
MITSUBISHI ELECTRICRESEARCHLABORATORIES
http://www.merl.com

Teaching Applied Computing without
Programming: A Case-Based Introductory

Course for General Education

JoeMarks
William Freeman

HenryLeitner

TR-2001-06 March2001

Abstract

We introducegeneral-educationstudentsto key ideasin appliedcomputingthrough
casestudiesfrom computergraphics,computeranimation,imageprocessing,com-
putervision, informationretrieval, andartificial intelligence.Eachcasestudyconsists
of two lectures:oneanintuitive expositionof relevantcomputer-scienceconcepts,and
the othera hands-onintroductionto a working systemthat embodiestheseconcepts.
Studentsusethesesystemsto performdesignandproblem-solvingtasks,therebyrein-
forcingtheabstractconceptspresented.Computerprogrammingis neitherrequirednor
taught.Thecoursehasbeenofferedfor two yearsat theHarvardUniversityExtension
School,andhasachievedhigh ratingsin studentsurveys.

In Proceedings of the ACM SIGCSE Technical Symposium on Computer Science Education,
Charlotte, North Carolina, February 2001.

This work may not be copiedor reproducedin whole or in part for any commercialpurpose.Permissionto copy in
wholeor in partwithoutpaymentof feeis grantedfor nonprofiteducationalandresearchpurposesprovidedthatall such
wholeor partialcopiesincludethefollowing: anoticethatsuchcopying is by permissionof MitsubishiElectricResearch
Laboratories,Inc.;anacknowledgmentof theauthorsandindividualcontributionsto thework; andall applicableportions
of thecopyright notice.Copying, reproduction,or republishingfor any otherpurposeshallrequirealicensewith payment
of feeto MitsubishiElectricResearchLaboratories,Inc. All rightsreserved.

Copyright c
�

MitsubishiElectricResearchLaboratories,Inc., 2001
201Broadway, Cambridge,Massachusetts02139

Teaching Applied Computing without Programming:
A Case-Based Introductory Course for General Education

Joe Marks and William Freeman
MERL — Mitsubishi Electric

Research Labs
Cambridge, MA 02139

{marks, freeman}@merl.com

Henry Leitner
Harvard University

Extension School
Cambridge, MA 02138

leitner@fas.harvard.edu

Abstract

We introduce general-education students to key ideas in
applied computing through case studies from computer
graphics, computer animation, image processing, computer
vision, information retrieval, and artificial intelligence.
Each case study consists of two lectures: one an intuitive
exposition of relevant computer-science concepts, and the
other a hands-on introduction to a working system that
embodies these concepts. Students use these systems to
perform design and problem-solving tasks, thereby
reinforcing the abstract concepts presented. Computer
programming is neither required nor taught. The course
has been offered for two years at the Harvard University
Extension School, and has achieved high ratings in student
surveys.

1 Introduction

Computer science is currently one of the most exciting and
dynamic disciplines. Yet students often perceive
introductory computer-science courses as difficult and dull,
especially those students who are motivated mainly by
intellectual curiosity. We propose two reasons why
introductory computer-science courses often fail to engage
such students. One is a focus on computer systems instead
of computing applications. The second reason is an
emphasis on computer programming. It is as if we insist on
teaching auto repair to teenagers who just want to learn
how to drive.

We have developed an alternative introductory course
that emphasizes computer applications over computer
systems, and hands-on exploration with implemented

systems over tedious programming exercises. Our course
is organized around case studies chosen from the most
exciting areas in the field of applied computer science, such
as artificial intelligence, computer graphics, computer
vision, information retrieval, and human-computer
interaction. Each application is the subject of two lectures:
the first provides an intuitive overview of the computer-
science concepts involved and the second concentrates on
specific details of the application. Each case study is tied
to a particular software system. As their assignment for
each unit, students are required to use the software systems
for design and problem-solving tasks, thereby reinforcing
the concepts presented in the first half of each case study.
Programming is not required, nor is it taught.

Other educators have attempted to make introductory
computer science more interesting by surveying selected
topics from more advanced courses. Holmes and Smith
describe a CS1 curriculum in which half of the course is
devoted to a survey of computing concepts such as text
compression, resource scheduling, searching, sorting, and
graph algorithms; the remainder of the course is devoted to
traditional programming fare [1]. Perhaps the best-known
work in this area is that of Alan Biermann, who presents a
number of the intellectual achievements in the field of
computer science in his Great Ideas in Computer Science
textbook [2]. Prof. Biermann’s viewpoint is that students
learn best by doing; they are thus asked to write relatively
simple programs, to design circuits, code assembly
language, hand-simulate a compiler, and even to work with
programs that elucidate the problem of noncomputability.
Biermann effectively takes some rather complex and
technical "great ideas" and make them comprehensible to
nonspecialists. Another related approach is due to Bell,
Witten, and Fellows [3]. They attempt to teach advanced
computer-science concepts to children by means of simple
games and activities that do not require a computer.

In contrast to these previous efforts, our focus is on
adult students; we eschew programming completely; our
advanced concepts are selected solely from the realm of
applied computing; and we present these concepts in the
context of complete on-line applications with which the

students can conduct in-depth exploration and
experimentation.

In the rest of the paper we outline each case study in
our current curriculum, and discuss our experience with
this kind of course. More detailed information can be
found on the course web site [4].

2 The Case Studies

We chose our case studies primarily to cover an adequate
subset of the key areas in applied computing and to provide
a representative sampling of specific concepts in those
areas. Table 1 contains a summary of the areas and
concepts associated with each case study.

Case Study Areas – Concepts

Ray Tracing computer graphics – geometric
modeling, light transport and reflection

computational geometry – computing
intersections, geometric searching

Animated
Particle
Systems

discrete-event system simulation –
random numbers

numerical methods – numerical
integration

Interactive
Optimization

computational complexity – algorithm
and problem complexity, the Traveling-
Salesman Problem, NP-completeness

artificial intelligence – heuristic search
and optimization

probability and statistics – empirical
analysis of algorithms

human-computer interaction – design of
cooperative user interfaces

Image
Enhancement

electronic imaging– image sensing and
representation

image processing – point operations,
image filtering, noise removal

Face
Recognition

computer vision – shape recognition,
shape tracking, motion analysis

human-computer interaction – camera-
based interfaces

Information
Retrieval on
the WWW

classical data processing – relational
databases, efficient sorting and
searching

information retrieval – vector-space
model for term sets, inverse indices,
link analysis, semantic nets,
collaborative filtering

Table 1: Summary of the case studies

Our second selection criterion was that each case study
be accessible to students who might never have used a
computer for anything other than word processing or web
browsing. The key to accessibility is the availability of
software systems that are suitable for hands-on exploration
and experimentation by novices. Also, these systems
should do something intrinsically interesting and fun. For
three of our case studies we were able to find suitable
commercial or freeware systems. For the other three, we
developed our own software.

A final criterion was that the case studies be in areas in
which we were knowledgeable beyond the elementary
level. The research careers of the two lecturers (JM and
WF) have involved computer graphics, computer vision,
image processing, human-computer interaction, artificial
intelligence, and operations research, so these are the areas
from which we primarily selected our material.

In the following subsections we describe each case
study in terms of its topic, the areas of applied computing
that it represents, the key concepts in these areas that are
used in the accompanying software systems, and a
description of those systems.

2.1 Case Study #1: Ray Tracing

Ray tracing is a conceptually simple but very powerful
technique for generating synthetic imagery [5]. Ray tracing
embodies an inverse-camera model in which rays are cast
from an eye point into a virtual scene. For each picture
element, or pixel in the image, a ray is cast into the scene.
The interactions of these rays with the geometry in the
scene determine the color of the pixel (see Figure 1).
Although computationally expensive, ray tracing can
produce synthetic images of stunning realism.

The ray-tracing case study introduces the general area
of computer graphics, and two fundamental computer-
graphics concepts: the modeling of three-dimensional
objects in terms of polygonal and curved surfaces; and the
interaction of light with these surfaces. The case study also
introduces the area of computational geometry, which
provides the algorithmic basis for much of computer
graphics. Within this area two important algorithmic
concepts are presented: the computation of intersections (in

Y

X

Z

eye

screen

incident ray

world
coordinates

scene
model

nearest
intersected

surface

refracted
ray

reflected
ray

shadow
“feeler” ray

Figure 1: Ray tracing illustrated

this case, line-surface intersections), and geometric
searching in three dimensions (in this case the search is for
the nearest surface intersected by a ray).

Primed with an understanding of these concepts,
students are ready to use a ray-tracing system to produce
their own synthetic imagery. POVRAY is a free software
package that uses ray tracing to generate 2D images from
3D scene descriptions [6]. As the assignment for this case
study, the student must produce several images by using
POVRAY’s geometric-modeling language to create a 3D
scene, to specify surface and material characteristics of
object models, and to locate and orient lights and a camera.

2.2 Case Study #2: Animated Particle Systems

In computer animation, natural phenomena like fire,
smoke, explosions, water, etc. are usually generated using
particle systems [5]. A particle system comprises
individual particles that are created, move, change color,
disappear, and spawn other particles according to simple
physical laws and user-supplied probability distributions.
In the simplest systems, the particles are drawn as points of
light on the screen for each frame of the animation. Figure
2 contains a frame from a particle-system animation
produced with the system used in our case study.

The relevant concepts for this case study come from
the areas of discrete-event system simulation (the
generation of random numbers) and numerical methods
(the use of numerical integration to simulate Newtonian
physics). We developed our own simple particle-system
software specifically for this course. In the assignment for
this case study, students modify the probability
distributions that affect the particles’ motion and
appearance to produce a broad range of animation effects.

2.3 Case Study #3: Interactive Optimization

This case study was the most difficult one to develop. We
wanted to include concepts from computational complexity
in our course, because they are at the core of all computer
science. The challenge is to do that in a way that is as
exciting and seductive as the other case studies. Our initial
attempt was a case study that required the students to
conduct an empirical investigation of various search
heuristics for cartographic label placement, an NP-hard
layout problem [7]. Although a very visual and familiar
problem, student surveys showed this case study to be the
least popular one in the first offering of the course.

Fortunately, one of the research projects underway at
that time in our laboratory involved the development of
interactive systems for human-guided search and
optimization [8]. The goal of this research is to develop
hybrid interactive systems that combine the brute-force
searching ability of the computer with a human’s visual
perception, judgment, and experience to find better
solutions to NP-hard optimization problems. One of our
systems targets the problem of vehicle routing, so we chose
that problem and our existing system as the basis for the
third case study.

The routing of delivery vehicles is one of the basic
problems in supply-chain management. Capacitated
vehicle routing with time windows (CVRTW) is one of the
basic formalizations of the vehicle-routing problem. In
CVRTW problems, trucks deliver goods from a central
warehouse to customers at fixed locations. Each customer
requires a certain quantity of goods, and specifies a time
window within which delivery of the goods must
commence. All trucks have the same capacity, and travel
at the same speed. Each delivery takes the same amount of
time, and each customer receives only one delivery. All
trucks must return to the warehouse by a fixed time. Figure
3 shows one solution to a simple CVRTW problem. The
optimization task is first to minimize the number of trucks
required to service all the customers; and second is to

Figure 2: NASA’s true mission
illustrated with a particle system

Each truck
can supply
only four
customers

= morning delivery

= early PM delivery

= late PM delivery

Figure 3: A solution to a simple CVRTW problem
that shows the warehouse, customer locations,

delivery constraints, and truck routes

minimize the total distance traveled. CVRTW is thus a
significant generalization of the Traveling Salesman
Problem, and therefore also NP-hard.

In the concepts lecture for this case study we present
elements of the classical theory of computational
complexity: algorithm and problem complexity, the
Traveling-Salesman Problem, and NP-completeness. We
also introduce the area of artificial intelligence, focusing on
the concept of heuristic search and optimization. We
briefly survey probability and statistics, and show how
simple ideas from these fields are useful in the empirical
analysis of algorithms. And finally we describe the area of
computer-human interaction, and focus specifically on
issues that relate to the design of cooperative user
interfaces. To reinforce these concepts the associated
assignment involves the use of the aforementioned
interactive system to determine the minimal sizes of truck
fleets and efficient delivery schedules for given CVRTW
problems. Students use the system’s capabilities to focus
the computer’s search on selected subspaces of the problem
space to avoid local minima and to expend the computer’s
cycles where they think they can make the most difference.
The quantitative nature of this task allows for some friendly
competition to take place!

2.4 Case Study #4: Image Enhancement

Many of the images we see in our daily lives are digitally
enhanced in some way. This case study examines many of
the common techniques used to modify or enhance images
using a computer. In class lectures, we describe simple
methods to modify the tonescale, sharpen, and de-noise
images. We use a commercially available image-
processing program, Adobe Photoshop, to study these
image-enhancement operations.

Figure 4: Image-processing example, simulating
possible image-enhancement steps for a slide scanner

The students enhance several supplied images, simulating
the image-processing steps that might take place in a
photographic slide digitizer (see Figure 4). In addition,

students modify an image to “hide” information in some
reversible way of their own design. Other students then try
to recover the original image from the obscured images
made by their classmates.

2.5 Case Study #5: Face Recognition

Computers are typically blind to the person who is using
them, but that will change soon. In the near future,
computers will recognize faces, identify people from the
pattern of their irises, and interpret a user’s movements,
gestures, and glances. The concepts lecture for this case
study reviews the state of the art in computers analyzing
human activity and recognizing people. Fundamental
visual measurements that we cover include tracking, shape
and object recognition, and motion analysis.

Figure 5: Two fairly dissimilar faces (left and
middle) and the absolute value of their difference image

(right), used in computing a similarity score

The application project is face recognition. The simplified
face-recognition algorithm we use is simple enough to
explain in one lecture, yet works surprisingly well on a
small database of 40 or so images of faces of volunteers
from the class. We also cover how to measure performance
for recognition tasks. The students use the program to
study the effect of different image-similarity metrics on
face-recognition performance. Figure 5 shows the first step
for one metric. Multiple images of the same individuals in
the database demonstrate the algorithms’ sensitivity to
lighting, facial expression, and head pose.

2.6 Case Study #6: Information Retrieval on the WWW

One way to consider the World Wide Web is as a large text
database, albeit one that is constantly changing and
haphazardly organized. One way to find useful information
on the Web is with a good search engine. In this case study
the students perform a comparative analysis of several
different search engines for a variety of information-
gathering tasks. Another way to find information on the
Web is through the use of collaborative or social filtering
to find documents (or products) that other users with
similar interests or needs found relevant. Students are also
given several tasks to perform with a “recommender”
system that use collaborative-filtering techniques.

Although classical database theory arguably has little
to do with finding information on the Web, we begin by
surveying this area and by studying some of its key
concepts: relational-database theory, and searching and

sorting algorithms. This initial exposure to standard
relational databases sets up a useful contrast when we then
introduce the area of information retrieval [9], with its
focus on freeform text data. We present the two key
concepts behind information retrieval (the vector-space
model for term sets and inverse indices) and also a
selection of more recent ideas (link analysis, the use of
semantic nets, and collaborative filtering).

3 Discussion

Each case study is presented in four hours of lecture spread
over two class meetings, one per week for twelve weeks.
Two additional hours per week of teaching-assistant office
hours bring the total number of contact hours for the
semester to around 50. There are no exams, because we
feel that exams do not fulfil a useful motivational or
educational goal for this kind of course. Instead, the
students’ assignment scores determine grades.

In the first two years of the course student grades
have been very high, because most students complete all of
the assignments successfully. We believe that most of the
assignments would be impossible to complete without a
firm grasp of the underlying ideas, so we feel confident that
most students leave the course with a good understanding
of the concepts behind each of the case studies.

Furthermore, the students themselves report positively
on their learning experience in the course and therefore rate
the course very favorably. The following student comment
typifies the general feeling of the participants near the end
of the semester: "It was thought-provoking and
inspirational … I left class every week excited about the
future of computing and amazed at the possibilities being
explored presently." Note that the Harvard University
Extension School serves a diverse student body spanning
an age range from early teens to the early nineties, with the
average being a working adult of 32 years; they are a
motivated and demanding group, with many students
commuting after work from far away. Most of our students
enroll for self-enrichment; a small percentage of the
students use it as an elective in a liberal arts degree
program.

4 Conclusion

The goal of our course is to impart a broad understanding
of the concepts essential to several substantial computer
applications in a popular-science format. We believe that
these concepts represent the intellectual core of applied
computer science, and are more relevant for students who
want to know what computers can do and how they do it,
but who do not plan on becoming computer programmers.
For us, the course has been one of the most rewarding
experiences in our teaching careers; student feedback has
been extremely positive. Although the course is currently
offered only in an adult-education context, we believe it

can be modified to serve as an alternative introductory or
survey course for college “non-majors.”

5 Acknowledgements

Special thanks to the course teaching assistants: Denny
Bromley, Emily Anderson, and Lisa Friedland. And thanks
also to Brad Andalman, Emily Anderson, Neal Lesh, Brian
Mirtich, David Ratajczak, and Kathy Ryall for software
development. Seed funding for the development of course
materials was provided by Harvard University Extension
School.

References

[1] Holmes, G. and Smith, T.C. Adding some spice to
CS1 curricula, in Proceedings of SIGCSE’97, San
Jose, California, Feb. 1997, 204-208.

[2] Biermann, A. Great Ideas in Computer Science, The
MIT Press, 1990.

[3] Computer Science Unplugged: Off-line activities and
games for all ages. http://unplugged.canterbury.ac.nz/

[4] CSCI E5: An Introduction to Applied Computer
Science, Harvard University Extension School.
http://lab.dce.harvard.edu/extension/cscie5/E52000/E5
2000.html

[5] Foley, J., van Dam, A., Feiner, S., and Hughes, J.
Computer Graphics: Principles and Practice, 2nd ed.,
Addison Wesley, 1996.

[6] The Persistence of Vision Raytracer.
http://www.povray.org/

[7] Christensen, J., Marks, J., and Shieber, S. An empirical
study of algorithms for point feature label placement,
ACM Trans. on Graphics, 14(3), July 1995, 203-232.

[8] Anderson, D., Anderson, E., Lesh, N., Marks, J.,
Mirtich, B., Ratajczak, D., and Ryall, K. Human-
guided simple search, in Proceedings of AAAI 2000,
Austin, Texas, Aug. 2000, AAAI Press, 209-216.

[9] Salton, G. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of Information
by Computer, Addison Wesley, 1989.

	cover.pdf
	Microsoft Word - e5paper.doc
	page 2
	page 3
	page 4
	page 5

