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Outline

 How | got excited about computer vision
 Computer vision applications

 Computer vision techniques and problems:

— High-level vision: combinatorial problems

— Low-level vision: underdetermined problems

— Miscellaneous problems
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The Taiyuan University of Technology Computer Center staff, and me
(1987)
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The Taiyuan University of Technology Computer Center staff, and me
(1987)
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Me and my wife, riding from the Foreigners’
Cafeteria
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Me in my office at the Computer Center
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Years ago, | read this book (re-issued by MIT Press in 2010), and got very
excited about computer vision.

VISION

David Marr

FOREWORD BY
Shimon Ullman

Tomaso Poggio
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Goal of computer vision

Marr: “To tell what is where by looking”.

Want to:
— Estimate the shapes and properties of things.
— Recognize objects
— Find and recognize people
— Find road lanes and other cars
— Help a robot walk, navigate, or fly.
— Inspect for manufacturing
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Some particular goals of computer vision

 Wave a camera around, get a 3-d model out.
* Capture body pose of actor dancing.

* Detect and recognize faces.

* Recognize objects.

* Track people or objects

 Enhance images
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Companies and applications

* Cognex

e Poseidon

 Mobileye

* Eyetoy

e |dentix

* Google

* Microsoft

* Face recognition in cameras
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Aquatic Safety

0‘éJ‘J’n The Drowning Problem 4

Drowning Facts & Lifeguarding| Stages of a
pproblem  |yStatistics |ychallenges |ydrowning

ome According to the Centers for Disease Control, 9 people drown per day in the U.S
For every person who drowns, four times as many people nearly drown Many of these
ncidents happen in pools staffed with certified professional lifeguards

THE LIFEGUARDS THIRD €Y€

f you've been to a pool recently, you've witnessed firsthand
the challenges that lifeguards face in monitoring actmity
within 2 pool. Not only is it warm, but there are usually lots of
0 3 swimmers, L_:Iare from the sun in some cases, and other
distractions  The toughest part of a lifeguard’s job is maintaining
constant vigilance, and no human being can see everything al
the time. But it only takes a second for someone to get into
trouble and start to drown. Contrary to what most people think,

i)
drowning victims don't yell or wave their amnms to alert someone
that they are in trouble. They are in a state of shock, and are
0 punt often silent

t's vital that lifequards reach a drowning victim before it's too
ate, and every second counts To prevent death or lifelong
njury, the resuscitation of drowning victims must be initiated as
quickly as possible — ideally within 30 seconds

The solution isn't just more lifeguards or better
training. It's a better means of surveillance and detection.
It's Poseidon. Poseidon helps lifeguards monitor what is
happening In the pool, maintaining vigilance, and alerting them in
seconds to a swammer in trouble. Poseidon does not rescue
drowning vicims - lifeguards do - but it can help them more
quickly inttiate a rescue and save a life
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From The Times
September 1, 2005

Saved by a computer lifeguard

Drowning girl is spotted on bottom of pool by new high-tech system that watches
over swimmers Watch the rescue

By Russell Jenkins

,'/ RECOMMED

AYOUNG girl has been saved from drowning by an extraordinary computer
system that keeps an eye on everybody in a swimming pool.

The girl was pulled unconscious from 12ft of water at the deep
end of a public pool in Bangor, North Wales, when underwater
cameras spotted that she was not moving and alerted a
lifeguard. The lifeguard could not see the girl in the crowded
pool but was able to respond to the alert within seconds.

It is the first time in Britain that the Poseidon surveillance
system, manufactured by a French company, has helped
lifeguards to save a swimmer from drowning. The campaign
group Swimsafekids said last night that the rescue proved that
the system could save many more lives if they were installed
compulsorily.

The state-of-the-art system has been credited with saving three
swimmers in France. Last year it helped to save a middle-aged
German man who had a heart attack. So far, eight pools in
Britain have installed the system.

The girl, from Rochdale, Greater Manchester, was on a camping
holiday run by a charitable trust near Bangor. Along with her
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Microsoft Kinect, 2010
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Facelt® ARGUS Facelt” ARGUS

Conhguration

Facelt® ARGUS
S0 B - ALARM Features and Benefits
integrates into any size CCTV system
Iy

and easily expands as cameras are
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Central database administration

'rrn:'.plu- ease of data shar ng & d

management,

(S e 1) . e I N -
N gy e P ey e e AW Ovarcomes human inability to
ST v W) e e e e > -
T L B e ER N LN recognize large numbers of unfamiliar
5 e e L) M LN e

> > PEI, 674 taces and distraction in control room
. e - e D L

environments,

Visual and audible alert signals
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recognition system that detects and identifies a high confidence match iz detected.

humans as they pass through & camera’s field of

viev. Facelt ARGUS maximizes the value of CCTV by  Adjustable threshold for confidence
incre@asing deterrenca, increasing activa surveillance score maximizes correct alarms or
functionality, increasing investigative power and minimizes the occurrence of false
draztically diminizhing or eliminating the challenges alarms depanding on security

that exist vhen relying solely on operators to conduct surveillance requirements,
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NN The Computer Vision Industry -
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The Computer Vision Industry
David Lowe |

This web page gives a listing of companics that develop computer vision products, Computer vision (also often refemred to as "machine vision” or
"automated imaging”) is the automated extraction of information from images. This differs from image processing, in which an image is processed
1o produce another image. This page covers oaly products based oa computer or machine vision, and it does mot cover image processing or any of
the many supplicrs of sensors or other equipment to the industry.

Companses are categonized under their principal application area, and then listed alphabetically. Companies are listed only if they have web pages
giving information about their products. Please let me know of any links that are missing.

Automobile driver assistance

Iteris (Santa Ana, California). Lane departure and collision wamning systems for trucks and cars. Used in over 100,000
vehicles (2009). Also creates traffic monitoring systems.

MobilEye (Jerusalem, Israel). Vision systems that warn automobile drivers of danger, provide adaptive cruise control,
and give driver assistance.
Digital Photography

Cloudburst Research (Vancouver, Canada). Develops fully automated image stitching for the iPhone platform (author
of this list is a founder of the company).

Kolor (Challes les caux, France). Develops the Autopano Pro software for automated panorama stitching of digital
images. Also provides high-dynamic-range imaging by combining multiple exposures.

Eye and Head Tracking

Smart Eye (Goteborg, Sweden). Systems to track eye and gaze position. Applications include detection of drowsiness or
inattention in drivers.
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Canesta (Sunnyvale, California). Time-of-flight range sensors and software for gesture recognition. Acquired by
Microsoft in 2010.

GestureTek (Toronto, Canada). Tracks human gestures for playing grames or interacting with computers.

PrimeSense (Tel-Aviv, Isracl). Real-time projected infrared depth sensor and software for gesture recognition.
Developed the sensing system in Microsoft's Xbox Kinect.

Reactrix (Redwood City, California). Interactive advertising for projected displays that tracks human gestures.

Sony EyeToy uses computer vision to track the hand and body motions of players to control the Sony Playstation. Sales
were over 10 million units by 2008. (Wikipedia)

General purpose vision systems

Cognex (Natick, Massachusetts) is one of the largest machine vision companies (700 employees, 2009). Develops
systems for inspection and localization tasks, people counting, and many other areas. (Hoover's)

Evolution Robotics (Pasadena, California). Vision systems for object recognition and navigation. Applications include
mobile robotics and grocery retail. Develops integrated vision and navigation solutions for household robots.

Matrox Imaging (Dorval, Quebec, Canada). Software and hardware for machine vision applications.

National Instruments (Austin, Texas). Vision software and systems used for many applications, including inspection,
biomedical, and security.

Neptec (Ottawa, Canada). Laser-based 3D vision systems for use on the space shuttles and other applications.

Newton Research Labs (Renton, Washington). Vision systems for high-speed tracking and mobile robots.

__Paint Grev Research (Vanconver Canada) Real-time steren vision svstems snherical vision svstems and imagine
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KLA-Tencor (San Jose, California). Systems for inspection and process control in semiconductor manufacturing.

Orbotech (Yavne, Israel). Automated inspection systems for printed circuit boards and flat panel displays. (Hoover's)

Industrial automation and inspection: Food and agriculture

Montrose Technologies (Ottawa, Canada). Vision systems for the baked goods industry. Systems monitor bake color,
shape, and size of bread, cookies, tortillas, etc.

Ellips (Eindhoven, The Netherlands). Vision systems for inspecting and grading fruits and vegetables.

Industrial automation and inspection: Printing and textiles

Advanced Vision Technology (Hod Hasharon, Israel). Systems to inspect output from high-speed printing presses.
Elbit Vision Systems Ltd. (Yogneam, Israel). Vision systems for textile inspection and other applications.
Mnemonics (Mt. Laurel, New Jersey). Vision systems for print quality inspection and other applications.

Xiris Automation (Burlington, Ontario, Canada). Inspection for the printing and packaging industries.

Industrial automation and inspection: Other

Adept (Pleasanton, California). Industrial robots with vision for part placement and inspection.
Avalon Vision Solutions (Lithia Springs, Georgia). Vision systems for the plastics industry.
Basler (Ahrensburg, Germany). Inspection systems for optical media, sealants, displays, and other industries.

Do
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Object Recogntion for Mobile Devices

Kooaba (Zurich, Switzerland). Visual search for smartphones, photo management, and other applications.

SnapTell (Palo Alto, California). Image recognition and product search for camera phones. Owned by Amazon A9.

People tracking
Brickstream (Atlanta, GA). Tracking people within stores for sales, marketing, and security.

Reveal (Auckland, New Zealand). Systems for counting and tracking pedestrians using overhead cameras.

VideoMining (State College, PA). Tracking people in stores to improve marketing and service.

Safety monitoring

MG International (Boulogne, France). The Poseidon System monitors swimming pools to warn of accidents and
drowning victims.

Security and Biometrics

Aimetis (Waterloo, Ontario, Canada). Systems for intelligent video surveillance.
Aurora (Northampton, UK). Systems for biometric face recognition.
AuthenTec (Melbourne, Florida). Fingerprint recognition systems with a novel sensor.

Cernium (Reston, Virginia). Systems for behavior recognition in real-time video surveillance.

Niaital Parcana (Roadwnnd City Califarnia) Finoemrint rocaonition euctome

Done
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Three-dimensional modeling

Creative Dimension Software (Guildford, UK). Creates 3D models from a set of images. Objects are imaged on a
calibration mat.

Eos Systems (Vancouver, Canada). PhotoModeler software allows creation of texture-mapped 3-D models from a small
number of photographs. Uses some manual user input.

Eyetronics (Leuven, Belgium). Produces a 3-D scanner for the human body using structured light.

InSpeck (Quebec City, Canada). Uses projected light to create a full 3-D textured model of the human face or body in
sub-second times.

Traffic and road management

Image Sensing Systems (St. Paul, Minnesota). Created the Autoscope system that uses roadside video cameras for
real-time traffic management. Over 100,000 cameras are in use.

Yotta (Leamington Spa, UK). Imaging and scanning solutions for road network surveying.

Web Applications

Face.com (Tel Aviv, Isracl). Image retrieval based on face recognition.
Incogna (Ottawa, Canada). Develops a system for image search on the web. Uses GPUs for increased performance.
LTU Technologies (Paris, France). Image retrieval based on content.

Photometria (San Diego, California). Virtual makeover website, TAAZ com uses computer vision methods to allow
users to try on makeup, hair styles, sunglasses, and jewelery.
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Some particular goals of computer vision
(status report)

 Wave a camera around, get a 3-d model out (almost)

e Capture body pose of actor dancing. Using multiple cameras (pretty
well), using a single camera (not yet)

e Detect and recognize faces. (frontal, yes)
* Recognize objects. (working on it, lots of progress)
* Track people or objects (over short times)

 Enhance images (great image enlargements by 4x)
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Outline

 Computer vision techniques and problems:

— High-level vision: combinatorial complexity

— Low-level vision: underdetermined problems

— Miscellaneous problems
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Outline

 Computer vision techniques and problems:

— High-level vision: combinatorial complexity
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What makes computer vision hard?
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What makes computer vision hard?

 variability.
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What makes computer vision hard?

* variability.
R
- | FER

Mike Burton,_http://www.psy.gla.ac.uk/~mike/averages.html

27
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intra-class variation

Slide from: Li Fei-Fei, Rob Fergus and Antonio Torralba, short course on object
recognition, http://people.csail.mit.edu/torralba/shortCourseRLOC/
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Object recognition issues

— Generative /
discriminative / hybrid

Slide from: Li Fei-Fei, Rob Fergus and Antonio Torralba, short course on object
recognition, http://people.csail.mit.edu/torralba/shortCourseRLOC/
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Object recognition issues

— Generative /
discriminative / hybrid

— Appearance only or
location and appearance

Slide from: Li Fei-Fei, Rob Fergus and Antonio Torralba, short course on object
recognition, http://people.csail.mit.edu/torralba/shortCourseRLOC/
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Object recognition issues

— Generative /
discriminative / hybrid

— Appearance only or
location and appearance

— lnvariances
* View point
* |llumination
e Occlusion
e Scale
e Deformation
e Clutter

Slide from: .Li EglgFei, Rob Fergus and Antonio Torralba, short course o
recognition, http://people.csail.mit.edu/torralba/shortCourseRLOC/
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Let’s go back in time, to the mid-1980’s

LostANar:
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What everyone looked like back then
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Features

* Points

but also,
* Lines
* Conics
* Other fitted curves
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Objects

“blocks world” — — — [
A toy world in which to ' ‘ e - Kxample D
study image
interpretation. All we
have to do is to convert | ‘ ‘ l
real world images to their
blocks world equivalents e b b e e
and we’re all set. :
— e Example }
Yvan Leclerc and Martin
Fischler, an optimization- O O E ;
based approach to the
interpretation of single line R L . P |
drawings as 3-d wire frames.
4,'1. , B Oinnl  fon mhlch & pm : i

—_——
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Computer vision research results, 1986

=i :
e e | H < ig !"g

'-.00
i35

Overlaid et

st
Huttenlocher and Ullman, Object recognition using alignment, ICCV, 1986

i
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Computer vision research results, 1992

Edge points fitted with lines or conics

Input image

6 years later:
Recognizing planar
objects using invariants.

Objects that have
| been recognized
| and verified.

From Rothwell et al, Efficient model library access by projectively invariant indexing functions, CVPR 1992. 37
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Back to the present...
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What has allowed us to make progress?

* SIFT features

e Discriminative classifiers
* Bayesian methods

e Large databases
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What has allowed us to make progress?

e SIFT features
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CVPR 2003 Tutorial

Recognition and Matching
Based on Local Invariant
Features

David Lowe
Computer Science Department

University of British Columbia

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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CVPR 2003 Tutorial

Recognition and Matching
Based on Local Invariant
Features

David Lowe
Computer Science Department

University of British Columbia

http://www.cs.ubc.ca/~lowe/papers/ijcvO4.pdf 9,000 citations!
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Invariant Local Features

* Image content is transformed into local feature
coordinates that are invariant to translation,
rotation, scale, and other imaging parameters

SIFT Features
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B (Hand(2)A
hand under two
different light-
ing conditions
(the pixel inten-
sities vary great-
ly). (3) and (4)
Orientation
maps of those
images are
generally more
robust to light-
ing changes
than are the
pixel intensities.

NS
AN
™\
\\}
(3)

Freeman et al, 1998 http://people.csail.mit.edu/billf/papers/cgal.pdf
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SIFT vector formation

* Computed on rotated and scaled version of window
according to computed orientation & scale

— resample a 16x16 version of the window

* Based on gradients weighted by a Gaussian of variance
half the window (for smooth falloff)

B

N

.-

= A
—l

Image gradients
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SIFT vector formation

* 4x4 array of gradient orientation histograms
— not really histogram, weighted by magnitude
* 8 orientations x 4x4 array = 128 dimensions

* Motivation: some sensitivity to spatial layout, but not

too much.
K

Image gradients Keypoint descriptor
showing only 2x2 here but is 4x4

7

N

!

= A
—l

X
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Feature stability to noise

* Match features after random change in image scale &
orientation, with differing levels of image noise

* Find nearest neighbor in database of 30,000 features

100

Correctly matched (%)

: Nearest descriptor - =]
0 l 1 i i
0® ® 4% 6% 8% 10%

:

! ! |

' i i
' ] )
' | ) )
- — ) e o e -
60 I 4 4 . .
1 1
1 )

i i i
1 1
] '
40 D S A s S P i S S
i \ 1
' '
i

Keypoint location ———

Location & orientation -—x—

Image noise
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Feature stability to affine change

 Match features after random change in image scale &
orientation, with 2% image noise, and affine distortion

* Find nearest neighbor in database of 30,000 features

100

80 | : by :
;\3
® 60}
Q
©
&
>
S 40
o
8 Keypoint location

Location & orientation
20 Nearest descriptor
0 1 1
0 10 20 30 40 50

Viewpoint angle (degrees)
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Distinctiveness of features

* Vary size of database of features, with 30 degree affine

change, 2% image noise

* Measure % correct for single nearest neighbor match

100

80

60 |

40

Correctly matched (%)

20

Keypoint location & orientation
Correct nearest descriptor

1000

10000

Number of keypoints in database (log scale)
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Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown i the middle. The results of recognition are shown
on the right. A parallelogram i1s drawn around cach recognized object showing the boundaries of the
original traming image under the ath ne transformation solved for during recognition. Smaller squares

indicate the keypoints that were used for recognition.
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Figure 130 This example shows location recogmtion within a complex scene. The traming images for
locations are shown at the upper left and the 640x3 15 pixel test image taken from a different viewpoint
15 on the upper night. The recogmized regions are shown on the lower image, with kevpomnts shown
as squares and an outer parallelogram showing the boundaries of the tramning images under the afhi ne
transtorm used for recognition.
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Building a Panorama

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003
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Building a Panorama
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M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003
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These feature point detectors and descriptors
are the most important recent advance in
computer vision and graphics.

* Feature points are used also for:
— Image alignment (homography, fundamental matrix)
— 3D reconstruction
— Motion tracking
— Object recognition
— Indexing and database retrieval
— Robot navigation
— ... other
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More uses for SIFT features

SIFT features have also been applied to
(categorical) object recognition
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Extracting Words

e Find interest points using
shape adapted (white) and
maximally stable (yellow)
regions

e Map ellipses to a circle

e Compute SIFT descriptor
over circle
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Visual words

* Vector quantize SIFT descriptors to a
vocabulary of 2 or 3 thousand “visual words”.

* Heuristic design of descriptors makes these
words somewhat invariant to:
— Lighting

— 2-d Orientation

— 3-d Viewpoint
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Object recognition using visual words

h _;‘:'['1‘.?;@ Find words

Form histograms l

. Documents
Compare with 2
object class ] = B
database g
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Now this starts to look like a discrete
algorithms problem

m feature words in test image region, n
possible matching features in a training
database for each of k possible object classes.
The feature word collections will have
different sizes, and matching will be noisy.

Find the most probable object class.
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My poll of the top researchers in computer vision
(pictured here: participants in the BIRS Workshop on Computer
Vision and the Internet)
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“How do you think computer science can
best help computer vision?”
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“How do you think computer science can
best help computer vision?”

Modal response:
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“How do you think computer science can
best help computer vision?”

Modal response:

“Fast, approximate nearest neighbor search
in high dimensions.”
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Nearest neighbor search in high dimensions

“Nearest neighbor search, but taking into account our particular data.
or, tell us what questions we should be asking about our data in order
to do nearest neighbor search well.”

“Parallelism--where can we exploit it?
kd tree high d search. Does LSH work as advertised? in practice not
as well.”

“Nearest neighbors in high-dimensions. category recognition.

for instance recognition, nn for individual features works fine. but
for category recognition, many times the local features are not, by
themselves, a close match, due to within-class variations.”
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FAST APPROXIMATE NEAREST NEIGHBORS
WITH AUTOMATIC ALGORITHM CONFIGURATION

Marius Muja, David G. Lowe
Computer Science Department, University of British Columbia, Vancouver, B.C., Canada
mariusm@cs.ubc.ca, lowe@cs.ubc.ca

International Conference on Computer Vision Theory and
Applications (VISAPP), Lisbon, Portugal (Feb 2009)

61
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Comparison of different algorithms

103 ............... las s = oen onses=s R L Jo oo vo s v v uvisiv s
| —o— k—-means tree — sift 100K
ol o rand. kd-trees — sift 100K
W S .| —=— ANN - sift 100K
ane SO .| —o— LSH - sift 100K

Speedup over linear search

50 60 70 80 90 100
Correct neighbors (%)

62
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Additional structure present in NN
problems for computer vision

m feature words in test image region, n possible matching features, in each of k possible
object classes. The feature word collections will have different sizes, and matching will be

noisy.

How can we quickly identify the most probable object categories? How handle feature
variations in a principled way? How take feature positions into account efficiently?

\/\/

T

optlmal partial
matching

X ={X1y000sXm]}

http://www.cs.utexas.edu/~grauman/research/projects/pmk/pmk_projectpage.htm
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Another NN search problem, with
structure: non-local means denoising

Image and movie denoising by nonlocal means

Antoni Buades Bartomeu Coll Jean-Michel Morel

Abstract

Neighborhood filters are image and movie filters which reduce the noise by averaging
similar pixels. The object of the paper is to present a unified theory of these filters and
reliable criteria to compare them to other classes of filters. First a CCD noise model
will be presented justifying this class of algorithm. A classification of neighborhood fil-
ters is proposed, including classical image and movie denoising methods and a new one,
the nonlocal-means (NL-means). In order to compare denoising methods three principles

International Journal of Computer Vision (IJCV) 76
(2008) 123—-139
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Non-local means denoising algorithm

International Journal of Computer Vision (IJCV) 76 (2008) 123—-139
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An approx nearest-neighbor algo. that takes
image spatial structure into account

* The complexity of exhaustive KNN search is O(NHM2log(K))
for each frome (N: number of pixels, H: temporal window size,
M: spatial window size, K: the number of nearest neighbors).

* A solution: randomized search [Barnes et al. Siggraph '09]

* The complexity is O(NHKlog(K))<<O(NHM2log(K)) (typically
M=40, K=7)
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An approx nearest-neighbor algo. that takes
image spatial structure into account

* The complexity of exhaustive KNN search is O(NHM2log(K))

for each frome (N: number of pixels, H: temporal window size,
M: spatial window size, K: the number of nearest neighbors).
* A solution: randomized search [Barnes et al. Siggraph '09]

................

* The complexity is O(NHKlog(K))<<O(NHM2log(K)) (typically
M=40, K=7)
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An approx nearest-neighbor algo. that takes
image spatial structure into account

* The complexity of exhaustive KNN search is O(NHM2log(K))
for each frome (N: number of pixels, H: temporal window size,
M: spatial window size, K: the number of nearest neighbors).

* A solution: randomized search [Barnes et al. Siggraph '09]

* The complexity is O(NHKlog(K))<<O(NHM2log(K)) (typically

M=40, K=7) This “patch match” algorithm is used in Photoshop’s wildly successful
“content aware delete’” feature in release CS5in 2010. Demo...
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Problem:
Nearest neighbor search in high dimensions.

Applications:
Non-parametric texture synthesis and super-resolution. Image
filling-in. Object recognition. Scene recognition.

References:

Fast approximate nearest neighbors with automatic algorithm configuration, Muja and Lowe, VISAPP
2009, http://www.cs.ubc.ca/~lowe/papers/09muja.pdf

PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing

ACM Transactions on Graphics (Proc. SIGGRAPH), August 2009

Connelly Barnes, Eli Shechtman, Adam Finkelstein,

Dan B Goldman, http://www.cs.princeton.edu/gfx/pubs/Barnes 2009 PAR/patchmatch.pdf
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Another commonly expressed need:
help in scaling up algorithms

Many vision problems lead to integer programs, linear
programs, quadratic programs, and semi-definite programs
for large amounts of high-dimensional data.

The standard solvers don’t work and we need special
purpose solvers that exploit the sparsity or structure of the
problem, or develop online versions of the algorithms.

For multi-class categorization, want to recognize 1000’s of
object categories.

The categories live in taxonomies, and we want to exploit
that structure.

The unlabeled training set can be huge.

Seek to generalize from the few labeled training examples.
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Problem:
Scale up integer, linear, quadratic, semi-definite programs, exploiting
sparsity or other structural characteristics.

Applications:

Vision problems with large-scale training sets.

References:

Pushmeet Kohli, Lubor Ladicky, Philip Torr
Robust Higher Order Potentials for Enforcing Label Consistency.
In: IJCV 2009.
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Outline

 Computer vision techniques and problems:

— Low-level vision: underdetermined problems
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Priors on images

Noise removed, using simple prior Noise removed, assuming
http:/ /www.cns.nyu.edu/pub/lcv/rajashekar08a.pdf more complex prior model
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Removing camera shake

Original

Monday, January 24, 2011



Removing camera shake

Original
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Close-up

Original
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Close-up
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Close-up
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Image formation process

-
g 1[5
. . Blur
™= i
- - kernel
Blurry image Sharp image
N y, \
Y Y
Input to algorithm Desired output
Convolution

operator
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Multiple possible solutions

Blurry image
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Multiple possible solutions

Sharp image Blur kernel

Blurry image
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Multiple possible solutions

Sharp image Blur kernel

Blurry image
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Multiple possible solutions

Sharp image Blur kernel

Blurry image
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Multiple possible solutions

Sharp image Blur kernel

Blurry image
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Is each of the images that
follow sharp or blurred?
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Natural image statistics

Characteristic distribution with heavy tails

Histogram of image gradients

UGrad'ient:
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Blury images have different
statistics

‘Gradient
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Parametric distribution

== Sharp

Parametric
model

‘Gradient
Use parametric model of sharp image statistics
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Three sources of information

1. Reconstruction constraint:
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Three sources of information

\

~
_ | .
! .
J . = Estimated
Estimated sharp image Input blurry image

blur kernel/
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Three sources of information

. — Estimated
Estimated sharp image

\ blur kernel/

2. Image prior:

Input blurry image

Distribution
of gradients
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Three sources of information

E\stimated sharp imag blur kernel/ Input blurry image
2. Image prior: 3. Blur prior:

Positive
Distribution &
of gradients Sparse
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Bayesian estimate of latent image, X,
and blur kernel, b.

y - observed blurry image
X - unobserved sharp image

b - blur kernel

p(z,bly) o p(y|z, b)p(z)p(b)
_— / S

Likelihood Latent image prior Blur prior

/ ’ \ Sparg\e and
Zi(:z:,i*b—yi) -

e a2 e—AZZ |f(271)| e 0

i - image patch index
f — derivative filter

Assumption: all pixels independent of one another
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Blur kernel
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Matlab’s deconvblind
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Close-up of garland

Original . .
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Problem:
Statistical characterization of images.

Applications:
Low-level vision: noise removal, super-resolution, filling-in, texture
synthesis.

References:

U Rajashekar and E P Simoncelli, Multiscale denoising of photographic images, in The Essential Guide to Image
Processing,pages 241--261. Academic Press, Jul 2009. http://www.cns.nyu.edu/pub/lcv/rajashekar08a.pdf

R. Fergus, B. Singh, A. Hertzmann, S. Roweis, and W. T. Freeman, Removing camera shake from a single image,
SIGGRAPH 2006. http://people.csail.mit.edu/billf/papers/deblur_fergus.pdf

Stefan Roth and Michael J. Black: Fields of Experts. International Journal of Computer Vision (lJCV), 82(2):205-229,
April 2009. http://www.gris.informatik.tu-darmstadt.de/~sroth/pubs/foe-ijcv.pdf

Y. Weiss and W. T. Freeman, What makes a good model of natural images?, IEEE Computer Vision and Pattern
Recognition (CVPR) 2007. http://people.csail.mit.edu/billf/papers/foe-final.pdf
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IEEE International Conference on Computer Vision, Corfu, Greece, September 1999

Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776, U.S.A.
{efros,leungt} @cs.berkeley.edu

X
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Algorithm

— Pick size of block and size of overlap

— Synthesize blocks in raster order

— Search input texture for block that satisfies overlap
constraints (above and left)
* Easy to optimize using NN search [Liang et.al., ’01]

— Paste new block into resulting texture

e use dynamic programming to compute minimal error
boundary cut
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Problem:
How to construct and manage a non-parametric signal prior? How
select the exemplars to use, how quickly find nearest neighbor

matches?

Applications:
Low-level vision: noise removal, super-resolution, filling-in, texture
synthesis.

References:

W. T. Freeman, E. C. Pasztor, O. T. Carmichael Learning Low-Level Vision International
Journal of Computer Vision, 40(1), pp. 25-47, 2000. http://www.merl.com/reports/docs/

TR2000-05.pdf

Alexei A. Efros and Thomas K. Leung, Texture Synthesis by Non-parametric Sampling,
IEEE International Conference on Computer Vision (ICCV'99), Corfu, Greece, September

1999, http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.pdf
Monday, January 24, 2011



http://www.merl.com/reports/docs/TR2000-05.pdf
http://www.merl.com/reports/docs/TR2000-05.pdf
http://www.merl.com/reports/docs/TR2000-05.pdf
http://www.merl.com/reports/docs/TR2000-05.pdf
http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.pdf
http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.pdf

Special case of an image prior: MRF

P(x,y) =1 H\‘P(x,-,x,-) ﬂclT(x,-,y,-)

/ —
label label-label Image-label
image compatibility compatibility
function function
neighboring local
label nodes observations
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Some methods of approximate inference in
MRF’s

* loopy belief propagation

* graph-cuts (min-cut/max-flow)
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MRF/CRF wishes

1. We'd like efficient algorithms for minimizing
non-submodular functions, and which give
bounds on the quality of the solution.
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Input image
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Segmentation using MRF with Segmentation using MRF with
pairwise potentials higher-order potentials

Building

Grass

99
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MRF/CRF wishes

2.There is real benefit to handling higher-order
cliques. Need better ways to solve MRF’s with
such cliques, and provide performance bounds.

3.We often work with one of two kinds of
constraints: (a) structure constraints, like
planarity or treewidth and (b) language
constraints, like submodularity or convexity. It
would be useful to be able to combine the two.
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Image Segmentation with A Bounding Box Prior

Victor Lempitsky, Pushmeet Kohli, Carsten Rother, Toby Sharp
Microsoft Research Cambridge

ICCV 2009

without the prior with the prior

Figure 1. Our tightness prior. The segmentation on the left com-
puted with graph cut is consistent with the low level image cues,
yet inconsistent with the user input (in yellow) being too loose for
this bounding box. By minimizing the same graph cut energy un-
der a set of constraints, our method computes the segmentation
that fits the bounding box in a sufficiently tight way, obtaining a
better result (right).

101
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Other constraints

* Topological constraints are often relevant to
images, want to perform discrete optimization
under such constraints.

 For example: specify that all states with some
label within some neighborhood should be
connected. Or that a user-specified founding
box should somewhere touch a member of
some label set. Lack efficient ways to solve
that.
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Problem:

Inference in Markov Random Fields. Want to handle higher order
cligue potentials, high-dimensional state variables, and real-valued
state variables, language, structural, and topological constraints.

Applications:
Low-level vision: noise removal, super-resolution, filling-in, texture
synthesis.

References:

Pushmeet Kohli, Lubor Ladicky, Philip Torr
Robust Higher Order Potentials for Enforcing Label Consistency.
In: International Journal of Computer Vision, 2009. http://research.microsoft.com/en-us/

um/people/pkohli/papers/klt 1JCV09.pdf
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Outline

 Computer vision techniques and problems:

— Miscellaneous problems
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Compressed sensing

y=Wax+n
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Compressed sensing

* Current sparsity assumptions are unrealistic for
natural images.

* |sthere a relaxed set of sparsity assumptions,
which images meet, which would be useful for
compressed sensing?

* Are there useful applications of compressed
sensing in the domain of natural images?
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Problem:

Is there a relaxed set of sparsity assumptions, met by natural
images, useful for compressed sensing?

Applications:
Potential photographic applications.

References:

Y. Weiss, H. Sung-Chang and W. T. Freeman
Learning Compressed Sensing
Allerton Conference, 2008
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Large, noisy datasets

* Relative importance of vision system components:
— (1) datasets, (2) features, (3) algorithms

 Need progress handling large, noisy datasets.

— we assume training and test distributions are the same;
they rarely are. Under what circumstances can you break
the assumption that the two distributions are the same?

— What is the effect on algorithms when the IID assumption
doesn’t hold?

— huge datasets make online learning important.
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Problem:
Algorithms for large, inaccurately labeled datasets.

Applications:

Most modern algorithms use such datasets.

References:

Spectral Hashing

Y. Weiss, A. Torralba, R. Fergus.
Advances in Neural Information Processing Systems, 2008
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Shai Avidan
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Blind vision

Algorithm 4. Secure Classifier

Input: Alice has input test pattern x € F'X

Input: Bob has a strong classifier of the form H(x) = szgn(z
Output: Alice has the result H(x) and nothing else

Output: Bob learns nothing about the test pattern x

n=1 hn (X))

N

n=1

1. Bob generates a set of N random numbers: s,,...,8y, such that s =
2. For each n =1,..., N, Alice and Bob conduct the following sub-steps:

371

(a) Ahce and Bob obtain private shares a and b, respectively, of the dot product
x” yn using the secure-dot-product protocol.

(b) Alice and Bob use the secure Millionaire protocol to determine which number
is larger: a or ©,, —b. Instead of returning .A or B the secure Millionaire protocol
should return either o, + s, or 8. + s». Alice stores the result in cy.

3. Alice and Bob use the secure Millionaire protocol to determine which number is
larger: Z: Cii OF Z ; Sn. If Alice has a larger number then x is positively
classified, otherw1se X is negatively classified.
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Problem:
Develop secure multi-party techniques for vision algorithms.

Applications:

Secure, distributed image analysis.

References:

S. Avidan and M. Butman
Blind Vision

Paper abstract:

Alice would like to detect faces in a collection of sensitive
surveillance images she own. Bob has a face detection
algorithm that he is willing to let Alice use, for a fee, as long as
she learns nothing about his detector. Alice is willing to use
Bob” s detector provided that he will learn nothing about her
images, not even the result of the face detection operation.
Blind vision is about applying secure multi-party techniques to
vision algorithms so that Bob will learn nothing about the
images he operates on, not even the result of his own
operation and Alice will learn nothing about the detector. The
proliferation of surveillance cameras raises privacy concerns
that can be addressed by secure multi-party techniques and
their adaptation to vision algorithms.

European Conference on Computer Vision (ECCV), Graz, Austria, 2006.
http://www.merl.com/reports/docs/TR2006-006.pdf
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Continuous to discrete representations

(a) MAP Estimate (b) MMSE Estimate

Figure 7. Comparison of MAP and MMSE estimates on a different MRF formulation. The MAP estimate
chooses the most likely discrete disparity level for each point, resulting in a depth-map with stair-
stepping effects. Using the MMSE estimate assigns sub-pixel disparities, resulting in a smooth depth

map.
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Problem:

A theory for how to optimally quantize and manipulate probabilities
over a continuous domain.

Applications:

Probabilistic shape estimation.
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Deva
Ramanan
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Evaluate easily over a powerset of all
segmentations.

Deva Ramanan: wants a fast and efficient way to search over all
possible segmentations of an image, scoring each one against some
model.

g E 1] ¢
"4
£

al

Figure 1. Problem summary. Given a set of input images (first column), we wish to discover object categories and infer their spatial extent
(e.g. cars and buildings: final two columns). We compute multiple segmentations per image (a subset is depicted in the second through
fifth columns; all of the segmentations for the first row are shown in Figure 4). The task is to sift the good segments from the bad ones for
each discovered object category. Here, the segments chosen by our method are shown in green (buildings) and yellow (cars).

http://www.di.ens.fr/~russell/papers/Russell06.pdf
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Problem:

Evaluate some segmentation-dependent function over (some
approximation to) all possible segmentations. Note: different than
bottom-up segmentation, which | would not recommend as a
research project.

Applications:

Image understanding.

References:

Deva’s home page: http://www.ics.uci.edu/~dramanan/

Using Multiple Segmentations to Discover Objects and their Extent in Image Collections,
Bryan Russell, Alexei A. Efros, Josef Sivic, Bill Freeman, Andrew Zisserman

in CVPR 2006, http://people.csail.mit.edu/brussell/research/proj/mult_seg discovery/
index.html
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Efros and Hoiem comments

Another representational issue relates to noisy evi-
dence versus the lack of evidence. Presently, we usually
treat those in the same way, but we might want to dis-
tinguish between there being a 10% similarity of some-
thing to a dog, versus a 10% probability that it’s a dog,
1ie, to have a different description for weak relationship
between things, and uncertainty about the relationship
between things [10, 23]. It would be nice to allow for
multiple different relationships between nodes—to have
graphs with multi-colored edges [10].
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Really, we'd like another breakthrough...

Algorithms for inference and classification,

— support vector machines

— boosting

— belief propagation

— graph cuts

have each led to much progress and creativity

within the field. We're ready for the next
algorithm...
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David Lowe

tlc.howstuffworks.com

need better features. an artist can draw then end of an
elephant's trunk, and you know immediately what it is. but our
features don't capture that similarity at all.

learning of features from images. what is a natural encoding of images?
as a warning for what approach not to take: don't bother learning
translation invariance, or rotation invariance. so a little bit of

supervision is ok.
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Most references are in citation list
of SODA manuscript

Where computer vision needs help from computer science *

William T Freeman®

January, 2011

Abstract

This paper describes areas and problems where computer
vision can use help from the discrete algorithms community.

1 Introduction

Computer vision is a good target for the discrete algo-
rithms of computer science. While we are far from being
able to interpret images reliably using a computer, it is
clear that there will be many benefits when we do reach

eras use that capability to control exposure and focus
settings. In the controlled conditions of a factory, com-
puters routinely detect defects in manufactured parts
and labels. For example, most manufactured diapers are
visually inspected by computer [34]. Computers read li-
cense plates and digitized documents, monitor traffic,
and track traffic lanes from cars in highways.

But if you look more closely, even those successes

reveal whorv much more progress is needed. Face
R U — IS [N DU Y o D FR N LS R B -
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No more “if only” papers

End-to-end empirical orientation.
There is a certain overhead in coming up to speed on the filters
and representations.

Need dataset validation.
The competitive conferences have 20-25% acceptance rate. Other

conferences have little impact. The competitive conferences:
CVPR, ICCV, ECCV, NIPS.

Thus: best to collaborate with a computer vision researcher. We
know that you can help us, and our doors are open.
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A computer graphics application of nearest-neighbor
finding in high dimensions

Kaneva, Sivic, Torralba, Avidan, and Freeman, Infinite Images, Proceedings of IEEE, 2010.
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A computer graphics application of nearest-neighbor
finding in high dimensions

Kaneva, Sivic, Torralba, Avidan, and Freeman, Infinite Images, Proceedings of IEEE, 2010.
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The image database

*We have collected ~6 million images from Flickr
based on keyword and group searches

— typical image size is 500x375 pixels
— 720GB of disk space (Jpeg compressed)
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Original image

Image representation

GIST
[Oliva and Torralba’01]

W
M. il
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\ Color layout
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Obtaining semantically coherent themes

We further break-up the collection into themes of semantically
coherent scenes:

Skyline

Landscap

Train SVM-based classifiers from 1-2k training images
[Oliva and Torralba, 2001]
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Starting from a single image,

Basic camera motions

Images to simulate a camera motion:

Forward motion

ForwardiRolon

Camera rotation

find a sequence of

Camera pan

Monday, January 24, 2011




Scene matching with camera view
transformations: Translation

e

b 1'. :.;—0 .- —

1. Input image
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Scene matching with camera view
transformations: Translation

1. Input image

2. Move camera
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Scene matching with camera view
transformations: Translation

1. Input image

2. Move camera

3. Find a match to fill
the missing pixels

Best match translation
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Scene matching with camera view
transformations: Translation

1. Input image

Best match translation

4. Locally align images

2. Move camera

3. Find a match to fill
the missing pixels

Best match translation
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Scene matching with camera view
transformations: Translation

1. Input image

g5t match transiation

4. Locally align images

5. Find a seam

2. Move camera

3. Find a match to fill
the missing pixels

Best match translation
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Scene matching with camera view
transformations: Translation

1. Input image

4. Locally align images

5. Find a seam

2. Move camera 6. Blend in the gradient domain

3. Find a match to fill
the missing pixels

Best match translation
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Scene matching with camera view
transformations: Camera rotation

1. Rotate camera
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Scene matching with camera view
transformations: Camera rotation

Input image

1. Rotate camera

Camera
rotation

2. View from the
virtual camera
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Scene matching with camera view
transformations: Camera rotation

Input image

A R

1. Rotate camera

Camera
rotation

2. View from the
virtual camera

3. Find a match to fill-in
the missing pixels
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Scene matching with camera view
transformations: Camera rotation

1. Rotate camera

Camera
rotation 4. Stitched rotation

2. View from the
virtual camera

3. Find a match to fill-in
the missing pixels

Best match rotatiof
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Scene matching with camera view
transformations: Camera rotation

Input image

1. Rotate camera

S | rotation

2. View from the
virtual camera

3. Find a match to fill-in
the missing pixels

Best match rotatiof

5. Display on a cylinder

Monday, January 24, 2011




More “infinite” images — camera translation
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Image taxi
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Image taxi
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