points which have maximal energy response with respect to both orientation

and position).

The local maxima points are then thresholded with hysteresis as in the Canny

method, using the values of E2(�d) as the basis of thresholding, instead of the gradient

magnitude.

Figure 4-1 (a) shows a test image consisting of a �lled circle and an open square.

The response of the Canny edge detector is shown in Fig. 4-1 (b). It correctly �nds

the edges of the circle, but signals double edges on either side of the lines de�ning

the square. Figure 4-1 (c) shows the output using the steerable quadrature pair. The

new detector responds with a single value correctly centered on both the circle and

the square, giving a cleaner, sparser description of the same information.

Because the responses of G2 and H2 indicate the local phase, we can use them to

further classify contours as edges, dark lines, or light lines. Steering G2 and H2 along
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the dominant orientation gives the phase, ', of contour points:

' = arg[G�d
2 ;H

�d
2 ]: (4:1)

To preferentially pick-out lines or edges, we scaled the energy magnitude, E2(�d) by

a phase preference factor, �('),

�(') =

8<
: cos2('� '�) if ��2 � '� '� � �

2

0 otherwise
; (4:2)

where

'� =

8>>><
>>>:

0 for dark lines

� for light lines

��

2
for edges

: (4:3)

The thresholding stage proceeds as before. Figure 4-1 shows the result of such pro-

cessing, selecting for dark lines, (d), and edges, (e). (The blobs on the square are due

to multiple orientations at a single point, and could be removed by a post-processing

thinning operator.)

4.2 Phase at Energy Maxima

It is often asserted that important image contours are edges. It is natural to ask what

the distribution of phases along image contours in natural scenes. Is it really biased

towards edges; is it uniformly distributed over all phases? The answer might a�ect

the approach a visual system should use for a variety of tasks.

We can plot a histogram of energy strength and local phase along contours, which

we call a phase-energy histogram. We steer a quadrature pair of �lters (G2 and H2

) along the dominant orientation everywhere in the image and measure the energy

response. We make use of the fact that energy measures response maximally at con-

tours and �nd the positions of maximal energy response with respect to displacement

perpendicular to the dominant orientation. We then add one count to the histogram

for each such locally maximal energy and the local phase at that point. In order to

avoid shifts in phase due to pixel sampling positions not lying exactly on the energy

local maximum, we oversample both the image and the �lters by a factor of 8. There

is an ambiguity in the dominant orientation vector; a vector in the opposite direction

51



describes the orientation equally well. This introduces an ambiguity in the sign of

the phase, since reversing the orientation changes the sign of the odd �lter response

and hence of the phase. We plot every phase-energy point twice in the histogram,

once for each sign of the phase.

Figure 4-2 illustrates the histogram coordinates. Phase angle increases coun-

terclockwise, starting from zero at \three-o'clock". We plot negative phases from

three-o'clock to nine-o'clock. Energy increases radially from the center of the clock.

Now let us plot actual phase-energy histograms for some test images (all were 64

x 64 pixels). Figure 4-3 (a) is composed only of black lines, which we de�ne to be

0� phase angle. Since all the lines in the test image are of the same contrast, the

phase-energy histogram, (d), shows a single peak at 0� phase angle. Figure 4-3 (b)

is the same set of contours, rendered with equal-contrast white lines. As expected,

the histogram, (e), shows a single peak at 180�. Figure 4-3 (c) again shows the same

contours, rendered as edges. Now the histogram, (f), shows several peak responses at

�90� because there are several edge contrasts. For all three cases, the phase-energy

histogram accurately characterizes the contour characteristics of the test images.

From the results shown in Fig. 4-3 we see that the phase-energy histograms mea-

sure what we want them to. We now examine the phase and magnitude distributions

of contours in some natural images. Figure 4-4 shows an image at several scales of

analysis, and the corresponding phase-energy histograms. At a �ne scale, the im-

age contours are predominantly edges. At coarser scales, however, contours of other

phases become more pronounced. Structures which had been identi�ed as two edges

can become a single line-phase contour. For this example, an edge model does not

hold over all scales.

Even the boundary of a physical object can appear at many di�erent phases.

Figure 4-5 shows an example. The detail of image (a) containing the hat has mostly

edge contours, as shown in the phase-energy histogram, (b). Yet, at sample points

spaced evenly along the energy peak of the contour of the hat, (c), one �nds a variety

of phases. As shown by a phase-energy plot of those points (d), the hat begins at

the lower left as a white line contour, then becomes an edge, then a white line again,

a low-contrast contour, and �nally an edge again. An edge-based analysis of this

contour would mis-locate the boundary, and mark parts of it twice.
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4.2.1 Simple Model

We can use a simple image model to gain intuition about why we observed a statistical

bias toward contours of edge phase. Our image model will be isolated rectangles of

di�erent shades of grey and sizes on a white background (see Fig. 4-6). This roughly

models a textureless world �lled with objects of all sizes. To simplify the analysis, we

will consider the problem in one dimension.

Let us �rst assume that the rectangles have a constant contrast against the back-

ground. Fig. 4-7 (a) shows a test image of such rectangles over a range of sizes. We

will analyze this image world with a quadrature pair of �lters.

Figure 4-7 (b) illustrates the three size regimes over which the phase at energy

peak will have characteristic behaviors. For the wide bars at the right, the quadrature

pair will �nd two edges, of uniform energy for all the bars. For bars of sizes near that

of the �lters themselves, the phase at peak energy will be intermediate between lines

and edges. Bars at the left will have line phase, but the energy at that phase will get

smaller and smaller as the bar of constant contrast becomes narrower and narrower.

The energy response to the test image for the G2 and H2 quadrature pair has this

behavior, as shown in Fig. 4-7 (c). Thus, there will be many measurements at the

maximal energy at edge phase, few measurements of phase intermediate between

line and edge, and many measurements at line phase, but at very small energies.

The distribution of contour phases will be biased toward high contrast edge-phase

contours. Figure 4-7 (d) shows a plot of the phase as a function of position. Figure 4-8

is a polar plot of the phase and energies at positions of energy local maxima of Fig. 4-

7 (a). The dot at exactly edge phase is actually 19 measurements superimposed.

Thus the edge phase structure dominates the phase-energy histogram of this simple

test image. For rectangles of a range of contrasts against the background, this phase-

energy histogram would simply scale radially (in energy magnitude). The result would

be a distribution similar to what we observe in Figures 4-4 (f) and (g) and 4-5 (b).

4.3 Summary of Analysis Tools

We have developed useful tools for image analysis. Steerable �lters o�er compu-

tational e�ciency, and give an analytic formula for �lter response as a function of

angle. The analytic formula is useful for further analysis, for example, to calculate

53



the dominant orientation.

By studying the frequency domain characteristics of these energy measures, we

found an e�cient way to use them to analyze multiple orientations, which will be

useful for junction analysis. We designed a contour detector based on local energy

measures which marks both lines and edges with a single response and can be used

to further categorize the contours as either dark lines, light lines, or edges. Finally,

we studied the local phase characteristics of images along the dominant orientation

at energy maxima. Our �ndings show that a simple edge model is not adequate to

describe image contours, and validate our energy-based approach.

Now that we can e�ciently apply oriented �lters, and analyze orientation, con-

tours, and phase, it is time to analyze junctions, which provide visual cues to interpret

images.
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(a)

(b) (c)

(d) (e)

Figure 4-1: (a) Circle and square test image. (b) Output of Canny edge

detector. The edges of the circle are accurately tracked, but the lines of the
square are marked as two edges, neither at the correct position. (c) Output

of steerable �lter contour detector. Both edges and lines are marked as single

contours, centered on the image feature. (d) Dark lines found by combining

the contour detector with a phase estimator. (e) Edges found by combining

the contour detector with a phase estimator.
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Figure 4-2: Explanation of phase-energy histogram intensities. In the image,

a quadrature pair is steered along the locally dominant orientation of the

image. From the quadrature pair outputs, magnitude and phase are measured
positions of maximal energy response relative to displacements perpendicular

to the dominant orientation. The intensity of the phase-energy histogram at
a point is proportional to the number of measurements in the image at phase

and peak magnitudes near that point.

56



(a) (b) (c)

(d) (e) (f)

Figure 4-3: Test �gures and their corresponding phase-energy histograms.

(a), (b), (c) show the same con�guration of contours rendered with contours

of di�erent phases{black lines, white lines, and edges, respectively. (d), (e), (f)
show the corresponding phase-energy histograms. The single dot in histogram

(d) indicates contributions from a single contrast of white-line phase. The
dot in histogram (e) indicates contributions from a single contrast of black-

line phase. The edges in (c) are of more than one contrast, shown by the

multiple dots at edge phase. This plot is symmetric about the horizontal axis
because white-to-black edges are indistinguishable from black-to-white edges.
The phase-energy histograms correctly characterize the phase distributions

along the contours of the test images.
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4-4: E�ect of variation in scale on phase-energy histograms. (a) Test
image, section of portrait of Einstein. (b) { (e) Test image bandpassed by four

di�erent scales of �lters. (f) { (i) Corresponding phase-energy histograms.

Notice that at scale (b), this image happens to be dominated by edge-phase
contours, as seen in (f). At the coarser scales of analysis, many of the contours

become of line or intermediate phase, as shown by the histograms (h) and (i).
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(a) (b)
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white line black line

edge

(c) (d)

Figure 4-5: (a) Image of Lenna, showing region of detail analyzed in phase-

energy histogram (b). At the scale of analysis, the image is predominantly
edge contours. However, while the statistical properties are dominated by

edges, important image features can contain contours of all phases. Phase and
magnitude measurements were taken along the energy local maximum which
de�nes the contour of the hat, shown in (c). Measurements were taken every 4

pixels. (d) shows the results. The beginning position of the line in the phase-

energy plot shows that the contour of the lower left hand corner of the hat is

a strong white line. Then, following the data in the phase-energy plot, we see

that the hat contour becomes edge-like, line-like, low-contrast line and edge,

and �nally edge-like, in agreement with the appearance of the contour in (c).
A simple edge model does not �t this contour.
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Figure 4-6: Schematic illustration of image model used to analyze expected
phase-energy histogram characteristics. We assume an image consists of rect-
angles of a wide range of sizes and contrasts.
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Figure 4-7: Plots showing relationship of energy and phase for a simple image
model. (a) Image model consists of rectangular pulses of many widths. (To

remove spatial sampling e�ects, the series of constant amplitude pulses were

zoomed and blurred to the resolution shown, which slightly blurs the pulse
edges and attenuates the far left pulse). We applied the G2, H2 quadrature

pair of �lters to (a). (b) illustrates the three size regimes of the pulses. (c)
Output of energy measure applied to (a). Note that for pulses wider than a

certain width, the maximum energy at their edge stays constant. As pulses
become narrower, however, the peak energy decreases. This causes a bias in

the phase-energy histogram|strong edges are more likely to occur frequently

than strong lines are. (d) Phase of (a), measured by the quadrature pair. See

also Fig. 4-8.
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Figure 4-8: Polar plot of the energy and phase at positions of energy local
maxima for the test image of Fig. 4-7. The data points corresponding to the

far right and left sides of the test image are labeled. There are actually 19
data points superimposed on the exact same dot at edge phase (\right side"),

illustrating the bias toward strong edges in the simple image model of Fig. 4-7.
This bias is observed in real images.
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Chapter 5

Cue Detection I

In the next two chapters, we will use our image analysis tools to analyze local visual

cues for scene interpretation. Before proceeding, we brie
y review related approaches

to the problem of using junction information to interpret scenes.

5.1 Related Work

5.1.1 Blocks World

Vision researchers studying the blocks world developed important methods for using

local information to interpret scene structure. The blocks world restricts scene objects

to be polyhedral blocks. (See [23] for a review).

Guzman [42] made use of vertices and junctions to recognize 3-dimensional objects.

He developed heuristics for grouping the elements of a line drawing into objects.

Hu�man [51] and Clowes [22] systematically labelled each line as corresponding to

either a concave edge, a convex edge, or an occluding edge. Only certain labellings

are self-consistent at intersections. The researchers made exhaustive searches to �nd

self-consistent line drawing interpretations. Waltz [108] added more possibilities for

line interpretations. An exhaustive search for the self-consistent line labellings would

have been infeasible. Instead, he compared local junctions and pruned out locally

inconsistent labellings, continuing that process until all junctions had been labelled.

His system was able to successfully interpret many blocks word scenes.

Recently, Sinha, Adelson and Pentland have identi�ed shading and re
ectance in
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the blocks world, using an approach related to that of Waltz [104, 5]. Figure 5-1

shows a \ " junction, which the authors exploit as a visual cue. If two of the line

segments are collinear, and the other two are not, then the collinear segments are

labelled as a bend, and the other two segments are labelled as re
ectance change.

(This cue has also been discussed by [14, 97]). In Chapter 6, we will generalize that

visual cue for images which are not pre-labelled into line segments and junctions, and

we will remove the restriction that the two of the line segments be collinear.

Figure 5-1: Shading cue exploited by various researchers [104, 14, 97]. If four

line segments meet at a common point, and two are parallel, then those two

segments are presumed to result from a surface bend.

5.1.2 Vision Modules

It is common to hypothesize modules speci�c to particular visual tasks, the outputs

of which are integrated at higher processing levels [8, 10, 28, 72, 90, 105]. Such

integration is needed to analyze images such as Fig. 1-1. Both Adelson [1] and Knill

and Kersten [56, 55] have described the importance of contours and other contextual

information on the perception of lightness and transparency. They demonstrate this

with illusions which simultaneous contrast cannot explain. Bultho� and Mallot [18]
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have studied what one perceives when di�erent cues for depth con
ict. Aloimonos

and Shulman [8] discuss how to combine shading with motion information, texture

with motion, and other combinations.

5.1.3 Perception Literature

The perception literature asks how humans infer scenes from images. Rock [93] and

Hochberg [49] have pointed out that local cues in the image give information about

depth and re
ectance. We will look for T and  junctions, which give evidence for

their cues of interposition and shading.

The grouping principles of the Gestalt psychologists (reviewed in [49, 93]) address

how to use local cues to choose an interpretation for a set of objects. We will exploit

two of their grouping principles, good continuation and proximity, in the curve �nding

algorithm we use in Chapter 6.

5.2 Cue Detection with Local, Oriented Filters

As many researchers have observed, junctions are important cues for scene interpreta-

tion. They can be perceptual cues for shading, occlusion and transparency. Figure 1-1

illustrates this; the three �gures di�er only in their junctions, yet give three very dif-

ferent physical interpretations. Figure 5-2 also shows this: the T-junctions inside the

boxed region show that the hand goes behind the head.

Given this importance, we might expect biological visual systems to have low-level

mechanisms which detect and characterize junctions. We therefore sought to build

simple junction detectors using biologically plausible low-level computational machin-

ery [34]. Similar approaches to what we present below were developed independently

by Heitger et. al. [48] and Perona [88].

The types of junctions we seek to detect in this chapter are L-junctions (corners),

X-junctions (crosses), and T-junctions. Figure 5-3 shows some examples of these

junctions. X-junctions can indicate transparency. T-junctions can indicate occlusion.

(Researchers often assume that side of the stem of the T indicates the \far" side

of the occluding contour (e.g., [81, 13, 69]). From observing real images, we feel

that as likely as not the stem of the T can occur from a marking or feature on the
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Figure 5-2: Illustration of the usefulness of junctions in scene interpretation.

The T-junctions in the boxed region indicate that the hand goes behind the
head.

front surface which terminates at limb of the occluding contour. Figure 5-4 shows

an example. Therefore, we attach no foreground or background designation to our

T-junctions or their contours.)

We want to detect junctions independently of the phase of their contours, since,

as we learned in Chapter 4, image contours can come in many di�erent phases. We

say that, for example, an X-junction occurs when a line crosses a line, or an edge

crosses another edge, or a line crosses an edge, and analogously for the other junction

types. Figure 5-3 illustrates prototypes of the di�erent junctions.

Our approach to analyzing junctions is to �rst use energy measures to analyze

orientation strength. We then apply spatial derivatives of the energy measures to

study the local image structure. Figure 5-5 shows a T-junction and 
oret polar plots

of the oriented energy as a function of angle and position. Each of the two contours

of the T-junction is marked by the position of the local maximum, taken against the

contour, of the energy oriented along the contour. In addition, the stem of the T

stops at the position of the contour of the bar of the T. The region where the stem

stops, at the intersection of the bar and stem contours, de�nes the T-junction region.

The �rst step in our procedure is to apply a basis set of steerable quadrature pair

of oriented �lters; we used the G2, H2 pair (see Fig. 5-6). From these �lter responses,

we can calculate the oriented energy as a function of angle for all angles and positions.
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We spatially blurred these responses to remove interference e�ects, as described in

Section 3.2.2. We found the two dominant orientations, which we de�ne to be the

angles of the two largest local maxima of oriented energy as a function of angle. (To

analyze orientation by searching for local maxima, we found better results using the

more tightly tuned G4, H4 �lters). We assume that the two contours of the junction,

if present, are oriented along the two dominant orientations.

With the knowledge of these two dominant local orientations, we are ready to take

derivatives of the energy along and against these directions to detect regions which

have the expected local structure of a junction. First, however, we must apply an

important gain control step.
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X-junctions

L-junctions

T-junctions

Figure 5-3: Examples of junctions which we would like to classify for image
analysis. L, T, and X-junctions in contours of both line and edge phases are

circled.
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a

b

Figure 5-4: Rembrandt self-protrait which illustrates why T-junctions do not
indicate the ordering of occluding layers. The T-junction at (a) occurs with

the \stem" of the T corresponding to the occluded layer. (The stem is the

vertical bar in the capital letter, \T". The horizontal cross stroke is the \bar"
of the T.) Many researchers assume the layers follow this relation. However,

the T-junction at (b) shows another common con�guration. A marking on the
occluding layer causes the stem of the T to lie on the occluding layer. Because

of this ambiguity, we will not assign a depth ordering to the surfaces on each

side of the bar of a T-junction.
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Figure 5-5: Local energy measures can be used to identify T-junctions. Flo-

ret polar plots of oriented energy as a function of orientation are shown for

various positions near a T-junction. This plot illustrates the local energy char-
acteristics which we require for a T-junction: the energy perpendicular to the

two dominant orientations must be at a local maximum; and the energy along
the dominant orientations must show end-stopping for exactly one of the two

orientations.
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2θ

θ1

Steerable 
energy 
measures

Polar plot of 
oriented energy

Two dominant 
orientations

Figure 5-6: Initial processing in junction detection. A bank of steerable

quadrature pair �lters measures oriented energy as a function of angle. The
two dominant orientations are de�ned to be the angles corresponding to the
two strongest energy local maxima.
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5.2.1 Gain Control

At an occlusion T-junction, such as that of Fig. 5-7 (a), there can be a strong change

in oriented energy due to a change of re
ectance in the materials behind the occluding

edge. This is illustrated in Fig. 5-7 (b), which is the horizontal energy of (a). The

higher contrast of the black to white transition over the grey to white transition causes

a sharp change in the horizontal energy at the junction. This change in energy is hard

to distinguish from the end of a contour. We would like to have our measurement for

the horizontal strength of the continuous contour of the T be constant throughout

the T-junction. We need a contrast normalization step.

Local contrast normalization models have been used to account for physiological

and psychophysical data on the low-level perception of moving or static images [46,

102, 111]. Typically, in such models, the response of a linear �lter is normalized by the

sum of the energies measured in �lters in a local neighborhood over all orientations.

Such normalization treats regions of varying contrasts equivalently and allows image

information to be represented within a small dynamic range.

This normalization works well for most contours, but causes problems at junctions.

Many junctions of interest, such as Fig. 5-7 (a), have important contours of widely

di�ering contrasts. These contour segments with di�ering contrasts can be of di�erent

orientations, or, as shown in Fig. 5-7 (a) they can have the same orientation, aligned

along a single contour. A normalization by the sum of �lter response energies at all

orientations over a local spatial region would cause the strong contour to overwhelm

the weak one, shown in Fig. 5-7 (c). Even normalization by �lter response energies

from a single orientation, summed over a local region, gives a similar result, shown in

Fig. 5-7 (d).

A solution to this problem is to normalize by the �lter response energies from a

single orientation, but summed over a particular local region. If we average only in

the direction perpendicular to the direction of the oriented energy �lters, then the

strong contour segment will not obliterate the weak one at a junction where a contour

undergoes a strong to weak contrast transition. The normalized energy, En, is the

raw energy, E, normalized by E blurred perpendicularly to the contour direction, �E?:

En =
E

( �E? +N)
; (5:1)

where N is a small constant which eliminates division by zero in the presence of noise.
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Figure 5-7 (e) shows the resulting normalized energy, showing smooth continuation

along the contour throughout the junction.

(a) (b) (c) (d) (e)

Figure 5-7: Calculation of gain-controlled oriented energies. (a) Example
image showing a contour with a high to low contrast transition. Horizontal

oriented energy (b) decreases dramatically over the junction. This decrease

is di�cult to distinguish from the termination of a contour. Some local gain

control is needed to make it clear that the contour continues. A common gain
control procedure is to normalize by the energy blurred over a local spatial
region and over all orientations. This fails to show the continuation of the con-

tour at the junction; the high-contrast segment overwhelms the low-contrast
segment (c). Normalization by the energy of a single orientation blurred over a
spatially isotropic region also fails at the junction, (d). Instead, we normalize
by the energy at a single orientation blurred only perpendicularly to the �lter

orientation. Then one part of a contour does not in
uence another part of the

same contour, and the gain normalized response is uniform along the contour,
even at the T-junction, as shown in (e).

5.2.2 Junction Detection and Classi�cation

Now that we have the normalized oriented energies, we want to compare the spatial

structure of theses energies with those of prototype junctions, such as the junctions

shown in Fig. 5-3. The contours of the junction may meet at any angle, so we do not

require that the energy pro�les agree exactly everywhere, since that would require a

di�erent junction prototype for every possible angle between the contours. Instead,

we make comparisons of slices through the energy taken relative to the measured two

dominant orientations at the junction.

A junction occurs where two contours meet. To determine whether there is a con-

tour along each of the dominant orientation directions, we use the approach developed

in Section 4.1|we look for the position perpendicular to the contour where the re-

sponse oriented along the contour is maximal. Fig. 5-8 (a) shows the prototypical

energy response as a function of position perpendicular to the contour.

To determine whether or not a contour stops at the junction, we examine the
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normalized energy oriented along the direction of the contour as a function of posi-

tion along the contour. The prototype function for that energy tapers from a high,

constant value down to zero, as illustrated in Fig. 5-8 (b).
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Figure 5-8: Template slices of normalized oriented energy as a function of

position. We compare the actual energy measurements against these proto-
types in order to determine whether the local region describes a junction and
to identify what kind. (a) Prototypical response for energy oriented along the

stem of a T-junction as a function of distance along the stem. (The stem is
the contour which terminates at the junction). The response is constant away

from the junction, then falls to zero as the contour ends. This \stopping"

response can also indicate a contour at a corner. (b) Prototypical response of
energy oriented along a contour as a function of distance perpendicular to the
contour. Utilizing the local de�nition of a contour described in Section 4.1,
this locally maximal response indicates the presence of a contour. If the ori-

ented energy along both dominant orientations indicate a contour, then we say

we are at a junction.

The main idea, then, is to �nd the slices of the normalized oriented energy at

the junction and compare those functions with the prototypes of Fig. 5-8. We only

want to compare the functions over a local region. A reasonable di�erence measure

is the integral under a local Gaussian window of the squared di�erence between the

prototype functions and the corresponding slices of the actual normalized energy.

Locally, the prototype functions are smooth and relatively slowly varying. Win-

dowed by a Gaussian function, they may be well approximated by a second order

polynomial times the windowing Gaussian. Using this approximation, we can �nd

the desired squared di�erence from the prototype functions by using derivatives of
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the normalized energies along and against the two locally dominant orientations. It

is possible to �nd this integrated squared di�erence with an additional level of the

local �ltering operations which we have been using so far.

Let I(x) be the normalized oriented energy along some direction as a function

of x, the distance either along or against a contour orientation. This is the slice

through the normalized energy which corresponds to the slices which generated the

prototype functions of Fig. 5-8. First, we want to �nd the coe�cients of a second

order polynomial expansion of the function f1 which is I(x) blurred by a Gaussian

�lter, G0 (0th derivative of the Gaussian):

f1 = G0 � I(x) = a1x
2 + b1x+ c1: (5:2)

Di�erentiating the above equation and evaluating the result at x = 0 gives polynomial

coe�cients as a function of derivative of Gaussian �lter outputs:

a1 =
1

2
(G2 � I(x))jx=0 (5.3)

b1 = (G1 � I(x))jx=0 (5.4)

c1 = (G0 � I(x))jx=0: (5.5)

We want to �nd the squared deviation, E, of the function f1 from a prototype

function, f2 (as in Fig. 5-8), over a local region. We introduce a second Gaussian,

of standard deviation �, to de�ne the local region. Then the integral of the squared

di�erence, windowed by the second Gaussian, gives the desired squared deviation:

E =
Z 1
�1

e

� x2

2�2 (f1 � f2)
2dx (5:6)

Writing out f1 and f2 as polynomials (as in Eq. (5.2) and evaluating the de�nite

integrals of Eq. (5.6), we �nd,

E =
p
��(c1 � c2 +

�
2

2
(a1 � a2))

2 + (5.7)
p
�

2
�
3(b1 � b2)

2 + (5.8)
p
�

2
�
5(a1 � a2)

2
; (5.9)

where a2, b2, and c2 are the corresponding polynomial coe�cients of the prototype
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function, f2, found as in Eq. (5.5). The dependence of E on � makes sense. For

large �, we are comparing the functions over a large area, and the di�erence in the

quadratic terms of the polynomial expansions dominates. For small �, the di�erence

in the constant terms is most important. This expression, with Eq. (5.5) for the

polynomial coe�cients, lets us �nd a squared di�erence measure of how closely I(x)

locally resembles a prototype function by taking a sum of the squared di�erence of

local �lter outputs. That will tell us how much the local structure of the oriented

energy resembles that of a prototypical junction.

We are interested in how the shapes of the oriented energies compare, not their

magnitudes. To remove any magnitude variations not taken care of by the gain

normalization step, we divide the �lter outputs by the G0 output, and alter the

prototype coe�cients accordingly.

To count as a junction, the local oriented energy pro�le must match the prototype

shapes along two directions for each of the two di�erent orientations. We would like to

simply cascade measures of agreement with the prototype functions. We can do that

by multiplication if we �rst convert each of the squared di�erence measures, E, to

numbers, p, between zero and one, where one corresponds to zero squared di�erence.

We used the function,

p =
�
n

(En + �
n)
; (5:10)

where � and n determine the o�set and sharpness of the transformation, respectively.

(We used n = 3, � = 0:3 to measure contour-ness and n = 3, � = 0:1 for stopped-

ness).

Figure 5-9 shows a diagram of the overall system. The G1 and G2 derivatives taken

against the contour allow us to use Eq. (5.9) to measure \contour-ness"{whether or

not we are on top of the contour. The derivatives taken along the contour measure

\stopped-ness"{whether or not we are at the end of the contour.

We are at a junction when the contour-ness along each of the dominant orienta-

tions is high. The results of the stopped-ness computation classi�es the junction type,

as shown in Fig. 5-10. If both contours have a high stopped-ness, then the junction

is an L-junction. (See also [92] for another approach to L-junction detection). If one

orientation shows high stopped-ness, and the other shows low stopped-ness, then the

junction is a T-junction. If neither orientation shows stopped-ness, then that shows

evidence for an X-junction.
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For example, let p1c be the output of Eq. (5.10) for the contour-ness of the contour

at orientation 1, p1s be its output for the stopped-ness of that contour, with analogous

labelling for the measurements along orientation 2. The T can occur with either

orientation 1 being stopped and orientation 2 not, or vice versa. Thus, we have for

the T-ness, T :

T = p1cp2cmax[p1s(1� p2s); p2s(1� p1s)] (5:11)

We form the outputs of the other detectors analogously, in accordance with Fig. 5-

10.

We have a choice for the representation of the �nal result: it can be winner-take-

all or distributed. A winner-take-all representation is like a digital number, with a

bit corresponding the winning junction set to \1", and the bits corresponding to the

losing junctions set to \0". A distributed representation stores an analog response

for each of the three junction types. A winner-take-all representation is more robust

against noise, but carries less information than a distributed representation. Because

it is important to present higher visual processing levels with the ambiguities or

uncertainties of visual measurements, we chose a distributed representation for our

results. We retain the response of each detector (e.g., Eq. 5.11) at each image position.

The system can successfully identify and classify junctions in simple images. Fig-

ure 5-11 shows some results. (a) - (d) show simple examples of L, T and X junctions;

(e) - (h) show the relative outputs of each of the 3 types of detectors. (i) shows the

insert of Fig. 5-2, and (j) shows the T-junctions detected. Note that where the top

of the hand meets the head in (j), a T-junction involving a very high-contrast to

low-contrast transition excites both the T and corner detectors. That makes sense,

since the high-contrast T-junction is somewhere in between a corner and a simple

T-junction.

Figure 5-13 shows the junction detection results for the Einstein portrait of Fig. 3-

1 (a). A number of the T-junction responses in (a) correctly label occlusion T-

junctions, such as at arrow 1. Arrow 2 points to a properly labelled T-junction which

occurs not from occlusion, but from a coincidental (well-dressed?) alignment between

the shirt lapel and coat border. There are properly few responses of the X-junction

detector, (b). Most of the responses are in the hair.
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5.3 Discussion

The method presented above identi�es and classi�es L, T, and X junctions properly in

simple images. It does so independently of the phase of the contours which de�ne the

junction. All the operations are local. It uses the same image processing mechanisms

that are thought to be available in the early stages of processing in the visual cortex.

Because this method of junction detection involves the squaring and blurring of ori-

ented linear �lter outputs, it resembles computational models of preattentive texture

perception [12, 70]. Such texture perception mechanisms could be linked together to

detect junctions. Conversely, stages of the junction detector can discriminate regions

of texture. This is illustrated in Fig. 5-14.

We have only implemented this method on a single scale. A more robust im-

plementation would accommodate the variation in scale observed in natural images

(e.g., [72, 114, 19]). One could use two di�erent approaches. One could implement

the junction detectors with sets of �lters spanning a range of spatial scales and then

apply a voting or robust estimation procedure to reach a consensus from the detector

outputs. Alternatively, one could try to �nd the best spatial scale or range of scales

to describe structure at every region of the image and only use the detector outputs

within that range. Stable bandpass �lter output zero-crossings across scale may in-

dicate important size regimes [114, 9]. An approach such as [9] may be used to mark

the preferred spatial scales.
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"stoppedness"
computation

"contourness"
computation

Processing block diagram

linear filter bank
(all orientations)

energy measures

lateral gain control

1st and 2nd
derivatives
taken along and
against orientation

squared differences
from standard values
yield contour and
termination
measures

square square

+

gain control

Figure 5-9: Block diagram of the �lter-based processing to identify and clas-

sify junctions. A bank of linear �lters of two phases, covering all orientations,
analyzes the image. From those responses, energy measures are formed, and

the two dominant orientations are found. A normalization step is applied to
the energies. First and second derivatives are taken along and against the two

dominant orientations. Squared di�erences from prototypical responses yield

measures of \stopped-ness" and \contour-ness".
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Figure 5-10: Junction classi�cation. A region with high \contour-ness"

along each dominant orientation de�nes a junction. If both orientations show

stopped-ness, the junction is classi�ed as an L-junction. If one orientation
shows stopped-ness, but not the other, the junction is a T-junction. If neither

orientation is stopped, junction is classi�ed as an X-junction.
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Image L-ness X-ness T-ness

(a)

(b)

(c)

Figure 5-11: Showing outputs of local junction detectors made from oriented

�lter outputs. Test images are composed of (a) L-junctions, (b) T-junctions,
and (c) X-junctions. In each case, the correct �lter responds at the desired

location, and the incorrect �lters do not respond signi�cantly. Note that the

detectors operate correctly on junctions composed of either lines or edges.
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Image L-ness X-ness T-ness

(a)

(b)

(c)

Figure 5-12: More outputs of local junction detectors made from oriented

�lter outputs. Test images (a) and (b) contain L, T, and X junctions. (c) is

a detail of Fig. 5-2. While there is some response at junctions by detectors of
di�erent types (for example, a T-ness response at L-junctions), the strongest

responding detector is always of the correct junction type. In (c), the higher

occlusion point of the hand behind the head is a very high contrast T-junction.
It gets classi�ed as having some T-ness and some L-ness, a reasonable classi-

�cation, based on the local image information.
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(a) T-junctions (b) X-junctions

2

1

Figure 5-13: Output of T and X junction detectors for Einstein portrait,

overlaid on original image. The T-junction detector, (a), �res at some expected
(arrow 1) and unexpected (arrow 2, an accidental alignment) T-junctions. The
X-junction detector, (b), is mostly silent, as desired, except in the hair.
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(a) (b) (c)

(d) (e) (f)

Figure 5-14: Junction detectors have similarities to �lter-based computa-

tional models for texture discrimination. These detectors, and intermediate
steps in their calculation, can give rough discrimination of textures. (a) Tex-
ture image. (b) and (c) are intermediate results in the junction calculation

(the DC and sin(2�) components, respectively, of the Fourier series for the

normalized oriented energy as a function of angle). Their squared, blurred

values would discriminate between di�erent texture regions. (d), (e), and (f)

are the outputs of the L, T, and X junction detectors, respectively. Again,

di�erent texture regions show di�erent characteristic responses.
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Chapter 6

Cue Detection II, and

Propagation of Local Evidence

6.1 Overview

The methods for junction analysis described in the previous chapter have certain lim-

itations. Figure 6-1 illustrates junctions which pose problems for �lter energy based

methods. An energy-based method is likely to confuse in impulse with a contour,

causing Fig. 6-1 (a) to be incorrectly labelled as two T-junctions. Depending on the

scale of the �lter, it may have trouble detecting junctions where one contour is of

low-contrast or has a gap, as in Fig. 6-1 (b). Fig. 6-1 (c) and (d) show the outputs

for these images, which exhibit the expected problems.

To address these limitations, we introduce a junction detector which is based

on salient contours. It integrates information over a larger area than the energy

based method, which allows it to bridge gaps. Since a dot would not be marked

as a salient contour, Fig. 6-1 (a) could be processed correctly. The contour based

analysis of junctions also provides a framework in which to spatially propagate local

cue evidence.

6.2 Related Work

Researchers have used related contour-based approaches before. Lowe and Binford

[14, 68, 69, 65, 66, 67] used relationships between contours to form image interpreta-
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(a) (b)

(c) (d)

Figure 6-1: Image illustrating problems of a local approach to junction de-
tection. Some structures, such as those in (a), can mimic the local oriented
energy structure of a junction, causing false detections of T-junctions. A local

approach can not �ll gaps in contours, shown in (b). The T-junction detector
of Chapter 5 fails for both these images. It incorrectly responds to the spot
near the contour, (c), and give a negligible response to the T-junction at the

contour with a gap, (d).

tions. In [69], they exploited assumptions of general camera and illumination positions

to derive a set of 3-d inferences from observed 2-d relationships among lines. Their

computational results, however, began from hand-drawn spline curves. In [66, 67],

Lowe combined some of these inferences with a model-based approach and showed ro-

bust results for identifying instances of the model in a cluttered scene. Our approach

is from a lower level than this. We will use only local calculations, and operate on con-

tours instead of straight line segments. In some sense, we incorporate their grouping

based on collinearity in the method we use to �nd contours.

Witkin [113] suggested that correlations between pixel values along curves parallel

to edges could distinguish occlusion from shadow boundaries. Across an occlusion

edge, the correlation between pixels would drop, while they would remain high across

an illumination edge.
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Grossberg and Mingolla [39, 40] used an analysis of contours as an early stage

in their visual processing architecture. The method we use to �nd contours has

similarities to their \boundary contour" process, which is sensitive to the orientation

and amount of contrast but not to the direction of contrast in edges. Their work

adds important insights, among them the need for competitive processes to precisely

locate line terminations when using oriented �lters.

In a recent thesis, Nitzberg [81] used a contour based approach to �nd an optimal

layered interpretation for simple images, allowing continuation of occluding contours.

He found contours using a Canny-like algorithm with extensive post-processing. The

global interpretation guided the local interpretation of image cues. Classifying T-

junctions was the last step, after a global interpretation has been found. His system

assumed that all intensity edges were occluding boundaries, and so could not handle

images such as Fig. 1-1 where contours can have di�erent possible interpretations.

Williams [110] also found an optimal continuation and layering. His system, which

was limited to working with straight edges, used integer linear programming to �nd

the best set of line segment continuations.

Beymer [13] has extended Canny edges to meet at junctions in order to search

for occluding T-junctions, which he noted occur in pairs if edges remain unbroken

and if the image boundary is considered an occluding boundary. He paired junctions

together along curves to form simple occlusion interpretations.

6.3 Finding Salient Contours

Our new method to analyze junctions has three parts: (1) �nding salient contours in

the image; (2) �nding local evidence for various image cues from the con�guration of

the contours; (3) propagating the local evidence along the salient contours.

The salient contour measure we want should tell us the likelihood of an image

contour at a given image position and orientation, based on the responses of oriented

�lters. It should favor long, straight curves, and continue over gaps. A number of

approaches could be used, including relaxation labelling [24, 52, 44, 83], the approach

of Grossberg and Mingolla [39, 40], snakes [53], or dynamic programming [95]. Splines

[11], or elastica [81, 80] could be used to interpolate across gaps. We implemented

the dynamic programming method of Shaashua and Ullman [95]. It solves an explicit
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optimization problem, gives good results, and the computation time is linear with

curve length.

(A note on terminology: in this chapter, \contour" has the burden of several

meanings. We will discuss \image contours"{lines or edges in the image. We build a

variation of our contour detector of Section 4.1 which measures \contour strength".

We will use the output of the contour detector in the dynamic programming algo-

rithm to �nd \salient contours"{long curves which bridge gaps and connect contour

fragments. We will use the word \salient" before those contours which result from

Shaashua and Ullman's algorithm, or our modi�cation to it. We will sometimes call

them \paths".)

6.3.1 Post-Processing of Energy Outputs

The representation for Shaashua and Ullman's scheme is of a set of 16 orientation

elements arriving at each pixel position from neighboring pixels. Along each orien-

tation element there is some local image evidence of orientation strength. In their

implementation, Shaashua and Ullman used fragments of Canny edges for such local

evidence. From Chapter 4, we know that important structures come in all phases,

and we will base our evidence for orientation strength on local energy measures. Fur-

thermore, Canny edges, based on �rst derivatives, give poor performance at junctions

([13] discusses this issue). To ensure adequate representation of junction structure,

and to match the sampling resolution in orientation, we will analyze orientation with

the fourth derivative of a Gaussian, G4, and its Hilbert transform, H4. Having 8

samples in orientation (corresponding to 16 angles) is approximately enough to make

a steerable basis for �lters with this tuning (9 would be exactly enough).

We found that spurious salient contours were reduced if we post-processed the

local energy outputs to keep only the outputs which had locally maximal response

in orientation and in position perpendicular to the orientation. This is similar to the

contour detector described in [89].

We �rst blur the oriented energy outputs to remove interference e�ects, as dis-

cussed in Section 3.2.2. To �nd the spatial local maxima of the blurred energies, we

apply a second level of quadrature pair �ltering to the energy output at each orienta-

tion. Energy local maximum points correspond to positions of white on black phase

in the energy image (see Section 4.2). To make a mask, M , which marks the energy
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local maxima, we form

M =

8<
: coss(�� �) if ��

2
� �� � � �

2

0 otherwise
; (6:1)

where � is the local phase angle, and s is a selectivity factor, set to 4.0. Figure 6-2

illustrates this energy local maxima marking on a test edge image.

After applying Eq. (6.1) to eliminate non-maximal responses in position, and

further eliminating non-maximal responses in angle, we have a mask, M , between 0

and 1 for each position and orientation which identi�es image contours. However,

some energy local maxima are of very low contrast, and we do not want to consider

them contours.

To eliminate these noisy, low-contrast responses, we run the energy through a

point non-linearity and multiply it by the mask,M . We introduce a simple noise and

signal model, and use a non-linearity which would give the probability that an energy

response was not caused by noise. While we do not believe that the oriented energies

follow the simple processes assumed in it, using the model gives us a non-linearity

function with physically intuitive parameters to adjust.

We assume there are two Gaussian processes which generate linear �lter outputs: a

mean zero noise process, and a mean t contour process. We assume each has variance

�. Our contrast dependent multiplier is the probability that the observed oriented

energy was caused by the contour process.

The oriented energy is the square of the linear �lter outputs. The probability, p, of

a given oriented �lter measurement, x, from a mean t Gaussian process, as described

above, is p(x) = e
�(x�t)2=(2�2). From basic probability theory [50], the probability of

the energy measurement, y = x
2, is

p(y) =
1

2
p
y

(e�(
p
y�t)2=(2�2) + e

�(�
p
y�t)2=(2�2)) (6:2)

Multiplying M by p(y) gives a gain controlled contour measure between 0 and 1 for

every orientation and position. Figure 6-3 plots this function for the parameters we

used, t = 100 and � = 22.

Figure 6-4 shows an example of energy normalization using this function. (b) is

the blurred horizontal oriented energy for the image in (a) (note the large range of
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the energies because of the range of contour contrasts). (c) shows the positions for

which the horizontal energy response is maximal in angle and perpendicular position.

(d) is the union of the local maxima for all orientations.
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(a) (b)

(c) (d)

Figure 6-2: 1-d cross sections of images showing method to mark local con-
tour evidence. (a) Input image (an edge). (b) G2, H2 quadrature pair energy

output. The spatial local maximum of this response marks the position of the

(edge) contour. This energy output alone would not serve to mark the contour

because it is too wide, and the magnitude is a function of contour contrast.
We apply a second stage of G2, H2 �ltering to measure the local phase, (c), of

the energy output. Energy local maxima will appear as positions of white-on-
black phase (� radians). The non-linearity of Eq. (6.1) applied to the phase

output will then mark those contour positions with output 1.0 in a narrow but

smooth spike signal, (d).
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Figure 6-3: Energy normalization function used to suppress low-amplitude

noise. See text for derivation.

(a) (b) (c) (d)

Figure 6-4: From image to oriented contours. (a) Test image. (b) blurred

horizontal oriented energy. Note high dynamic range because of the range of

image contrasts. (c) Horizontal contour strength, calculated as described in

text. (d) Union of contours found for all orientations.
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6.3.2 Saliency

θ

Figure 6-5: Image representation used with structural saliency calculation.

Shown are two of the orientation elements which point to and leave from each
point. In this implementation, orientation elements span two pixels, as shown.
Each black circle represents a pixel. The grey box covers all the pixels to
which an orientation element at the center pixel can connect. Each of the 16

elements which arrive at a point is connected with one of the 16 elements which
leaves from that point. Following the connections from one element to another
through di�erent positions traces a curve. Each element has a saliency value,
which depends on the local evidence for each orientation element, as well as on

the bending angles, �, between incoming and outgoing elements in the curve.

Figure 6-5 shows the set of 16 orientation elements which meet at each pixel in the

scheme of Shaashua and Ullman. Each orientation element can link its head to the

tail of any of the 16 elements which leave from the tail position. The task of the

saliency algorithm is to �nd a set of linkings which traces salient image contours and

to �nd a measure of the strength of the salient contours found, based on the local

evidence for contours (or edges).

Shaashua and Ullman devised a local calculation, based on dynamic programming,

which guarantees �nding the most salient curve starting from a given orientation ele-

ment. The saliency which the dynamic programming optimizes unfortunately depends
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on the direction in which the curve is traversed, but it does indeed give long curves

of low total curvature a large saliency.

The recursive saliency calculation is as follows:

Si

0 = �i (6.3)

Si

n+1 = �i +max
j

[Si
n
fi;j]; (6.4)

where Si
k is the saliency of the ith orientation element after the kth iteration, �i is the

local saliency of the ith element, and fi;j is a coupling constant between the ith and

jth orientation elements. The maximization is taken over all neighboring orientation

elements, j. The coupling constant penalizes sharp bends of the curve and e�ectively

imposes a prior distribution on the expected shapes of the image contours. Shaashua

and Ullman showed that after N iterations, the above algorithm will �nd the saliency

of the most salient curve of length N originating from each contour.

After every iteration, each orientation element has a favorite next element. To

trace the maximal saliency curve, one has to follow the link after iteration N of the

�rst element, then the link which that next element chose after iteration N � 1, then

the next element of that link after iteration N � 2, etc. This entails storing a vector

of the N linking choices for each orientation element, in order to trace the optimal

curves of length N . Shaashua and Ullman implemented an approximation to this,

storing only the last choice of each element, and tracing curves by following that set

of links. In general, this is not the most salient curve, but in practise, the curves it

draws are reasonable.

Figure 6-6 shows (a) a test image, (b) the orientation strength evidence, and (c)

the maximum saliency over all orientations. Picking a salient point and following

each link gives the curve shown in (d). The curve follows long, straight curves and

traces the visually salient circle of (a).

6.3.3 Competition

Unfortunately, the problem which dynamic programming solves so elegantly is not

the right problem for us. The algorithm �nds the curve of maximal saliency which

starts from any position. It will therefore assign high maximal saliency to curves

which start near an image contour. After paying a small penalty for curving to join
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the contour, the path will follow the contour. A cloud of high saliency values tend

to surround all image contours (Fig. 6-6 (c)). Furthermore, if two curves cross, the

maximally salient contours will not necessarily cross each other, but may well merge

onto one of the two contours. This method will not describe contours accurately at

junctions.

Shaashua and Ullman addressed this problem [96]. They proposed that all linking

pairings could be constrained to be reciprocal (if A chooses B then the vector opposite

B must choose the vector opposite A) and that the set of linkings which maximized

the sum of the saliencies over the image would create the desired linkings. They

described a scheme which approximates this optimal grouping.

We implemented their scheme and found it to be unstable for the measures of

orientation strength that we used. Salient contours would follow image curves for

some short time, then veer o�. We believe this di�erence from their result is due

to the di�erence in the local evidence for orientation strength. They derived their

local saliencies from thinned edge fragments, and as a result their local evidence for

contours was always exactly one pixel wide. Ours were in general wider than this, and

could vary in width along the contour. Such variations may cause the instabilities.

Seeking a more stable method, we opted to let many curves choose one orientation

element but force them to compete for that element based on how strong each curve

is relative to the others. The resulting curves are stable, yet delineate the contours

of the image well.

The �rst step of this method is to calculate the salient contours of length N

using the dynamic programming method of Shaashua and Ullman. This ensures

that curves bridge gaps. Then we add a competition phase. One iteration of the

competition phase is a modi�ed version of a dynamic programming iteration. We

weigh the saliency of an outgoing element by the \backwards strength", Bi, of the

element choosing it relative to the sum of the backwards strengths of all the elements

(index k) which choose it. Strong paths thus get �rst priority for picking the paths

they want to connect with. That eliminates the \cloud" of salient paths picking one

image contour, and encourages proper behavior at junctions.

The following iterative procedure calculates backwards saliency strength of ele-

ment i after iteration n, Bi

n:

Bi

0 = �i (6.5)
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Bi

n+1 = �i +
X
j

Bj

n
fi;j; (6.6)

where again �i is the local orientation strength, and fi;j is the coupling constant

between orientation i and orientation j. The sum is over elements j which feed into

element i.

The following recursion relation determines the saliency of the ith orientation

element after iteration n, Si
n:

Si
n+1 = �i +max

j

Si

n
fi;jBiP
kBk

: (6:7)

The sum in the denominator is over elements k which chose to connect to element i

on iteration n.

Unlike the dynamic programming algorithm, this is not guaranteed to �nd an

optimum path, nor is it guaranteed that the saliencies re
ect that paths found. Thus,

we add a �nal step where we repeat the calculations of Eqs. (6.6) and (6.7), but

without changing any of the links. While this does not guarantee that the paths are

optimal, it does guarantee that saliency values accurately re
ect the curve paths.

In practise, the salient contours this procedure �nds are stable, and generally be-

have well at junctions. Figure 6-7 shows the outputs of the dynamic programming

algorithm, and our modi�ed algorithm, at a junction. The dynamic programming

algorithm shows salient curves everywhere near an image contour, while for our mod-

i�ed algorithm salient curves are generally con�ned to image contours. With the

dynamic programming algorithm, several branches of the  junction choose to follow

the stem of the  . For our modi�ed algorithm, the contours continue more as the eye

might follow them.

After this step, at every position and direction in the image we have a saliency

number re
ecting the strength of the salient path heading in that direction, and a

link telling the next step in that curve. In the next section, we will use this local

con�guration of saliencies to identify junctions.
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(a) (b)

(c) ()

Figure 6-6: Saliency calculation. (a) Original �gure, adapted from [95]. (b)
Orientation evidence, based on spatial and angular local maxima of oriented

�lter outputs. (Shaashua and Ullman used Canny edge fragments for this
step). Based on the orientation strength evidence in (b), the saliency algorithm

was applied for 20 iterations. (c) shows the saliency of most salient contour

of the 16 contours leaving each position. Note the \cloud" of salient values

surrounding each image contour. (d) Curve traced starting from a position and

orientation of high saliency. The curves traced by following the last choice of
each orientation element are a reasonable approximation to the maximally
salient curves, which would require storing a vector of 20 numbers (one per

iteration) at each position.
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(a) image

dynamic
programming with competition

saliencies

paths

(c)(b)

(d) (e)

Figure 6-7: Comparison of contours and their strengths between dynamic
programming algorithm and the dynamic programming with competition. (a)

input image. Saliency images show the maximum over all orientations of the

saliencies of elements at a position for (b) the standard dynamic programming

algorithm and (c) the algorithm with competition added (no longer dynamic

programming). Note the cloud of high saliency values around contours for the
dynamic programming case. (d) and (e) show traces of two paths for the two
algorithms. Without competition between curves, all paths at a junction may

choose the same strong outgoing path. Competition allows a better parsing of

the junction. The choppiness of the diagonal lines is related to the quantization

in angle, discussed in Section 6.6.2.
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6.4 Finding Local Evidence

In the saliency we have a local measure of a more global structure, contour strength.

We want to analyze the con�guration of contour strengths and �nd local evidence for

visual cues. Examples of the types of cues we could look for include:

� T-junctions. If one image contour stops at another one, it may indicate that

the bar of the T is an occluding contour.

� X-junctions. Two contours crossing may provide evidence for transparency.

�  -junctions. An image contour which causes others to bend as they cross it

provides evidence for being due to a surface bend.

� Shading. Adelson [2] has pointed out that curves which change intensity as they

change orientation may be shading cues. One could search for salient curves

which satisfy that criterion.

� Re
ectance or illumination edges. Edges due to either re
ectance or illumina-

tion changes cause a multiplicative change in intensity across their boundary.

We will study the �rst three of these, which all involve junctions.

6.4.1 T and X{Junctions

The bar of a T-junction is a salient contour which meets a salient contour on one side

of it, but not on the other. An X-junction contour is a salient contour which sees

salient contours o� to both sides. We will call X-junctions any junction where one

curve crosses another and treat a  -junction as a special case of an X-junction.

To evaluate T-ness and X-ness, we �nd the strength of the strongest salient con-

tour near the left or right side of an orientation element, which we call l and r,

respectively. We �rst blur the saliencies slightly, to avoid misclassi�cations due to

spatial quantization e�ects. l or r is the maximum saliency at the three orientations

most perpendicular to the particular orientation element.

The classi�cations we want to make are similar to the logical operations NOR,

AND, and XOR. If neither l nor r is large, we want to say there is no evidence for

a junction. This corresponds to the NOR operation which would output a 1 in the
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region where l = 0 and r = 0. If both l and r are large, then there is a contour

o� to both the left and right sides and we have evidence for an X-junction. This

corresponds to the logical operation AND, which outputs 1 where l = 1 and r = 1. If

one of l and r is large, and the other is not, then there is evidence for a T-junction.

This corresponds to the exclusive-or operation. These logical functions are plotted in

Fig. 6-8.

We seek membership functions which divide up the l and r parameter space in

a similar way. We divide the space into three regions: evidence for a T-junction

(T (l; r)), an X-junction (X(l; r)), or no junction (N(l; r)). Based on analyzing the l

and r values for a number of prototype junctions, and following the logical functions

of Fig. 6-8, we used to following functions to divide the parameter space:

T (l; r) = R(
p
l
2 + r

2
; tr; sr) (1 �A(arg(r; l); ta; sa)) (6.8)

X(l; r) = R(
p
l
2 + r

2
; tr; sr)A(arg(r; l); ta; sa) (6.9)

N(l; r) = 1�R(
p
l
2 + r

2
; tr; sr); (6.10)

where the radial, R(x; t; s), and angular, A(�; t; s), functions are:

R(q; t; s) = 1=(1 + e
(�s(q�t))) (6.11)

A(�; t; s) =

8<
: R(�; t; s) if � < �=4

R(�=2 � �; t; s) if � > �=4
(6.12)

and tr, sr, ta, sa are parameters which determine the sharpness and thresholds of the

classi�cation transitions. Figure 6-9 illustrates this classi�cation of the l{r parameter

space.

We must include two more constraints before we classify junctions. The orienta-

tion element at which we measure l and r must itself be a strong salient path, both

in the forward direction and in the backward direction. (Without this constraint any

image contour would show evidence for X-junction-ness all along it, since orientation

elements perpendicular to the contour see strong saliency both to their left and right.)

Also, the curve on which the orientation element lies must not have high curvature,

since then the strong path it sees to the left or right could then be the continuation of

its own curve. We can apply these constraints through local calculations with preset

thresholds.
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The above method works well to identify and classify T and X junctions for simple

images. The \soft" partitioning of the l{r parameter space allows for a graceful change

in the classi�cation of T and X junctions, as illustrated in Fig. 6-10.

The junction analysis using salient contours allows us to correctly analyze junc-

tions which the local �lter method of Chapter 5 could not. Figure 6-11 shows exam-

ples. The left �gure of (a) shows dots next to a line, which caused spurious responses

in the local energy based T-junction detector. However, the dots have very low

saliency, and the salient contour based junction detector does not label them as a

junctions, as seen in (d). The right �gure of (a) shows a T-junction where the stem

of the T terminates at a gap in the bar of the T. Such a junction can occur in natural

images where contour contrasts are variable. The local energy based measure (d) did

not identify this as a T-junction. The salient contour based junction measure, which

can bridge gaps in contours, successfully identi�es this as a T-junction.

6.4.2  -Junctions

The third type of junction we want to detect is a  {junction, shown in Fig. 5-1. In the

blocks world domain it is su�cient to check that two of the contours which meet at

the junction are parallel and that two are not. We want to generalize to real images.

Suppose there is a 
at surface with straight contours marked on it, as shown

in Fig. 6-12. If we bend the surface, and view it under orthographic projection,

the contours as viewed in the image will have maximal curvature at the point of

maximum bending of the surface. Suppose the shading at the bend in the surface

causes a salient contour in the image. Then a detector which responds at salient paths

which has other salient paths of high curvature crossing it will respond maximally

at the contour caused by the normal change. That is the basis for our  junction

detector.

For every curve crossing an orientation element, we calculate its local curvature,

weighed by its saliency. We restrict that response to X-junctions by multiplying by

the local X-junction-ness. The result is a detector which responds maximally to  

junctions which may indicate normal changes.

Figure 6-13 shows the result of the three junction detectors on the test image of

Fig. 1-1. These salient contour based algorithms correctly identify all instances of all

three junction types in the image.
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It is illustrative to examine the detector outputs for Einstein portrait of Fig. 3-

1 (a). Like the results on this relatively complicated image from the energy based

method (Fig. 5-13), some of the junctions are labelled correctly and some are not.

The T-junction response of Fig. 6-14 (c) at arrow 2 correctly identi�es a T-junction

where the fold of the tie knot ends in front of the shirt. Arrow 1 in (b) and (d)

marks a spurious transparency caused by an incorrect contour continuation. As seen

in the saliencies, (b), the lapel contour incorrectly joins to a tie stripe contour. That

contour crosses the boundary of the tie, causing the X-junction response in (d).
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(a) XOR

(b) AND

(c) NOR

0 1

0 1

0 1

1

0

1

0

1

0

Figure 6-8: Intuition behind the junction classi�cation scheme of Fig. 6-9.
The (a) XOR, (b) AND, and (c) NOR functions correspond to the classi�ca-

tions for evidence for T-junctions, X-junctions, and no junction, respectively,

in Fig. 6-9.
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(c)

Figure 6-9: Classi�cation of local saliency data. The horizontal axes are
the l and r values as described in text. Plots show local evidence for (a) T-

junction, (b) X-junction, and (c) no junction. Functions were rough �ts to

saliency values at test junctions, based on the prototypes of Fig. 6-8.
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(a)

(b)

(c)

(d)

(e)

Figure 6-10: Showing system response to junctions which show a gradual

change in type from T to X. (a) Image. (b) Contour data input to cooperative

network. (c) Maximum over all orientations of modi�ed saliency. (d) and (e)
show the local evidence for occlusion and transparency, respectively. Note the

smooth transition from T-ness to X-ness.
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(a) (b)

(c) (d)

Figure 6-11: Images showing the advantages for junction detection of an ap-
proach based on salient contours. (a) Image for which the methods of Chap-

ter 5 fail. (b) Contour data input to cooperative network. (c) Maximum over

all orientations of the output of the cooperative network, the modi�ed saliency.

(d) shows the local evidence for occlusion. The T-junction detector correctly

�nds no T-ness in the left �gure but does respond to the other �gure, despite

the gap.
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(a) (b)

Figure 6-12: The intuition behind identifying  junctions with surface bends.

Consider a 
at surface marked with contours which are at least roughly
straight, (a). Suppose we bend the surface, and that that bend introduces

a salient contour from the shading, (b). Then the surface bend will cause the
projected images of the other contours to curve at the salient contour caused

by the shading. An operator which detects points where high curvature paths

cross salient contours will respond maximally at the  junctions introduced

by the surface bend.
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(a) (b) (c)

(d) (e) (f)

Figure 6-13: Local evidence results. (a) Image (Fig. 1-1) showing image

contours due to occlusion, transparency, and surface bends. (b) Contour de-

tection based on oriented energy outputs. This is the input to the saliency

calculation stage. (c) shows maximum over all orientations of the modi�ed
saliency. Based on the local con�guration of saliencies, we calculate evidence

for (d) T-junctions, (e) X-junctions, and (f)  junctions. The system responds
correctly in every case (the brightest false positive response is 1

8
of the correct

responses). The X-junction detector responds to curves crossing each other,

and thus responds also to the  junctions. The response of the  junction

detector can be used to distinguish X from  .
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2

1

(a) max. normalized
               energy

(b) max. saliency

(c) T-junctions (d) X-junctions

Figure 6-14: Response of contour-based junction detector to Einstein of

Fig. 3-1 (a). (a): Maximum over all orientations of normalized energy. (b):
Maximum over orientations of salient contour strength. Note incorrect con-

tour completion at arrow 1. (c) and (d) show local evidence for T-junctions
and X-junctions, respectively. The spurious contour at position 1 causes a

transparency response in (d). Various responses are correct; arrow 2 points
to T-junction formed at knot of tie, which correctly re
ects the tie boundary

covering the white shirt.
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6.5 Propagating Local Evidence

The detection of junctions based on salient contours also provides a simple way to

propagate local information obtained at the junction along the rest of the contour. We

have the saliencies and linking information at every point; we can pass local evidence

along the salient contours, weighed by the contour strength.

To convert the saliency values to a 0 to 1 multiplier, we pass the saliency values

through the non-linearity r(x; t; s) of Eq. (6.12), where x is the saliency value, and t

and s are parameters which we kept �xed for all images. We introduce an extinction

factor, � so that local evidence does not propagate too far.

The propagated evidence, Ei

n, at position i after n propagation iterations is:

Ei

n = max(Ei

n�1
;max(Ei

0
; Ej

n�1
�)): (6:13)

The �rst maximum operation ensures that the propagated evidence at a point never

decreases, and the second maximum ensures that it never falls below the local evi-

dence.

Applying Eq. (6.13) to each of the three types of local evidence of Fig. 6-13 gives

the results shown in Fig. 6-15. Image contours are properly labelled as contours

containing T-junctions, which may indicate occlusion (a), contours which contain X-

junctions, which may indicate transparency (b), and contours containing  junctions,

which may indicate a surface bend. Thus, even though the pixel values for the central

regions of each of the three �gures are exactly the same, propagation of the local

evidence at junctions correctly yields three di�erent interpretations for the contours

of the three regions.

Figure 6-16 shows system output on a photograph of a simple scene. One of the

two T{junctions only appears faintly in the system output, due to a mistake by the

modi�ed salient curve �nder. The other T{junction in the image is detected, and the

image contour which shows evidence for occlusion is properly labelled as such.

The contours which the system �nds in Fig. 6-15 are still at a relatively early

stage of interpretation. The T-junction contours provide evidence for occlusion, but

do not indicate which side of the contour is the far side. One must incorporate

more global information for that. The X-junction contours indicate a contour which

crosses others. Further processing based on image intensity levels [75, 3] is needed to
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(a) (b) (c)

Figure 6-15: Local evidence of Fig. 6-13 propagated spatially, correctly la-
belling image contours. (a) Contours containing T-junctions, which may indi-

cate occlusion. (b) Contours which contain X junctions, which may indicate

transparency. (c) Contours containing  junctions, which may indicate bends.

ascertain whether or not the contours represent transparency.

6.6 Discussion

6.6.1 Comparison with the Work of Parent and Zucker

The salient contour analysis of this chapter bears resemblance to the work of Parent

and Zucker [83]. Both begin with linear oriented �lters. Our method uses pairs of

�lters in quadrature, and so is not restricted to contours of a particular phase. Both

methods follow the linear �ltering with cooperative processing stages. Parent and

Zucker use relaxation labelling incorporating support for local tangency and local

curvature consistency. The structural saliency algorithm of Shaashua and Ullman

incorporates tangent and curvature consistency within the dynamic programming

algorithm, which favors long curves of low curvature. This essentially imposes a prior

statistic on the shape that curves ought to follow. Shaashua and Ullman approximate

their optimum curves by storing only the choice of each orientation element at the last

iteration, instead of the choice after every iteration. To that we added competition
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between the orientation elements. The resulting procedure can be considered a type

of relaxation labelling. We and Parent and Zucker show di�erent applications of

the work. They show useful image processing applications, while we explore the

use of these contours for image interpretation. They avoid a problem encountered

by the method of this chapter, which has strayed from the \steerable" philosophy

used throughout the rest of this thesis: artifacts from orientation quantization. They

employ a linear interpolation between pixel positions, which avoids some orientation

sampling artifacts which we discuss below. The method of Shaashua and Ullman,

and our modi�cation of it, restricts the heads and tails of orientation vectors to pixel

sample positions.

6.6.2 Orientation Quantization E�ects

A limitation of the dynamic programming approach to curve �nding is the quantiza-

tion of angle. To estimate the e�ect of this, one can compare the computed saliency

of a line at two di�erent orientations. Ideally, the saliency would be independent of

line orientation. Let us assume that the �rst orientation of the line is parallel with

one direction of orientation sampling, and that the second orientation is half-way in

between two orientation samples (see Fig. 6-17). Assuming unity local saliencies, the

�rst line, with unity coupling constants between all its links, will have a saliency

S�1
= N . The second line, however, has a coupling constant between each link, call

it k. Following the algorithm of Eq. (6.4), its saliency will be

S�2
= 1 + : : :+ k(1 + k(1 + k(1))) (6.14)

= 1 + k + k
2 + : : :+ k

N�1 (6.15)

=
1 � k

N

1 � k

; (6.16)

where the last equation is an identity for geometric sums of this form [91]. For these

neighboring orientations the coupling constant k = 0:91, which gives limN!1 S�2 =

11:1. Thus, for one orientation of the line in the image, the saliency equals the number

of iteration steps, N , while if we rotate that line slightly, the saliency can be no larger

than 11.1! This suggests limiting curves to small values of N . We used N = 6.

Even using the small value of N that we did, we observe orientation dependent

behavior. (The non-maximal suppression imposed in the orientation domain to avoid
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spurious salient contours (Sect. 6.3.1) will also contribute to this.) In the experi-

ment of Figs. 6-18 and 6-19, we processed an image and a rotated version of itself.

Ideally, the interpretation of the image would be independent of its orientation. The

normalized energy responses are very nearly the same before (Fig. 6-18 (c)) and after

(Fig. 6-18 (d)) rotation. However, the maximum of the saliencies, Fig. 6-18 (e) and

(f), are considerably di�erent. In the original image, some image contours line up with

the orientation samples, while in the rotated version, other contours do, giving rise to

the orientation dependency of contour strength. Re
ecting the di�erences in contour

strengths, the T-junction detector responses, Fig. 6-19 (c) and (d), are di�erent. For

comparison, we also show the responses of the energy-based T-junction detector of

Chapter 5 in Fig. 6-19 (e) and (f). These are nearly the same in the original and

rotated versions, re
ecting the fact that the energy derivatives are all made relative

to the measured local orientations.

6.6.3 Noise Sensitivity

One would expect the salient contour based approach to have greater robustness to

noise than the local energy based method of Chapt. 5, since it integrates and smooths

contours over a larger area. As shown in Fig. 6-20, the opposite is true. The energy

based method gives a reasonable response at a 7 dB signal to noise ratio (SNR), while

the salient contour based method only works reliable at 13 dB SNR.

This is not a fundamental result of the two classes of algorithms; the di�erence in

noise sensitivity can be traced to the di�erent methods used for energy normalization.

The energy based approach uses a wide local average of energy to normalize the

energy output. If the image is of higher contrast than the noise, the image structures

will dominate the energy landscape. The salient contour approach relied on the

cooperative processing to smooth energy variations and used a simple point non-

linearity to remove contrast e�ects. Values of noise higher than that assumed in

the energy normalization function will be treated as signal. To improve the noise

robustness of the salient contour method, it may be desirable to include a local gain

control in the energy normalization.
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6.6.4 Contours Versus Regions

An alternative to the contour based method used in this chapter would be a region

based method. Many vision problems can be approached through techniques of either

class. Region based methods have been used in segmentation and surface reconstruc-

tion [15, 106, 26].

A region based approach might be quite feasible for problems such as the inter-

pretation of Fig. 1-1. Analysis of regional image intensities could make transparency

estimates, while our contour based method would have to leave those ambiguous.

One could use the local oriented energy measures of Chapter 3 in the surface recon-

struction algorithms of Blake and Zisserman [15], or Terzopoulos [106]. In some cases

a contour based algorithm might be faster than a region based one, because of the

lower dimensionality of a contour than a region. However, our contour �nder used a

parallel computation over the entire image, and so did not exploit any advantage from

manipulating one-dimensional contours. In short, this problem is suited to an analy-

sis based on regions as well as one based on contours. (Many researchers combine the

two approaches, introducing line processes into region based schemes, or combining

the outputs of independent calculations [84, 21, 15, 106].)

6.6.5 Higher Level Processing

The contour labellings which the salient contour based system produces are tentative.

There will be false positive responses. For example, Fig. 6-18 (g) shows spurious

evidence for occlusion caused by vertical marks on the risers of the stairs. Higher

level processing is needed to con�rm tentative identi�cations made at the low level.

Higher level information will also be needed to identify junctions which cannot be

identi�ed from low level information alone.

Setting parameters is another issue which may require input from higher level pro-

cessing. There are a number of parameters related to signal strength, noise level and

spatial scale in each of the two systems we presented for junction identi�cation. While

all images in the thesis for each algorithm were made at the same parameter settings,

it was di�cult to �nd settings which worked well for every image. The best settings

for synthetic and natural images often di�er markedly. Synthetic images often have

long, straight contours, which may line up with the preferred orientation directions.

Natural scenes, in general, have neither. Estimates of local noise and signal strengths

114



can be useful to set parameters (see, for example, [20]). However, the improvements

obtainable through such techniques are limited. Higher level information about the

important image scale, signal, and noise levels may be needed to determine proper

parameter settings.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6-16: Salient-contour-based junction analysis of simple image. (a) Im-

age showing occlusion. (b) Local orientation evidence. (c) Maxima of modi�ed
saliency. (d), (e), (f) show the evidence for T, X, and  junctions, respectively.
The top occluding T{junction has only faint T-ness because the curve-�nder

erroneously shows weak evidence for a curve with high forward and backward

saliency at that point. (g) Propagation of evidence for contour containing a

T{junction correctly identi�es the occluding image contour.
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(a) (b)

Figure 6-17: Illustrating saliency artifact due to quantization in orientation.

The saliency of a straight line should be independent of its orientation. How-
ever, a line parallel with one of the orientation axes, as in (a), will have unity
coupling constant between links, while one between two orientation axes could

have a weaker coupling constant for every link. This worst case is analyzed in
the text.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6-18: Showing dependence of processing result on orientation of image

relative to quantized orientations. Input image, (a), and a rotated version of

it (b) were processed. The normalized local energies are very nearly rotated

versions of each other, as shown by the rotational invariance of the maximum
energies at each position (c) and (d). However, the outputs of the salient

contour �nders, (e) and (f), are noticeably di�erent. Contours which happen

to line up with the orientation sampling structure are strong, while contours

in between are weaker.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6-19: Orientation dependent results, continued from Fig. 6-18. Input

images (a) and (b) are repeated, for convenience. The orientation dependence
of the saliency outputs a�ects the junction analysis, as shown by the di�erent

outputs of the T-junction detectors, (c) and (d). For comparison, the outputs

of the energy based T-junction detector of Chapter 5 are shown in (e) and (f).

These T-junction measurements are substantially invariant to rotations.
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(a)

(b)

(c)

(d)

Figure 6-20: Comparison of noise sensitivity of both cue detection methods.
(a) T-junction test image, embedded in various levels of Gaussian random

noise. From left to right, the signal to noise ratios in dB for the noisy images
are: 13.3, 9.5, 7.0, 5.1 (based on signal and image variances). (b) Output

of local energy based T-junction detector of Chapter 5. This shows good

robustness up to high levels of noise. (c) Output of salient-contour based
T-junction detector of Chapter 6. Relatively low levels of noise a�ect the
result. This di�erence in results in due to the particular energy normalizations

used. (d) shows the normalized oriented energy input to the salient contour

calculation. Because the normalization is based on a point non-linearity, rather

than on a measure of local activity, noise of a su�ciently high amplitude is

treated as signal.
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Chapter 7

Conclusions

The goal of this work was to develop a system to form an initial interpretation of the

physical origin of observed image structures. The images of Fig. 1-1 show that a purely

local interpretation of image intensities cannot correctly account for their physical

origin. Di�erent scene properties, such as occlusion, transparency, or shading, can

produce identical image intensities. On the other hand, a completely global approach,

where everything is analyzed in the context of everything else, is too di�cult.

We chose to use a local analysis, but to analyze special local regions which reveal

scene structure{image junctions. \T"-junctions can indicate occlusion; \X"-junctions

can indicate transparency, and \ "-junctions can indicate surface normal changes. We

chose a bottom-up approach with no explicit restrictions on what objects we expect

to see.

Junctions form where contours meet. The junction classi�cation depends on the

relative orientation of the various contours. Therefore, to analyze image junctions we

needed to detect contours and analyze orientation.

Our �rst step was to apply linear oriented �lters. In Chapter 2 we developed

a new technique, using steerable �lters, which allows arbitrary oriented �lters to be

applied over a continuum of orientations. This is a computationally e�cient way to

apply oriented �lters. It is appealing analytically, allowing explicit formulas for the

�lter response as a function of angle, and other derived measurements. This new

technique has many applications in image processing and computer vision. Steerable

�lters have been used for image enhancement, motion analysis, orientation analysis,

shape from shading, and image representation.
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Using the steerable �lters, we analyze orientation with local energy measures, ap-

plying steerable �lters to a technique developed in [57]. We examine special problems

of orientation analysis which arise in regions of multiple orientations. Analysis of

these regions are important for motion analysis as well as static scene analysis. We

develop a simple post-�lter which increases the accuracy of the orientation analysis

in these regions. The post-�lter allows for a parsimonious use of �lters for orientation

analysis.

Having developed tools to analyze orientation at junctions, we studied contours. In

Chapter 4 we developed a detector for image contours based on local energy measures.

We studied the distribution of the phase of image contours in several images. The wide

distribution found lent support to our energy based approach for contour detection.

In Chapter 5 we developed operators which responded selectively to junctions of

particular types. These detectors were based on templates for cross-sections, relative

to the junction orientations, of outputs of local energy measures. These operators

successfully identi�ed T, X, and L junctions in synthetic and simple natural scenes.

Local energy-based measurements of junctions can be fooled by spurious signals

near contours, or contour gaps. For a more robust detector, we developed junction

detectors based on salient contours. We made use of the elegant algorithm to �nd

salient contours developed in [95]. In doing so, we strayed from the philosophy of the

steerable �lters and used quantized orientations. To better represent image contours

and junctions, we added a competition term to the salient contour algorithm. The

result was a local representation of the longer range structure of image contours. This

representation was able to bridge contour gaps, and discount spurious signals near

contours. The con�guration of local saliencies represented more global information

than the local energy measures.

We used the local con�guration of salient contours to analyze T, X, and  junctions

such as those in Fig. 1-1. The salient contours o�ered a simple way to propagate that

local junction information along image contours. We were able to label contours as

showing possible evidence for occlusion, transparency, and surface normal bend. We

showed the results of this algorithm on a variety of synthetic and natural scenes.

One can continue this work in various ways. The orientation quantization of

Chapter 6 caused the results of the algorithm to depend on orientation. A cooper-

ative contour detector which treated all orientations identically would improve the
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junction detection and evidence propagation results. One would like to develop such a

contour �nder in the spirit of the steerable �lters, allowing continuous variation of ori-

entation and position. The steerable pyramid of Section 2.7 might be an appropriate

representation for that task.

Bottom-up processing is only half the story. A top-down approach is more ro-

bust, and can compensate for noise or clutter which would sti
e a purely bottom-up

scheme. The contour identi�cations developed above are tentative, and need to be

con�rmed or disputed by higher level scene information. An important area to study

is the interaction of the bottom-up and the top-down processing. Should higher-level

expectations in
uence low-level measurements? And if so, how? We hope that the

bottom-up tools and techniques we developed here will add power and generality to

systems which integrate both top-down and bottom-up approaches.
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