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Deviation Magnification: Revealing Departures from Ideal Geometries
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View I
(a) Input Image

(b) Our Result

Views processed independently by Deviation Magnification

View 11 (for verfication only)
(d) Our Result

(c) Input Image

Figure 1: Revealing the sagging of a house’s roof from a single image. A perfect straight line marked by p1 and p2 is automatically fitted to
the house’s roof in the input image (a). Our algorithm analyzes and amplifies the geometric deviations from straight, revealing the sagging
of the roof in (b). View Il shows a consistent result of our method (d) using another image of the same house from a different viewpoint (c).

Each viewpoint was processed completely independently.

Abstract

Structures and objects are often supposed to have idealized geome-
tries such as straight lines or circles. Although not always visible to
the naked eye, in reality, these objects deviate from their idealized
models. Our goal is to reveal and visualize such subtle geometric
deviations, which can contain useful, surprising information about
our world. Our framework, termed Deviation Magnification, takes
a still image as input, fits parametric models to objects of interest,
computes the geometric deviations, and renders an output image in
which the departures from ideal geometries are exaggerated. We
demonstrate the correctness and usefulness of our method through
quantitative evaluation on a synthetic dataset and by application to
challenging natural images.

CR Categories: 1.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Shape;

Keywords: deviation, geometry, magnification

1 Introduction

Many phenomena are characterized by an idealized geometry. For
example, in ideal conditions, a soap bubble will appear to be a
perfect circle due to surface tension, buildings will be straight and
planetary rings will form perfect elliptical orbits. In reality, how-
ever, such flawless behavior hardly exists, and even when invisible
to the naked eye, objects depart from their idealized models. In
the presence of gravity, the bubble may be slightly oval, the build-
ing may start to sag or tilt, and the rings may have slight perturba-
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tions due to interactions with nearby moons. We present Deviation
Magnification, a tool to estimate and visualize such subtle geomet-
ric deviations, given only a single image as input. The output of
our algorithm is a new image in which the deviations from ideal
are magnified. Our algorithm can be used to reveal interesting and
important information about the objects in the scene and their in-
teraction with the environment. Figure 1 shows two independently
processed images of the same house, in which our method auto-
matically reveals the sagging of the house’s roof, by estimating its
departure from a straight line.

Our approach is to first fit ideal geometric models, such as lines, cir-
cles and ellipses, to objects in the input image, and then look at the
residual from the fit, rather than the fit itself. This residual is then
processed and amplified to reveal the physical geometric departure
of the object from its idealized shape. This approach of model fit-
ting followed by processing of the residual signal is in the spirit of
recent methods for motion magnification [Wu et al. 2012; Wadhwa
et al. 2013]. These methods magnify small motions over time, re-
vealing deviations from perfect stationarity in nearly still video se-
quence. Here, however, we are interested in deviations over space
from canonical geometric forms, using only a single image. Our
algorithm serves as a microscope for form deviations and is appli-
cable regardless of the time history of the changes. For example,
we can exaggerate the sag of a roof line from only a single photo
without any prior knowledge on what it looked like when it was
built or how it changed over time. The important information is the
departure from the canonical shape.

Finding the departures from the fitted model is not trivial. They
are often very subtle (less than a pixel in some applications), and
can be confused with non-geometric sources of deviations, such as
image texture on the object. Our algorithm addresses these issues
by combining careful sub-pixel sampling, reasoning about spatial
aliasing, and image matting. Matting produces an alpha matte that
matches the object’s edge to sub-pixel accuracy. Therefore, oper-
ating on the alpha matte allows us to preserve the deviation signal
while removing texture. The deviation signal is then obtained by
estimating small changes in the alpha matte’s values, perpendicular
to the contour of the shape. The resulting framework is generic, and
is independent of the number or type of fitted shape models.
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Figure 2: Outline of Deviation Magnification: a parametric shape (e.g., a line segment) is fitted to the input image (either automatically
or with user interaction). The region near the contour of the shape is sampled and transformed into a canonical stripe representation. The
alpha matte of the stripe is then computed using [Levin et al. 2008] and then fed into the analysis step. In this step, deviation from the fitted
shape is computed: the edge profiles S(p;) in the vertical direction are sampled for each location p; along the stripe, and a model edge
profile Sy, is estimated; the 1D translation between the edge profiles S(p;) and S, is estimated to form the deviation signal. The filtered
deviation signal is then magnified by a factor of o and used to generate a deformation field. The synthesized image is rendered accordingly
and reveals the spatial deviation from the fitted shape. In this case, the periodic ripples of the sand dune ridge are revealed. (Image courtesy

of Jon Cornforth.)

In many cases, the deviation signals are invisible to the naked eye.
Thus, to verify that they are indeed factual, we conducted a com-
prehensive evaluation using synthetic data with known ground truth
as well as controlled experiments using real world data. We demon-
strate the use of Deviation Magnification on a wide range of appli-
cations in engineering, geology and astronomy. Examples include
revealing invisible tilting of a tower, nearly invisible ripple marks
on a sand dune and distortions in the rings of Saturn.

2 Related Work

Viewed very generally, some common processing algorithms can be
viewed as deviation magnification. In unsharp masking, a blurred
version of an image is used as a model and deviations from the
model are amplified to produce a sharpened image. Facial carica-
tures are another example of this kind of processing, in which the
deviations of a face image from an idealized model, the mean face,
are amplified [Blanz and Vetter 1999].

Motion magnification [Liu et al. 2005; Wadhwa et al. 2013; Wad-
hwa et al. 2014; Wu et al. 2012; Elgharib et al. 2015] uses the same
paradigm of revealing the deviations from a model. However, there
is no need to detect the model as the direction of time is readily
given. In addition, motion magnification assumes that objects are
nearly static i.e. the appearance over time is assumed to be nearly
constant. In contrast, our technique amplifies deviations from a
general spatial curve detected in a single image. The type and lo-
cation of this curve depends on the application, and the appearance
along it may change dramatically posing new challenges for our
problem.

A recent, related method was presented for revealing and estimat-
ing internal non parametric variations within an image [Dekel et al.
2015]. This method assumes that the image contains recurring pat-
terns, and reveals their deviation from perfect recurrence. This is
done by estimating an “ideal” image that has stronger repetitions
and a transformation that brings the input image closer to ideal. In
contrast, our method relies on parametric shapes within the image,
and thus can be applied for images that do not have recurring struc-
tures. Our parametric approach allows our algorithm to accurately
reveal very tiny, nearly invisible deviations, which cannot be esti-
mated by Dekel et al. [2015].

Our method relies on detecting and localizing edges, a problem for
which many techniques have been proposed (e.g. [Duda and Hart
1972; Patraucean et al. 2012; Fischler and Bolles 1981]). One class
of techniques uses the observation that edges occur at locations of
steepest intensity and are therefore well-characterized by the peak
of derivative filters of the image (e.g. [Canny 1986; Nalwa and
Binford 1986; Freeman and Adelson 1991]). More recently, several
authors have applied learning techniques to the problem of edge de-
tection to better distinguish texture from edges (e.g. [Dollar et al.
2006; Lim et al. 2013; Dollar and Zitnick 2013]). Because the de-
viations in the images we seek to process are so small, we obtained
good results adopting a flow-based method, similar to Lucas and
Kanade [1981]. Since texture variations can influence the detected
edge location, we used image matting [Levin et al. 2008] to remove
them.

3 Method

Our goal is to reveal and magnify small deviations of objects from
their idealized elementary shapes given a single input image.

3.1 Overview

There are four main steps in our method, illustrated in Figure 2. The
first step of our algorithm is to detect elementary shapes, i.e., lines,
circles, and ellipses, in the input image. This can be performed
completely automatically by applying an off-the-shelf fitting algo-
rithm (e.g., [Patrducean et al. 2012]) to detect all the elementary
shapes in the image. Alternatively, it can be performed with user
interaction as discussed in Section 3.5. The detected shapes serve
as the models from which deviations are computed.

With the estimated models in hand, we opt to perform a generic spa-
tial analysis, independent of the number and type of fitted shapes.
To this end, the local region around each shape is transformed to
a canonical image stripe (Figure 2(3)). In this representation, the
contour of the shape becomes a horizontal line and the local normal
direction is aligned with the vertical axis. To reduce the impact of
imperfections that are caused by image texture and noise, a matting
algorithm is applied on each of the canonical stripes. This step sig-
nificantly improves the signal-to-noise ratio, and allows us to deal
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with real world scenarios, as demonstrated in our experiments.

Each canonical matte is analyzed, and its edge’s deviation from a
perfectly horizontal edge is estimated. This is done by computing
1D translations between vertical slices in the matted stripe, assum-
ing these slices have the same shape along the stripe. For each
canonical matte, this processing yields a deviation signal that cor-
responds to the deviation from the associated model shape in the
original image, in the local normal direction. Depending on the ap-
plication, the deviation signals may be low-passed or bandpassed
with user-specified cutoffs, allowing us to isolate the deviation of
interest.

Lastly, the computed deviation signals are visually revealed by ren-
dering a new image in which the deviations are magnified. Specif-
ically, a 2D deformation field is generated based on the 1D com-
puted deviation signals, and is then used to warp the input image.
We next describe these steps in more detail.

3.2 Deviations from a Parametric Shape

Consider a synthetic image I(x,y), shown in Figure 3(a), which
has an edge along the x-axis as a model of a matted image stripe.
This edge appears to be perfectly horizontal, but actually has a
subtle deviation from straight (shown twenty times larger in Fig-
ure 3(b)). Our goal is to estimate this deviation signal f(x), at
every location x along the edge.

To do this, we look at vertical slices or edge profiles of the image
1, e.g. the intensity values along the vertical lines A or B in Fig-
ure 3(b). We define the edge profile at location x as

Sz (y) = I(z,y). )]

We assume that with no deviation (i.e., Vz f(z) = 0), the edge pro-
files would have been constant along the edge, i.e., Sz (y) = S(y).
The deviation f(x) causes this common edge profile to translate:

Sz(y) = Sy + f (). @)

Now, the question is how to obtain f(x) given the observations
Sx(y). First, the underlying common edge profile, S(y) is com-
puted by aggregating information from all available edge profiles.
We observe that since f(x) is small, the mean of the edge profiles
can be used to compute S(y). Assuming that the image noise is
independent at every pixel, the image I is given by

I(z,y) = S(y + f(z)) + n(z,y) 3)

where n(x, y) is the image noise. A first-order Taylor expansion of
S(y + f(x)) leads to

I(z,y) =~ S(y) + f()S(y) + n(z,y). 4

Thus, the mean over x is given by
1 1
v 2 @) = SW) +usS' W) + 5 D onlwy) G

where the (15 is the mean of f(z) over  and N, is the number of
pixels in the z direction. The new noise term is a function only of
y and has less variance than the original noise n(z,y). Because
f(x) is small, its mean py is also small, hence using the Taylor
expansion again yields:

S(y) + psS'(y) = Sy + py)- (©6)

Thus, the average edge profile approximates the common edge pro-
file up to a constant shift of py. This shift is insignificant since

(a) Input Image

(b) Ground Truth (c) Edge Profiles

(d) Our Mag. Result

Intensity

y-axis

Figure 3: Synthetic Example: (a) The input image, a horizontal
edge in the middle of the image carries a 0.1 pixel sinusoidal per-
turbation, f(z) = 0.1sin(2wwz). (b) Magnification of the ground
truth perturbation by a factor of 20. (c) Two edge profiles obtained
by sampling the intensity values in (b) along the green (A) and red
(B) vertical lines, respectively. The edge profiles are related by 1D
translation. (d), the small perturbation in the input (a) are revealed
by our method.

it only reflects a constant shift in f(x), i.e., an overall translation
of the object of interest. Moreover, for many applications, such
global translation is filtered out by band-passing the deviation sig-
nal. Therefore, for convenience, we treat this translated edge profile
as the original edge profile S(y). In practice, to be more robust to
outliers in the edge profiles, we use the median instead of the mean.

With S(y) in hand, the deviation signal f(x) is then obtained by
estimating the optimal 1D translation, in terms of least square error,
between the S(y) and each of the observed ones. In the discrete
domain, this takes the form of:

arg min Z(I(I, y) —S(y) — f(x)sl(y))Qv N

which leads to:

>, U(y) = S)S" ()
22,9 (Y)?

As can be seen from the equation, pixels for which S’(y) = 0 do

not contribute at all to the solution. Our formulation is similar to
the seminal method [Lucas et al. 1981] used for image registration.

f(z) = ®)

3.3 Canonical Stripe Representation

The region in the vicinity of each fitted shape is warped into a
canonical stripe. This representation allows us to treat any type of
fitted shape as a horizontal line. For an arbitrary geometric shape,
let {p;} be points sampled along it. The shape has a local normal
direction at every point, which we denote by 7i(p;). For each point,
the image is sampled in the positive and negative normal direction
+n(p;), using bicubic interpolation to produce the canonical stripe.
This sampling is done at a half pixel resolution to prevent spatial
aliasing (which may occur for high frequency diagonally oriented
textures). To prevent image content far from the shape from affect-
ing the deviation signal, we sample only a few pixels (3-5 pixels)
from the shape. In the resulting stripe, the edge is now a horizontal
line and the vertical axis is the local normal direction 7 (p;).

In many cases, the image may be highly textured near the shape’s
contour, which can invalidate our assumption of a constant edge
profile (Eq. 2). To address this problem, we apply the matting al-
gorithm of Levin et al. [2008] on the sampled image stripe. The
output alpha matte has the same sub-pixel edge location as the real
image, but removes variations due to texture and turns real image
stripes into ones that more closely satisfy the constant edge profile
assumption. This can be seen in Figure 2(2), where the similarity
between the matted stripe and the synthetic image shown in Fig-
ure 3 is much stronger than between the synthetic image and the
canonical stripe.
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(a) Input Image

(b) W/o Anti-aliasing  (c) W/ Anti-aliasing

Figure 4: Deviations of Saturn’s rings amplified without and with
the aliasing post-filter. Without it, there is a sinusoidal perturbation
along the rings (b), but our post-filter reveals that it is actually just
spatial aliasing in the input image (c). (Image courtesy of NASA.)

The input to the matting algorithm is the canonical stripe and an
automatically generated mask, in which pixels on one side of the
contour are marked as foreground and pixels on the other side as
background. This mask provides the algorithm with a lot of infor-
mation about where the edge is. This essential step substantially
increases the signal to noise ratio and allows us to deal with chal-
lenging, real world data as demonstrated in our experimental eval-
uation (e.g., see Figure 5(d)).

The deviation signal is computed on the estimated alpha matte (as
described in Sec. 3.2), and therefore represents the amount that the
actual shape deviates from the ideal shape in the ideal shape’s local
normal direction.

Spatial Anti-Aliasing For some images (e.g. astronomy), spa-
tial aliasing in the input image can makes its way into the canon-
ical stripe and then the deviation signal masquerading as a true
signal. We address this problem by applying a dedicated spatial
anti-aliasing post filter to remove these components. An example
is shown in Figure 4, in which we used our method to amplity the
deviations from all straight lines in a picture of Saturn’s rings. With-
out the anti-aliasing filter, there is a sinusoidal deviation on all of
the processed lines (Figure 4b). Our filter removes this artifactual
deviation (Figure 4c).

Theoretically, spatial aliasing can occur at any frequency. How-
ever, we can compute it as it depends on the edge’s orientation.
Once computed, we filter out only that single frequency. The full
derivation of our anti-aliasing filter is described in Appendix A.
Note that our anti-aliasing filter may not have a significant impact
on all images since reasonable camera prefilters often prevent alias-
ing. However, we apply it as sanity check to lines in all images.

3.4 Synthesis

Now, that we have a filtered deviation signal for every fitted or user-
chosen contour in the image, we seek to generate a new image, in
which the objects carrying the deviations are warped, but other im-
age content is not. We do this by first computing a 2D warping
field, V (z,y) = {u(z,y),v(z,y)} that is constrained to match the
amplified deviation signal at sampled locations along the contours.
The flow field at the remaining pixels is determined by minimiz-
ing an objective function that aims to propagate the field to nearby
pixels of similar color, while setting the field to zero far from the
contours.

By construction, the deviation signal is oriented in the normal di-
rection to the contour at each point. At a pixel 7 := (z,y) sampled

along the s*" contour, we set the warping field to be equal to

V(p) = afs(p)iis(p) ©

where « is an amplification factor, f5(p) is the deviation signal of
the sth contour at location p'and n4(p) is the local normal direction
of the sth contour at p. Every pixel that touches a contour will in-
troduce a hard constraint of this form. If a pixel is on two contours,
we average the constraints.

The hard constraints on the warping field imposed by Eq. 9 give
sparse information that must be propagated to the rest of the image.
‘We follow the colorization method of Levin et al. [2004], and de-
fine the following objective function for the horizontal component
u (the same objective is defined for the vertical component)

2

argmin 3 | (u(p) = D@) Y, wau(@) | . (10)

JEN (D)
where p’ and ¢ are coordinates in the image, N (p) is the eight-

pixel neighborhood around p, wzz = exp’”I(ﬁ)’“‘mz/z"2 is a
weighting function measuring the similarity of neighboring pixels
and D(p) is a weighting function that measures the distance from
the point p to the nearest point on a contour (computed using the
distance transform). The inner sum in the objective function is the
average warping field of all pixels of similar color to pin its neigh-
borhood. The term D(p) shrinks at pixels far from contours. At
pixels far from contours, D(p) is close to zero and the summand
becomes u(p)?, which encourages the warping field to go to zero.
Since the objective function is a least squares problem, it can be
minimized by solving a sparse linear system.

Once the warping field is estimated, the rendered image is then
given by inverse warping: Isey = I(x + u,y + v).

3.5 User Interaction

While it is possible to perform our processing automatically, we
give the user the ability to control which objects or contours are
analyzed, what components of the deviation signal should be am-
plified and what parts of the image should be warped.

A simple GUI is provided for users that want to pick specific objects
to amplify. Because it is tedious to specify the exact location of
a contour in the image, the user is only required to give a rough
scribble of the object. Then, an automatic fitting algorithm is used
to find the location of all elementary shapes in the object and we
use the one that is closest to what the user scribbled [Patriucean
et al. 2012]. We show an example of a user selecting a line on top
of a bookshelf in the supplementary material.

For a contour specified by points {p;}, the raw deviation signal
f(ps) can contain signals that correspond to several different types
of deviations. In addition, the DC component of the signal corre-
sponds to an overall shift of the entire object and we may want to
adjust or remove it. Noise may also be present in the deviation sig-
nal. For these reasons, we apply bandpass filtering to the raw signal
f(x). The user can specify the cutoffs of the filter depending on
the application. In the sand dune example (Figure 2), we removed
the very low and high frequencies to remove noise and the overall
curvature of the dune. And in the house example (Figure 1), we
only amplified the low frequencies, setting the DC to make the sure
the deviation signal was zero at the endpoints, so they did not get
warped. The user also specifies an amplification factor indicating
the amount by which the deviations should be magnified.

For examples in which the fitted shapes are straight lines, we allow
the user to specify a bounding box around the contour of interest
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(a) Input Image (b) User Interaction

(c) Signal without matting

(d) Signal with matting
s Deviation Signal

)

(e) Amplified x7 no matting) (f) Amplified x7 (with matting)
Figure 5: Revealing the bending of a weighted steel barbell and
a comparison of our method with and without matting. An image
stripe is taken from the input image (a) and the deviation signal is
overlayed on the image stripe without matting (c) and with it (d).
The deviations in the weightlifter’s barbell are amplified without
matting (e) and with matting (f). (Image courtesy of Jay Smidt.)

(see Figure 5(b)) to ensure that everything within the bounding box
gets warped according to the deviation signal. The diagonal of the
bounding box is projected onto the fitted line. In the direction par-
allel to the line, the deviation signal is extrapolated to the ends of
the box using quadratic extrapolation of the points close to the end.
For all other points in the bounding box, we modify the hard con-
straints of the above objective function. Specifically, for each point
P in the bounding box, we find the nearest point on the contour ¢’
and set the warping field at p'to be the same hard constraint as §.
This ensures that all objects within the bounding box get warped in
the same way.

4 Results

The results were generated using non-optimized MATLAB code
on a machine with a quad-core processor with 16 GB of RAM. Our
processing times depend on the number of shapes processed and the
image’s resolution. It took twenty seconds to produce our slowest
result, in which 180 lines were processed in a 960 x 540px image.

In some examples, we corrected for lens distortion to prevent it
from being interpreted as deviations from straight lines. This is
done using the commercial software DxO Optics Pro 10 [DxO ],
which automatically infers the lens type from the image’s metadata,
and then undoes the distortion using this information.

We present our results on real images, and perform a qualitative and
quantitative evaluation on both synthetic and real data.

Deviation Magnification in the World We applied our algorithm
on natural images, most of which were taken from the Web. These
images are of real world objects, which have highly textured edges
making them challenging to process.

In Figure 1, we reveal the sagging of a house’s roof by amplifying
the deviations from a straight line fitted to the upper part of the
roof. To validate our results, we processed two different images of
the house in which the roof is at different locations of the image
(Figure 1(a,c)). As can be seen in Figure 1(b,d), the roof’s sagging
remains consistent across the different views. Revealing this subtle
sagging of a building’s roof is a useful indication of when it needs
to be repaired. Because the house’s roof spans such a large part of
the image, the effect of lens distortion may not be negligible. To
avoid this problem, we used DxO Optics Pro 10 to correct for lens
distortion.

In Figure 2, we reveal the periodic ripple pattern along the side of
a sand dune by amplifying its deviations from a straight line by ten
times. Here, even the intensity variations along the line show the
deviations. The raw signal was bandpassed in order to visualize
only the ripple marks and not the overall curvature of the dune.
Knowing what these imperceptible ripple marks look like may have
applications in geology [Nichols 2009].

In Figure 5, we reveal the bending in a steel barbell due to the
weights placed on either end by amplifying the low frequencies
of the deviation from a straight line. In addition to specifying the
line segment to be analyzed, the user also specifies a region of in-
terest, marked in green in Figure 5(b), specifying the part of the
image to be warped. In this example, the necessity of matting in
our method is demonstrated. Without matting, the color difference
between the darker and lighter parts of the barbell causes a shift in
the raw deviation signal (Figure 5(c)), which causes the barbell to
appear wavy after amplification (Figure 5(e)). With matting, we are
able to recover the overall curvature of the barbell and visualize it
(Figure 5(d,f)).

Civil engineers have reported that Elizabeth Tower (Big Ben) is
leaning at an angle of 0.3 degrees from vertical [Grossman 2012].
Our algorithm reveals this visually in two independently processed
images of the tower from different viewpoints (Figure 6). Here too,
the consistency across views supports our results. In this example,
instead of directly using the edges of the tower as the fitted geome-
try, we use vertical lines going through the vanishing point. We find
them by using a technique from Hartley and Zisserman [2003]. In
order to amplify only the tilting of the tower (which corresponds to
low frequencies in the deviation signal), while ignoring deviations
due to bricks on the tower (high frequencies), we lowpass the de-
viation signal. The filtered signal is then extrapolated to the entire
user-specified bounding box to warp the entire tower. The size of
the deviations for lines on the tower are on average 2-3x larger than
the deviations of lines on other buildings indicating that we are ac-
tually detecting the tilt of the tower. Visualizing the subtle tilt of
buildings may give civil engineers a new tool for structural moni-
toring. Lens distortion is corrected as a preprocessing step (see the
supplementary video for our results w/o lens distortion).

Deviation Magnification in Videos In the following examples,
we tested our method on several video sequences. Specifically, our
method was applied to each of the frames independently, without
using any temporal information. The fitted shapes in each frame
were detected automatically. The temporal coherence of the ampli-
fied structures, processed independently for each frame, validates
our results. For some of the examples, we were also able to compare
our results to motion magnification applied to stabilized versions of
the sequences [Wadhwa et al. 2013]. Our results and comparisons
on the entire sequences are included in the supplementary material.

The video ball is a high speed video (13,000 FPS) of a lacrosse ball
hitting a black table in front of a black background. The trajectory
of the ball is illustrated in Figure 7, and two of the frames that
correspond to the red and green locations of the ball are shown in
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Figure 6: Elizabeth Tower (Big Ben) becomes the leaning tower of London. We process the two images of the tower independently. Parallel
vertical lines in the input image are used to compute the vanishing point of the input images (only crops of which are shown here). In (b), the
user specifies the lines that go through the vanishing point (marked in red) and a region of interest (marked in semi-transparent yellow). Our
method computes the deviation from the fitted line, and synthesizes a new image, in which the deviation is exaggerated.
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Figure 7: Revealing the distortion and vibrations of a ball when it
hits a table. (a-b) two frames from the input video that correspond
to the red and green locations of the ball in (e), respectively. Our
method computes the deviation of the ball from a perfect circle in
each of the frames independently. (c-d), the rendering of (a) and
(b), respectively, where the deviation is x10 larger. (e), the raw
deviation signal, counterclockwise along the ball from 0 to .

Figure 7(a,b), respectively. We applied our framework to reveal
the distortion in the shape of the ball, i.e., deviation from a perfect
circle, when it hits the ground and travels upward from impact.

Figure 7(c,d) shows our rendering of the two input frames where the
deviation is ten times larger. Figure 7(f) shows the raw deviation
signal for the moment of impact (green location) as a function of
the angle. Because the raw deviation signal appears to have most of
its signal in a low frequency sinusoid, we apply filtering to isolate it
to remove noise. Our results on the entire sequence not only reveals
the deformation of the ball at the moment it hits the ground, but also
reveals the ball’s post-impact vibrations. For comparison, we apply
motion magnification with and without stabilizing the input video.
Without stabilization, motion magnification fails because the ball’s
displacement from frame to frame is too large. With stabilization,
the results are more reasonable, but the moment of impact is not as
pronounced. This is because the motion signal has a temporal dis-
continuity when the ball hits the surface that is not handled well by
motion magnification. In contrast, deviation magnification handles

\ \

(b) Magnified x20

(a) Input

Figure 8: Revealing the vibrations of a bubble from a single frame.
An input frame of two bubbles (a) was used to produce our mag-
nification result (b) in which the low frequency deviations of each
bubble were amplified. The shapes were automatically detected. No
temporal information was used.

this discontinuity, as each frame is processed independently.

Bubbles is a high speed video (2,000 FPS) of soap bubbles moving
to the right shortly after their generation (Figure 8(a-b)). Surface
tension causes the bubbles to take a spherical shape. However, vi-
brations of the bubble and gravity can cause the bubble’s shape to
subtly change. In this sequence, we automatically detect the best fit
circles for the two largest bubbles and amplify the deviations cor-
responding to low frequencies independently in each frame. This
allows us see both the changing dynamics of the bubble and a con-
sistent change in the bubble’s appearance that may be due to gravity.

For comparison, we applied motion magnification to a stabilized
version of the sequence. We used the fitted circles to align the
bubbles in time and then applied motion magnification (similar to
[Elgharib et al. 2015]). The magnified bubbles were then embed-
ded back in the input video at their original positions using linear
blending at the edges. This careful processing can also reveals the
changing shape of the bubbles, but it does not show the deviations
from circular that do not change in time, such as the effect of gravity
on the bubble.

Figure 9(b) presents three frames from a 72 frame timelapse (cap-
tured by the Cassini orbiter), showing Saturn’s moon Prometheus
interacting with Saturn’s F ring. The frames were aligned by NASA
such that the vertical axis is the distance from Saturn, which causes
the rings to appear as horizontal lines. For every frame in the video,
we amplified the deviations from the best-fit straight lines (marked
in red in Figure 9(b)). This reveals a nearly invisible, temporally
consistent ripple (Figure 9(c)). These kind of ripples are known
to occur when moons of Saturn approach its rings [Sutton and Kus-
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Fitted Lines

(a) Saturn’s F Ring

(c) Deviations Magnified x8

e —— _—

Frame 25

(b) Input

(d) Stabilization + Motions Magnified x8

Figure 9: Deviation Magnification independently applied to each frame of a timelapse of Saturn’s moon interacting with its ring. Three frames
from the timelapse (b) are processed using our new deviation magnification method (c) and using stabilization plus motion magnification (d).
The lines used to do the stabilization and the fitting are shown in (b). The green arrows denotes the most salient feature after amplification.
The full sequence is in the supplementary material. (Images courtesy of NASA.)

martsev 2013]. Applying our technique on such images may be use-
ful for astronomers studying these complex interactions, and even
might reveal new undiscovered gravitational influences in the rings.

We also applied motion magnification to a stabilized version of the
sequence. As can be seen in Figure 9(d), even with stabilization,
magnifying changes over time produces a lot of unwanted artifacts
due to temporal changes in the scene unrelated to the main ring.
It is the spatial deviations from the model shape that are primarily
interesting in this example rather than the changes in time.

In candle, we use our method to reveal heated air generated by a
candle flame from a single image (Figure 10(b-c)). To do so, we
estimate the deviations from every straight line, automatically fit-
ted to the background. As can be seen in Figure 10(b-c), the twenty
times amplified image, and the warping field reveal the flow of the
hot air. Visualizing such flow has applications in many fields, such
as aeronautical engineering and ballistics. Other methods of recov-
ering such flow such as background-oriented schlieren [Hargather
and Settles 2010] and refractive wiggles [Xue et al. 2014], ana-
lyze changes over time. While these methods are restricted to a
static camera, our method is applied to every frame of the video
independently and is able to reveal the heated air even when the
camera freely moves. In addition, the bumps in the background are
revealed as well. Note that spatially stabilizing such a sequence
is prone to errors because the background is one-dimensional, the
camera’s motions are complex and the candle and background are
at different depths.

A similar result is shown in Figure 10(d-e) where a column of ris-
ing smoke appears to be a straight line. By amplifying the devia-
tions from straight, we reveal sinusoidal instabilities that occur in
the smoke’s flow as it transitions from laminar to turbulent [Tritton
1988]. Here too, the processing is done on each frame indepen-
dently.

Interactive Demo We have produced an interactive demo that
can process a 200x150 pixel video at 5 frames per second (Fig-
ure 11). The user roughly specifies the location of the line at the
first frame, which is then automatically snapped to a contour. Our

Candle

Smoke

(c) Warping Field

(a) Input (b) Mag. x20 (d) Input (e) Mag. x3
Figure 10: Revealing the distortions in a background of straight
lines caused by heated air and sinusoidal instabilities of smoke flow
in a single image. In candle, the deviation from every straight line is
amplified twenty times. Both the amplified result and the overlayed
vertical warping field are shown. In smoke, a single line is fitted to

the input and the result is magnified three times.

demo is interactive because we only process a single shape. A video
of this demo to show the buckling of a bookshelf under weight when
the deviations from a straight line are amplified is provided in the
supplementary materials.

4.1 Synthetic Evaluation

To evaluate the accuracy of our method in estimating the deviation
signal, we tested it on a set of 7500 synthetic images. The images
had known subtle geometric deviations, so that we could compare
our result with the ground truth. The images were 200200 pixels
with a single edge (see Figure 12(a)). We varied the exact deviation,
the orientation, the sharpness of the edge, the noise level and the
texture on either side of the edge (Figure 12(a-b)). Specifically,
ten different cubic spline functions with a maximum magnitude of
1 pixel were used as the deviation shapes. Ten orientations were
sampled uniformly from 0°to 45°with an increment of 5°. The
edge profile was set to be a sigmoid function sigmf(d,x) = 1/(1 +
exp (—dz)) with 6 = {0.5,2,5}).

We first performed an evaluation on images without texture. We
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Figure 11: A frame from our interactive demo showing a bookshelf
buckling under weight when deviations from a straight line are am-

plified.
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Figure 12: Quantitative evaluation on synthetic data: (a), an ex-
ample untextured image and its amplified version. (b), the data
includes images with lines in different orientations, sharpness lev-
els, noise levels and textures. (c), the error as a function of additive
Gaussian noise. (d), the mean absolute error in the deviation sig-
nal computed by our method, as a function of the orientation, for
different sharpness levels. (e), the error w/ and w/o matting for half-
textured images (shown below). (f), the error w/ and w/o matting
for fully-textured images.
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also tested the effect of sensor noise by adding white Gaussian noise
with standard deviation o = {0.02,0.05,0.1}. In Figure 12(c), we
show the error of our algorithm, which grows only linearly with the
noise-level even when it is 25 intensity levels (o = 0.1).

In Figure 12(d), we present the mean absolute error between the
estimated deviation signal and the ground truth as a function of the
line orientation, for the three edge sharpness levels. The average
error is very small at 0.03px, 3% of the maximum magnitude of the
ground truth deviation signal (1 px). As expected, smoother edge
profiles lead to smaller error due to less aliasing.

To quantify the effect of texture and the ability of matting to remove
it, we tested our method on textured synthetic images. We used six
different textures to perform experiments in which only one side of

Position Marker

Wooden Board Caliper Measurement

324mm ——7—7-m—"—"—"—"—"""""""— 104.0px

31.5mm — 101.0px

—— Caliper —— Ours
30.6mm T R R R R 98.1px

Space (z)
(b) Deviation from Straight line

Figure 13: Deviation from straight lines, controlled experiment.
(a) The experimental setup, which is also the image used as an input
to our framework. The measurements from digital calipers between
the two wooden boards at each position marker and the deviation
signal from our method are shown (b).

the edge was textured (Figure 12(e)). We also performed experi-
ments in which both sides were textured using all 15 combinations
of the six textures (Figure 12(f)). Figure 12(e-f) show the mean ab-
solute error with and without matting for one-sided, half-textured
images and two-sided, fully-textured images respectively. Without
matting, the average error of our algorithm is about 0.3px for the
half-textured examples and 1.5px for the fully-textured examples.
With matting, the average errors shrink by ten times and are only
0.03px and 0.1px respectively. The highest errors are on a synthetic
image, in which both sides of the image are of similar color. See
the supplementary material for more details.

4.2 Controlled Experiments

We validated the accuracy of our method on real data by conducting
two controlled experiments. In the first experiment, we physically
measured the deviations from a straight line of a flexible wooden
board. The board was affixed on top of two rods on a table using
C-clamps (Figure 13). The base of the table served as the reference
straight line. The distance from the bottom of the table to the top
of the board was measured across a 29 cm stretch of it, in 2 cm
increments using digital calipers (the markers in Figure 13(a)). The
deviation signal from a straight line of the image of the wooden
board is very similar to the caliper measurements (Figure 13(b)).

In the second experiment, we affixed a stick onto a table and
covered it with a sheet, with a pattern of ellipses on it (see Fig-
ure 14(a)). The stick caused the sheet to slightly deform, which
subtly changed the shape of some of the ellipses. To reveal the
deformation, all the ellipses in the input image were automatically
detected, and our method was applied to magnify the deviations of
each ellipse from its fitted shape. A bandpass filter was applied to
the deviation signal to remove overall translation due to slight errors
in fitting and to smooth out noise. As can be seen in Figure 14(d)),
only ellipses on or near the stick deform significantly, which reveals
the stick’s unobserved location.

5 Discussion and Limitations

We have shown results on lines, circles and ellipses. However, ex-
cept for the geometry fitting stage, our algorithm can generalize to
arbitrary shapes. If a user can specify the location of a contour in an
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image, our algorithm can be applied to it. For higher-order shapes
such as splines, it can be unclear what should be a deviation and
what should be part of the fitted model.

While we are able to reveal a wide variety of phenomena with our
method, there are circumstances in which our algorithm may not
perform well. If the colors on both sides of the shape’s contour
are similar, we may not be able to compute its sub-pixel location.
This is an inherent limitation in matting and edge localization. In
some cases, changes in appearance along the contour may look like
geometric deviations (e.g. a shadow on the object that is the color
of the background). In this case, the deviation signal may have a
few outliers in it, but otherwise be reliable.

Our method may also not be able to distinguish artifacts caused by
a camera’s rolling shutter from a true geometric deviation in the
world. If the camera or object of interest is moving, the camera’s
rolling shutter could cause an artifactual deviation present in the
image, but not in the world. Our method would pick this up and “re-
veal” it. Bad imaging conditions such as low-light or fast-moving
objects could cause a noisy image with motion blur, which would
be difficult for our system to handle.

6 Conclusions

We have presented an algorithm, Deviation Magnification, to exag-
gerate geometric imperfections in a single image. The algorithm
involves three steps: model-fitting, deviation analysis, and visual
exaggeration. Since the deviations from the geometric model may
be very small, care is taken to account for pixel sampling, and image
texture, each of which can otherwise overwhelm the small signal we
seek to reveal.

Our method successfully reveals sagging, bending, stretching and
flowing that would otherwise be hidden or barely visible in the in-
put images. We validated the technique using both synthetically
generated and ground-truth physical measurement and we believe
that our method can be useful in many domains such as construction
engineering and astronomy.

Our videos, results and supplementary material are available on
the project webpage: http://people.csail.mit.edu/
nwadhwa/deviation-magnification/.
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Appendix A: Derivation of Anti-aliasing Filter

We describe in more detail our anti-aliasing post-filtering step. To
determine which frequencies correspond to aliasing, we perform
the following frequency analysis on a continuous image of a straight
line.

Let I(x,y) be a continuous image of a step edge of orientation 6
(Figure 15(a)). If the edge profiles along the formed line L are con-
stant, the 2D Fourier transform of the image F'(w,wy) is a straight
line of orientation @ + 7 /2 in the frequency domain (Figure 15(b)).
When the continuous scene radiance is sampled, a periodicity is in-
duced in F(wg,wy). That is, the Fourier transform of the discrete
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Figure 14: Deviation from ellipses, controlled experiment. A sheet
with ellipses on it is draped over a table with a stick on it (a-b).
The deviation from every ellipse is automatically fitted (c) and then
amplified by seven times (d) revealing the unobserved location of
the stick.

image Ip(z,y) is equal to

FlIp(@,y)= > > Flw.—nfs,w,—mf) (D

n=—00 Mm=—00

where f, is the spatial sampling rate of the camera. This periodicity
creates replicas in the Fourier transform that may alias into spatial
frequencies along the direction of the edge (Fig. 15(d)). Our goal is
to derive the specific frequencies at which these replicas occur.

Since the deviation signal is computed for the line L, we are only
interested in aliasing that occurs along it. Thus, we derive the 1D
Fourier transform of the intensities on the discrete line Lp via the
sampled image’s Fourier transform F(Ip(z,y)). Since F(wa,wy)
is non-zero only along the line perpendicular to L, the discrete
Fourier transform F(Ip(x,y)) contains replicas of this line cen-
tered at n(fs,0) +m(0, fs) for integer n and m (from Eq. 11). Us-
ing the slice-projection theorem, the 1D Fourier transform of Lp is
given by the projection of F(Ip(z,y)), i,e, the image’s 2D Fourier
transform, onto a line with orientation 6 that passes through the ori-
gin. This means that the replica’s project all of their energy onto a
single point on L p at location

nfs cos(0) + mfssin(0), (12)

which gives us the value of the aliasing frequencies along the image
slices. The first and usually most dominant such frequency occurs
when exactly one of n or m is equal to one and has value

fs min(| cos(8)], | sin(0)]). (13)

The exact strength and importance of each aliasing frequency de-
pends on the edge profile. Since most real images are taken with
cameras with optical anti-aliasing prefilters, they have softer edges.
We found it sufficient to only remove the lowest aliasing frequency
(Eq. 13) to mitigate the effects of aliasing. To handle small de-
viations in orientation, we remove a range of frequencies near the
aliasing frequency (Eq. 13).
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Figure 15: Causes of spatial aliasing and how to find the alias-
ing frequency.‘ (a), a continuous edge and its discretization (c);
(b,d), the Fourier transforms of (a,c) respectively. (d), replicas in
the Fourier transform cause spatial aliasing along the line L.
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