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Abstract

We show that it is possible to use data com-
pression on independently obtained hypothe-
ses from various tasks to algorithmically pro-
vide guarantees that the tasks are sufficiently
related to benefit from multitask learning.
We give uniform bounds in terms of the em-
pirical average error for the true average error
of the n hypotheses provided by determinis-
tic learning algorithms drawing independent
samples from a set of n unknown computable
task distributions over finite sets.

1. Introduction

It has been observed that, given a selection of n dis-
tinct learning problems, it is possible in some cases
to solve the problems more effectively, in the sense
of using fewer training samples per task to achieve a
given level of generalization performance, by combin-
ing the data sets and solving the problems together.
This technique is known as multitask learning. To see
why this is plausible, consider the following example
from Caruana (Caruana, 1997):

Suppose we are trying to infer from examples the
rules for four functions, f1, f2, f3, f4 : {0, 1}8 → {0, 1}
where the functions are actually given by the rules
f1(

−→
b ) = b1∨

⊕6
i=2 bi, f2(

−→
b ) = ¬b1∨

⊕6
i=2 bi, f3(

−→
b ) =

b1∧
⊕6

i=2 bi, f4(
−→
b ) = ¬b1∧

⊕6
i=2 bi Caruana observes

that the tasks are related in a variety of ways: they are
all defined on the same domain, they all ignore b7 and
b8, each one uses the same (complicated) subfeature
g(
−→
b ) =

⊕6
i=2 bi, and only one member of each of the

pairs {(f1, f2), (f3, f4)} actually depends on the value
of g. Caruana investigates this problem and many oth-
ers in the setting of neural nets trained using back-
propagation; he shows empirically that if the tasks
are “related,” then training a single neural net with
a common hidden layer and multiple outputs achieves
better performance as the number of tasks increases.
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Perhaps more interestingly, he shows that if tasks are
grouped with an unrelated random task, performance
degrades, leading us to believe that this phenomenon
is tied to the “relatedness” of the tasks. He conducts
an empirical investigation into what could be meant
by “relatedness,” and lists a variety of ways that the
multiple tasks can help. Some efficient heuristic mea-
sures of relatedness have been developed for neural
nets, by Thrun and O’Sullivan (Thrun & O’Sullivan,
1996) and Silver and Mercer (Silver & Mercer, 1998).
These measures are based largely on the Euclidean dis-
tance between the weight vectors of the trained nets
and do not generalize to other learning algorithms.

Baxter (Baxter, 2000) began investigating the prob-
lem from a generalized, theoretical perspective, as part
of a larger investigation in bias learning, where task
distributions themselves are randomly sampled from
some distribution. Baxter proved PAC-learning-style
ε−δ sample complexity guarantees for both bias learn-
ing and multitask learning in terms of the number of
tasks, using measure-theoretic conditions on hypoth-
esis spaces. He also proved theorems characterizing
the efficiency of boolean function learning for multiple
tasks in terms of the VC-dimension of the hypothe-
sis classes. It is unlikely that these sorts of parame-
ters, used to characterize relatedness, can be efficiently
computed in practice, but given that unrelated tasks
can hamper performance, it is certainly desirable to
find some value that can be computed that character-
izes relatedness in general.

In a more general setting, Li et al (Li et al., 2003a) have
proposed a “universal similarity metric” based on com-
pressibility; they define a Normalized Information Dis-
tance over pairs of strings in terms of the Kolmogorov
complexities of the two strings concerned. They show
that this distance has some nice properties, with the
unfortunate exception of computability. To counter
this, they propose using ordinary compression to ap-
proximate the ideal compression of Kolmogorov com-
plexities. They define the corresponding metric, the
Normalized Compression Distance, and demonstrate
its suitable behavior on a host of examples.

It is extremely natural to consider applying compress-
ibility as a measure of similarity between tasks, par-
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tially because it seems to aptly capture the sorts of
similarites that Caruana exhibits – one would ex-
pect that the representations of the example functions
we discussed earlier should compress substantially for
all of the reasons mentioned – but moreover because
of the well-established connections between learning
and compression. Blumer et al (Blumer et al., 1987)
showed that, in order to learn, it suffices to have an
“Occam algorithm” that compresses the data. Their
result has been sharpened using Kolmogorov complex-
ity by Li et al. (Li et al., 2003b), who, along with
Board and Pitt (Board & Pitt, 1990) and Schapire
(Schapire, 1990), showed that in many cases, compres-
sion is necessary for learning. Given this motivating
history, and the naturalness of the idea it is surprising
that no one has (to our knowledge!) tried to charac-
terize “task-relatedness” in terms of compression.

We aim to recitify this disconnect, and present some
preliminary results in this direction. We exhibit a
PAC-learning style sample complexity bound in a re-
stricted setting that, for n tasks, independently ob-
tained hypotheses

−→
h , and fixed ε and δ, scales as

O(K(
−→
h )/n). Moreover, we argue that one can use any

ordinary efficient compression procedure in the style
of Normalized Compression Distances to obtain con-
servative sample complexity estimates—that is, if the
sample complexity bound is satisfied using ordinary
compression, then PAC-learning guarantees hold, and
we can efficiently evaluate whether or not this is so.
We also discuss how our result suggests that one may
evaluate and select from multiple clusterings of tasks,
since it holds for independently obtained hypotheses.

2. Preliminaries

First, a few words on notation: throughout, we will
use lg to denote log2 and ln to denote loge. We will
denote vectors by arrows, −→v , and matrices by square
brackets, [m]. Tragically, the nature of this work re-
quires that all constants be carried around explicitly,
so that we can verify that they can be found in prac-
tice; we apologize in advance for the appearance of all
formulas.

2.1. Multitask Learning

We first describe Multitask Learning (Caruana, 1997)
as viewed from the framework of Baxter (Baxter,
2000). Throughout, we will restrict our attention to
computable probability distributions on finite sample
spaces, which is significantly more restricted than Bax-
ter’s setting, but yields some interesting results (and
saves us from some discussions of measure theory).

We assume that an input set X and output set Y are
given, and that there exist n fixed (but unknown) com-
putable probability distributions, (P1, . . . , Pn) =

−→
P

over the finite set Z = X × Y . We let
−→
P denote a

joint distribution over −→z ∈ Zn in the natural way,−→
P (−→z ) =

∏
i Pi(zi). In this way, we assume that we

independently sample from the n different task distri-
butions. We will use the standard notions of the expec-
tation and variance of a real-valued random variable,
E[X] =

∑
z X(z)P (z) and Var[X] = E[(X − E[X])2].

We will restrict our attention to deterministic (non-
randomized) algorithms. We are free to choose, in the
design of our learning algorithm, a hypothesis space
H which is a set of hypotheses, which are functions
h : X → Y . Hn is, naturally, the n-fold cartesian
product of H with itself, and describes a selection of n
different hypotheses for our n different tasks. We also
choose a loss function l : Y × Y → [0, 1], and given
−→
h ∈ Hn, define the average loss

−→
h l : (X×Y )n → [0, 1]

by
−→
h l((x1, y1), . . . , (xn, yn)) = 1

n

∑n
i=1 l(hi(xi), yi) It

is worth noting that our assumption about the loss
ranging over [0, 1] is equivalent to assuming that its
range is bounded – which is always true over a finite
set – and that we have rescaled the loss.

We assume that our learning algorithm is given as in-
put m independent samples from

−→
P (which denotes

itself a vector of independent samples from each of
P1, . . . , Pn). We refer to this input matrix [z] as a
(n, m)-sample. The learning algorithm M , being de-
terministic, defines a map M : (X×Y )n×m → Hn from
(n, m)-samples to a selection of n hypotheses to our n
tasks. Ideally, we would like to choose n hypotheses−→
h ∈ Hn to minimize the expected average loss over
the n tasks, er−→

P
(
−→
h ) =

∑
−→z ∈Zn

−→
h l(−→z )

−→
P (−→z ). This

is often approached by minimizing the empirical loss
on [z], êr[z](

−→
h ) = 1

m

∑m
i=1 hl(−→z i) where −→z 1, . . . ,

−→z m

are the m column vectors of [z]. We will provide a
bound on the difference between er−→

P
and êr[z] that is

uniform over all
−→
h ∈ Hn. Thus, the empirical error

provides a good estimate for the expected error when
the bound holds, and a set of hypotheses that do well
on the training sample do well in expectation over the
true distributions.

2.2. Information Theory

We will require the following standard result from
Information Theory due to Shannon, McMillan, and
Breiman; we will more or less follow MacKay’s
(MacKay, 2002) exposition:

Theorem 1 (Asymptotic Equipartition Prop-
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erty). Let P be a probability distribution over a set
Z. Denote by H the entropy of P , and let σ2 =
Var

[
lg 1

P (z)

]
. Now, for a sequence −→z of m i.i.d. sam-

ples from P , the “typical set” Tmβ = {−→z ∈ Zm :
| 1
m lg 1

P (−→z )
−H| < β} satisfies P (−→z ∈ Tmβ) ≥ 1− σ2

β2m .

We will find that it is useful to bound the variance of
the self-information of an arbitrary finite distribution,
so that we can apply the Asymptotic Equipartition
Property when we do not know the distribution P .

Lemma 1. For any probability distribution P over a
finite set Z with |Z| ≥ 3, Var

[
lg 1

P (z)

]
≤ lg2 |Z|.

2.3. Kolmogorov Complexity

The definitions and results in this section are all cov-
ered by Li and Vitányi (Li & Vitányi, 1997).

Definition 1 (Prefix complexity). The prefix com-
plexity of a string x, denoted K(x), is the length of the
shortest string p such that on a fixed universal prefix
machine U , U(p) = x.

It is known that between any pair of universal prefix
machines, the prefix complexities differ by at most a
constant amount, though the constant depends on the
pair of machines. We will later have cause to specify
in more detail the universal prefix machine with re-
spect to which we wish to measure prefix complexity.
It is important to note that prefix complexity can be
bounded through the use of ordinary data compres-
sion algorithms. For an arbitrary compression algo-
rithm which compresses a string x to a string of length
C(x), we can add a self-delimiting code prefix to the
compressed string, describing its length, so that clearly
K(x) ≤ C(x) + 2 lg C(x) + O(1).

Definition 2 (Semimeasure). A semimeasure for
a set S is a function P : S → R+ such that∑

x∈S P (x) ≤ 1. In particular, note that any proba-
bility distribution qualifies as a semimeasure.

Definition 3 (Universal enumerable discrete
semimeasure). A universal enumerable discrete
semimeasure (denoted by m) is an enumerable discrete
semimeasure such that for any other discrete enumer-
able semimeasure P , there exists a constant cP such
that for all strings x, P (x) ≤ cP m(x).

It is important to note that m is defined in terms
of a reference enumeration of the enumerable discrete
semimeasures. Much like the reference universal prefix
machine, we can specify the enumeration we wish to
use in greater detail, and we will have cause to do so.
We will make use of the following standard result, due
independently to Levin, Gács, and Chaitin:

Theorem 2 (Coding Theorem). There is a con-
stant c such that for all x, − lg m(x) = K(x)± c

We should note that it suffices to use c =
max{K(Q),K(T ) + 4} where K(Q) is the index in an
enumeration of a program computing the “universal a
priori probability distribution,” Q(x) =

∑
U(p)=x 2−|p|

for a universal prefix machine U , and K(T ) is the com-
plexity of a program decoding a Shannon-Fano style
coding under m. These programs are fixed in advance.

We will further require the following corollary from Li
and Vitányi (Li & Vitányi, 1997):
Corollary 1. If P is an enumerable discrete semimea-
sure, then for all x, K(x) ≤ − lg P (x) + K(P ) + c,
where K(P ) is the index of P in the reference enu-
meration of enumerable semimeasures.

We will also make use of the following consequence of
Markov’s inequality:
Claim 1. For any probability distribution P , P [x :
− lg P (x) ≤ − lg m(x) + lg k] ≥ 1− 1

k .

In summary,
Claim 2. With probability at least 1 − 1/k over x
drawn according to a computable probability distribu-
tion P , we have a constant c such that

− lg P (x)− lg k − c ≤ K(x) ≤ − lg P (x) + K(P ) + c

3. Multitask Sample Complexity
Bounds

3.1. Baxter’s Bound

In this section, we review the lemmas leading to the
following result of Baxter (Baxter, 2000): for n proba-
bility distributions

−→
P = (P1, . . . , Pn) on X ×Y , and a

hypothesis space H with Hn
l = {

−→
h l :

−→
h ∈ Hn} “per-

missible,” if the number of training samples m satisfies
m ≥ max{ 64

nε2 ln 4C( ε
16 ,Hn

l )

δ , 16
ε2 } then with probability

at least 1 − δ over the (n, m)-sample [z] used, every
−→
h ∈ Hn

l satisfies er−→
P

(
−→
h ) ≤ êr[z](

−→
h ) + ε. We will not

discuss the meaning of C(ε,Hn
l ) in detail, but infor-

mally it is the smallest number N such that for any
probability distribution, one can find a set of N func-
tions such that every function in Hn

l is approximated
to within ε under the measure given by the probability
distribution. Although it is quite an appropriate no-
tion, it is unclear how one would compute or estimate
this value in practice, which was the motivation for
the present work. Likewise, we will not discuss “per-
missibility,” but it seems to be required for the precise
reason of the measurability of suprema over permissi-
ble sets.
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We will make use of several of the lemmas proved
by Baxter and combined to yield the aforementioned
result. As previously done by Haussler (Haussler,
1992), he uses the parameterized class of metrics dν

for ν ∈ R+ given by dν [x, y] = |x−y|
x+y+ν which has the

following easy properties:
Lemma 2. 1. ∀r, s ≥ 0, 0 ≤ dν [r, s] ≤ 1

2. For 0 ≤ r ≤ s ≤ t, dν [r, s] ≤ dν [r, t] and dν [s, t] ≤
dν [r, t].

3. For 0 ≤ r, s ≤ 1, |r−s|
ν+2 ≤ dν [r, s] ≤ |r−s|

ν

Given a (n, 2m)-sample [z], let [z(1)] denote samples
indexed 1, 2, . . . ,m, and let [z(2)] denote samples
indexed m + 1,m + 2, . . . , 2m. In this way, [z(1)] and
[z(2)] both denote (n, m)-samples. Baxter considers
the probability of large deviation between empirical
estimates of the loss obtained from these samples
when elements are randomly permuted between them.
This notion is captured by the following permutation
group: ∀m,n ≥ 1, let Γ(n,2m) denote the set of
all permutations σ of the sequence of integer pairs
{(1, 1), (1, 2), . . . , (1, 2m), (2, 1), . . . , (n, 1), . . . , (n, 2m)}
such that for all 1 ≤ j ≤ m, either σ(i, j) = (i,m + j)
and σ(i, m + j) = (i, j) or σ(i, j) = (i, j) and
σ(i, m + j) = (i, m + j). We now let [zσ] denote

[zσ] =

 zσ(1,1) · · · z(1,2m)

...
. . .

...
zσ(n,1) · · · z(n,2m)


The lemmas proceed as follows: using this bound on
the probability of deviation between two empirical es-
timates of the loss when elements are randomly per-
muted between the samples, a bound is obtained on
the probability of deviation between the empirical es-
timates of the loss for two independent samples. This
is in turn used to bound the probability of devia-
tion between the true expected average loss and an
empirical estimate of the loss, yielding the desired
uniform bound. In restating the lemmas, we have
tweaked a few parameters, and replaced statements
about suprema with statements about fixed hypothe-
ses. These versions are easily verified to follow from
essentially the same arguments. For the following lem-
mas, Baxter acknowledges inspiration from the double
symmetrization arguments of Pollard (Pollard, 1984)
and Haussler (Haussler, 1992).

Lemma 3. Let
−→
f : Zn → [0, 1] be any function that

can be written in the form
−→
f (−→z ) = 1/n

∑n
i=1 fi(zi).

For any [z] ∈ Z(n,2m), if σ ∈ Γ(n,2m) is cho-
sen uniformly at random, then Pr[σ ∈ Γ(n,2m) :
dν [êr[zσ(1)](

−→
f ), êr[zσ(2)](

−→
f )] > α

2 ] ≤ 2 exp(−α2νmn
2 )

Corollary 2. When an (n, 2m)-sample [z] is drawn
according to any probability distribution P , we still
have Pr[[z] ∈ Z(n,2m) : dν [êr[z(1)](

−→
f ), êr[z(2)](

−→
f )] >

α
2 ] ≤ 2 exp(−α2νmn

2 )

Lemma 4. Let P be a probability measure on Zn and
let h : Zn → [0, 1]. ∀ν > 0, 0 < α < 1, and m ≥ 2

α2ν ,
Pr[[z] ∈ Z(n,m) : dν [êr[z](h), erP (h)] > α] ≤ 2 Pr[[z] ∈
Z(n,2m) : dν [êr[z(1)](h), êr[z(2)](h)] > α

2 ]

Putting these lemmas together, we find

Claim 3. Let
−→
h : Zn → [0, 1] be any function that can

be written in the form
−→
h (−→z ) = 1/n

∑n
i=1 hi(zi). Let

P be a probability measure on Zn. When our samples
are drawn according to P , ∀ν > 0, 0 < α < 1, and
m ≥ 2

α2ν , Pr[[z] ∈ Z(n,m) : dν [êr[z](
−→
h ), erP (

−→
h )] >

α] ≤ 4 exp(−α2νmn
2 )

3.2. Kolmogorov Complexity Bounds

It is well-known that under uniform distributions, the
Kolmogorov complexity of samples from the distribu-
tion are near maximal with high probability. Thus,
under the uniform distribution, independent samples
have nearly the same Kolmogorov complexity with
high probability, so one sample can be used to give
a bound on the Kolmogorov complexity of any other
sample, and this bound holds with high probability.
Our first trick will be to generalize this observation to
other distributions:

Lemma 5. Let
−→
P = (P1, . . . , Pn) each be computable

probability distributions over a finite set Z. Let H−→
P

denote the entropy of the distribution
−→
P . For any

(n, m)-sample [z] ∈ Z(n,m) where each zij is drawn
independently according to Pi, there is a constant c
such that ∀β > 0, P [[z] ∈ Z(n,m) : |K([z]) −mH−→

P
| >

(mnβ + max{lg k,K(P )}+ c)] < lg2 |Z|
β2mn + 1

k

Proof. Let HPi denote the entropy of the dis-
tribution Pi. First, notice that since each
zij in a (n, m) sample is drawn independently,
lg 1

P ([z]) =
∑n

i=1

∑m
j=1 lg 1

Pi(zij)
, which has expected

value m
∑n

i=1 HPi
= mH−→

P
. By the Asymptotic

Equipartition Property and lemma 1, we find that
P ([z] : | lg 1

P ([z]) − mH−→
P
| > mnβ) < lg2 |Z|

β2mn Now,
recalling claim 2, there is a constant c such that
|K([z]) − lg 1

P ([z]) | ≤ max{K(P ), lg k} + c with prob-
ability at least 1 − 1/k. Furthermore, by the triangle
inequality, |K([x]) − mH−→

P
| ≤ |K([x]) − lg 1

P ([x]) | +
| lg 1

P ([x]) − mH−→
P
| So the claimed statement follows

from simple union bounds.
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So now, given a (n, m)-sample [z], we can obtain a
bound on the Kolmogorov complexity of any (n, m)-
sample that holds with high probability. Of course,
bounding the Kolmogorov complexity implies that we
have bounded the number of (n, m)-samples that we
are likely to see. It is possible to combine this obser-
vation with Baxter’s lemmas (Baxter, 2000) to obtain
a bound on the sample complexity (much as we do
in Theorem 3), but such a bound is not particularly
desirable for the following reasons.

First, the bound we obtain depends on the Kol-
mogorov complexity of our (n, m)-sample, K([z]),
where clearly this quantity tends to grow with m. In
particular, it provides guarantees for all δ, ε > 0 if
and only if K([z]) = o(mn); that is, if and only if
[z] compresses radically. One interpretation of this
statement is that our data set [z] must be not very
random in the following sense: if some Pi were uni-
form over some subset of Z, then it is known (Li &
Vitányi, 1997) that with high probability, each sam-
ple from that distribution should not compress below
the size of indices in the set by more than a constant
amount—we would certainly not expect the sort of be-
havior necessary for our bound to hold. By constrast,
if for example X = {1, 2, . . . , N} and we had samples
for some range 1–m, then the x-values would compress
to O(lg m) bits, since they could be output by a loop
with a constant-size body, “output i,” and a O(lg m)-
bit stopping condition, “stop if i > m.”

It should be clear that the real difficulty with such a
bound is that it includes a penalty for the compressed
size of randomly sampled xij ∈ X, so we would really
rather have a bound on the size of yij given xij , or
on the size of the hypotheses when compressed. This
is much closer in spirit to the approaches discussed
by Thrun and O’Sullivan (Thrun & O’Sullivan, 1996)
and by Silver and Mercer (Silver & Mercer, 1998),
and is likewise much closer to capturing the sense of
relatedness described in Caruana’s examples (Caru-
ana, 1997). Our much-maligned bound on the com-
pressed size of the data sets yields a bound on the
sizes of the compressed size of the hypotheses since
the compressed data together with the algorithm used
describes the hypotheses, so we are interested in find-
ing a bound that overcomes the above limitations.

We find that it is possible to obtain a bound based on
the Kolmogorov complexity of hypotheses as follows:
let us return to the setting of ordinary (single-task)
learning for a moment. Let M1, . . . ,Mn be determin-
istic learning algorithms for our n tasks. We can use
these algorithms to obtain an initial

−→
h ∈ Hn from an

(n, m)-sample, and depending on how well the set of

hypotheses compresses, we can obtain various upper
bounds on ε for various values of δ. This suggests that
we may wish to attempt to cluster the tasks (much as
done by Thrun and O’Sullivan (Thrun & O’Sullivan,
1996)) in order to find a partition that yields the best
ε-δ tradeoffs; we will see later how this can be done
while maintaining the guarantees.

Note that for Mi : Zm → H, the range over inputs of
length m, Hm,i = {h ∈ H : ∃−→z ∈ ZmMi(−→z ) = h} is
a subset of H which is finite since Mi is deterministic
and Z is finite. Given n computable probability dis-
tributions P1, . . . , Pn, let

−→
Qm be a distribution over

Hm,i defined by Qm,i[hi] = Pi[−→z : Mi(−→z ) = hi]; ob-
serve that Qm,i is computable too. Intuitively, we will
argue that Lemma 5 tells us that with high probabil-
ity, the hypotheses we obtain from

−→
Qm come from a

“typical set,” in which all hypotheses have roughly the
same compressed size. So, we can use the compressed
size of our sample hypotheses to estimate the size of
the set and apply Baxter’s lemma with a union bound.

Theorem 3. Let
−→
P = (P1, . . . , Pn) each be com-

putable probability distributions over a finite set Z =
(X × Y ), let H be an arbitrary set of hypotheses
h : X → Y , and let a loss function l : Y × Y →
[0, 1] be given. Let M1, . . . ,Mn : Zm → H be de-
terministic learning algorithms. When our (n, m)-
sample [z] is drawn according to

−→
P , if m satisfies

m ≥ max{ 32 ln 2
ε2n (lg 2

δ + K(M1([z]), . . . ,Mn([z])) +
2 max{lg 4

δ ,K(
−→
Qm)} + 2c + 3), 16

ε2 } where n satisfies

n ≥ 8192 ln2 |Z|
ε4δ then with probability at least 1− δ, any

−→
h ∈ Hn with K(

−→
h ) ≤ K(M1([z]), . . . ,Mn([z])) satis-

fies er−→
P

(
−→
h ) ≤ êr[z](

−→
h ) + ε.

Proof. It will help us to note that |Hm,i| ≤ |Z|m.
Let

−→
M([z]) denote (M1([z]), . . . ,Mn([z])) ∈ Hn. Now

define Hn([z]) = {
−→
h ∈ Hn : K(

−→
h ) ≤ K(

−→
M([z]))}

and Hn
short = {

−→
h ∈ Hn : K(

−→
h ) ≤ H−→

Qm
+ (nβ +

max{lg k,K(
−→
Qm)}+ c)} so that

P [[z] : ∃
−→
h ∈ Hn([z])dν [êr[z](

−→
h ), er−→

P
(
−→
h )] > α] ≤

P [[z] : |K(
−→
M([z]))−H−→

Qm
| > (nβ + max{lg k,

K(
−→
Qm)}+ c)] + P [[z] : ∃

−→
h ∈ Hn([z]) dν [êr[z](

−→
h ),

er−→
P

(
−→
h )] > α, |K(

−→
M([z]))−H−→

Qm
| ≤ (nβ+

max{lg k,K(
−→
Qm)}+ c)] ≤

P [[z] : |K(
−→
M([z]))−H−→

Qm
| > (nβ + max{lg k,K(

−→
Qm)

}+ c)] + P [[z] : ∃
−→
h ∈ Hn

shortdν [êr[z](
−→
h ), er−→

P
(
−→
h )] > α,

|K(
−→
M([z]))−H−→

Qm
| ≤ (nβ + max{lg k,K(

−→
Qm)}+ c)]
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Since then, Hn([z]) ⊆ Hn
short

In the last expression, since |K(
−→
M([z])) − H−→

Qm
| ≤

(nβ + max{lg k,K(
−→
Qm)} + c), |Hn

short| ≤
2K(

−→
M([z]))+2(nβ+max{lg k,K(

−→
Qm)}+c)+1. Thus, a

union bound together with claim 3 yields

P [[z] : ∃
−→
h ∈ Hn

shortdν [êr[z](
−→
h ), er−→

P
(
−→
h )] > α,

|K(
−→
M([z]))−H−→

Qm
| ≤ (nβ + max{lg k, K(

−→
Qm)}+ c)]

≤ exp(ln 2(K(
−→
M([z])) + 2(nβ+

max{lg k, K(
−→
Qm)}+ c) + 3)− α2νmn

2
)

whenever m ≥ 2/(α2ν).

Suppose now we put k = 4
δ , β =

√
4

nδ m lg |Z|, ν = 2,

and α = ε
4 . Now, if n ≥ 44·22·22·2 ln2 |Z|

ε4δ and m ≥
42·2 ln 2

ε2n (lg 2
δ +K(

−→
M([z]))+2 max{lg 4

δ ,K(
−→
Qm)}+2c+

3) then we find that the latter probability is bounded
by δ/2. Therefore, given that additionally m ≥
42/ε2, P [[z] : ∃

−→
h ∈ Hn([z])dν [êr[z](

−→
h ), er−→

P
(
−→
h )] >

α] ≤ δ
2 + P [[z] : |K(

−→
M([z])) − H−→

Qm
| > (nβ +

max{lg 4/δ,K(
−→
Qm)} + c)] where now, since |Hm,i| ≤

|Z|m, we can apply lemma 5 to our sample from
−→
Qm

(with its m = 1), yielding P [[z] : |K(
−→
M([z]))−H−→

Qm
| >

(nβ + max{lg 4/δ,K(
−→
Qm)}+ c)] < δ

2 so finally P [[z] :
∃
−→
h ∈ Hn([z])dν [êr[z](

−→
h ), er−→

P
(
−→
h )] > α] < δ and thus

the theorem follows from lemma 2.

Although we are blithely ignoring the problem of
deciding whether or not a hypothesis satisfies the
Kolmogorov complexity condition for theorem 3,
we observe that we know at least one hypothesis
that trivially does—the default hypothesis,

−→
h =

(M1([z]), . . . ,Mn([z])). Also, the 1/ε2 and 1/ε4 fac-
tors can be improved to 1/ε and 1/ε2, respectively,
if one is willing to weaken the error approximation to
er−→

P
(
−→
h ) ≤ κêr[z](

−→
h )+ε for some κ > 1. This is partic-

ularly useful if the {Mi} in theorem 3 can find a joint
hypothesis with êr[z](

−→
h ) = 0. Refer again to Baxter

(Baxter, 2000) for more details.

3.3. Adapting Kolmogorov Complexity
Bounds for Estimation

Upon examining theorem 3, we see that most of the
terms are (under reasonable circumstances) known,
with the notable exceptions of terms involving Kol-
mogorov complexities, the unknown distribution func-
tion

−→
Qm, or both. This work was motivated by the ob-

servation that it is possible to provide an upper bound
on Kolmogorov complexities in practice. As we noted
in section 2.3, we can convert any standard decompres-
sion procedure into a decompression procedure which
operates on prefix-coded versions of the original com-
pressed strings. We noted that we can use this proce-
dure and the length of the compressed string to bound
the Kolmogorov complexity of a string.

Recall that it does not matter too much which uni-
versal machine we choose to define Kolmogorov com-
plexity with respect to; the complexities differ by at
most a constant amount. We observe that, for any
given setting, we can do our accounting with respect
to a clever choice of reference machine, one which will
permit us to fix the various unknown constants that
have crept into our bounds.

Corollary 3. Let
−→
P = (P1, . . . , Pn), Z = (X ×

Y ), H = {h : X → Y }, l : Y × Y → [0, 1],
and M1, . . . ,Mn : Zm → H be given as in Theo-
rem 3. Let a compression algorithm MC such that
C(x) is the length of MC(x) and MD, the corre-
sponding decompression algorithm, be given. Let−→
M(x) denote (M1(x), . . . ,Mn(x)). When our (n, m)-
sample [z] is drawn according to

−→
P , if m satisfies

m ≥ max{ 32 ln 2
ε2n (lg 2

δ + C(
−→
M([z])) + 2 lg C(

−→
M([z])) +

2 max{lg 4
δ , 3}+17), 16

ε2 } and n satisfies n ≥ 8192 ln2 |Z|
ε4δ

then with probability at least 1 − δ, any
−→
h ∈ Hn with

K(
−→
h ) ≤ K(

−→
M([z])) satisfies er−→

P
(
−→
h ) ≤ êr[z](

−→
h ) + ε.

Proof. Let any universal prefix machine U , and any
enumeration of the discrete enumerable semimeasures,
φ1, φ2, . . ., be given. First, observe that we can con-
vert MD into M ′

D, a prefix-free version: if MD(x) = y,
then M ′

D(0lg |x||x|x) = y, and this is uniquely de-
codable since the first bit of |x| is a ‘1’. Clearly,
the new input has length |x| + 2 lg |x|. We also as-
sume that an algorithm for P exists; an algorithm
for

−→
Qm can be easily constructed from the algorithm

for P . Recall now, that as discussed in section 2.3,
c = max{K(Q),K(T ) + 4} where K(Q) is the com-
plexity of the index of a program computing the “uni-
versal a priori probability distribution” in the reference
enumeration used to define m, the universal discrete
enumerable semimeasure, and K(T ) is the complexity
of a program decoding a Shannon-Fano style coding
under m.

We observe that now that all of these constants have
been fixed, we are free to do the calculation of the
Kolmogorov complexities with respect to any machine
of our choice. Suppose we now construct a prefix ma-
chine U ′ which first reads a two-symbol code prefix,
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which we can interpret as a binary integer. Assume
the remaining string is referred to as x; depending on
the prefix, U ′ either computes U(x), M ′

D(x), or T (x)
or checks whether x = 0 or 1, outputing 1 if x = 0, 2
if x = 1, and otherwise looping forever.

Similarly, suppose we make the following modifica-
tions to φ: we put φ1 =

−→
Qm, φ2 = Q′ where

Q′(x) =
∑

U ′(p)=x 2−|p| is the universal a priori prob-
ability distribution for U ′, and for all i > 2, put
φ′i = φi−2. Clearly this is still an enumeration of the
discrete enumerable semimeasures, where K(

−→
Qm) =

K(Q′) = 3. Note also that since K(T ) + 4 = 6, the
constant c = 6. Finally, since on this machine, any
string x has a program of length C(x) + 2 lg C(x) + 2,
K(x) ≤ C(x) + 2 lg C(x) + 2. The claim now follows
directly from theorem 3.

This bound presently applies only when all n tasks are
taken together. It turns out that we can easily extend
it to apply the clustering approach suggested earlier.

Corollary 4. Let T = {1, . . . , n} denote our set of
tasks, and let S ⊂ 2T be any set of clusterings of the
tasks of interest. If, for each clustering s ∈ S of k tasks
s1, . . . , sk, we have m ≥ 32 ln 2

ε2
sk (lg 2

δ + C(
−→
Ms([z])) +

2 lg C(
−→
Ms([z])) + 2 lg 4

δ + 17) + 96 ln 2
ε2

s
(1 + lg(ne

k )) and

k ≥ 8192 ln2 |Z|
ε4

sδ where, letting [z|s] denote the re-
striction of [z] to the tasks contained in s, we have
put

−→
Ms([z]) = (Ms1([z|s]), . . . ,Msk

([z|s])) then with
probability at least 1 − δ, for every cluster s ∈ S,
any

−→
h ∈ Hk with K(

−→
h ) ≤ K(

−→
Ms([z])) satisfies

er(Ps1 ,...,Psk
)(
−→
h ) ≤ êr[z|s](

−→
h ) + εs.

Proof. Recalling the proof of theorem 3, notice
that the statement we wish to prove is equiva-
lent to (for αs = εs/4) P [[z] : ∃s ∈ S, |s| =
k∃
−→
h ∈ Hk([z|s])dν [êr[z|s](

−→
h ), er(Ps1 ,...,Psk

)(
−→
h )] >

αs] < δ where, by corollary 3, it is clear that
if the stated conditions are satisfied, then for
each set of k tasks, we have P [[z] : ∃

−→
h ∈

Hk([z|s])dν [êr[z|s](
−→
h ), er(Ps1 ,...,Psk

)(
−→
h )] > αs] <

δ

2k(ne
k )k ≤ δ

2k(n
k)

and, by a union bound over

the sets in S, P [[z] : ∃s ∈ S, |s| = k∃
−→
h ∈

Hk([z|s])dν [êr[z|s](
−→
h ), er(Ps1 ,...,Psk

)(
−→
h )] > αs] <∑n

k=1

∑
s∈S,|s|=k

δ

2k(n
k)

< δ

Provided that the clusters are large (k is at least some
constant fraction of n), it is clear that this bound is
not too much worse than that provided by corollary
3. In particular, we still expect the compressed size

of the hypotheses to be the dominating term, for each
fixed εs and δ.

4. Discussion

We have shown that there is a positive relationship
between the degree of compression achieved in the hy-
potheses across various learning tasks and the gen-
eralization behavior of these hypotheses. In partic-
ular, we have shown that it is possible to algorithmi-
cally make ε − δ PAC learning style guarantees in a
limited setting with sample complexity requirements
that feature a desirable “1/n factor,” demonstrating
that provided that our tasks are similar (in the sense
that the hypotheses, for example, exhibit compression)
then grouping the tasks together can “share informa-
tion.” Theorem 3 and corollary 3, in particular, show
that we can compute an upper bound on generaliza-
tion behavior based on independently constructed ini-
tial hypotheses, making progress on a question posed
by Baxter (Baxter, 2000) and allowing us to cluster
hypotheses together in hopes of finding groups that
compress well algorithmically. The guarantees are suf-
ficiently strong to set the stage for an Occam’s Razor
style algorithm, since the upper bound it provides ap-
plies to any simpler joint hypotheses we find. More
generally, these results are interesting because they
suggest that it may be possible to intuitively formulate
“task relatedness” in the language of Occam’s Razor
as “tasks are related if their joint description is sub-
stantially shorter than the sum of the lengths of their
individual descriptions.”

And yet, unfortunately, we have not shown much more
than the above. Our restrictions to deterministic algo-
rithms and finite sample spaces are severe, and it isn’t
clear how we might hope to get around these restric-
tions. Although the behavior of the sample complex-
ity in theorem 3 is tantilizing, the requirements on the
number of tasks are prohibitive, and the bounds are
almost assuredly quite loose in practice. The Asymp-
totic Equipartition Property (together with Baxter’s
lemmas (Baxter, 2000)) has yielded some interesting
results, but it seems that to get any sharper results,
we will have to find a new trick. The most serious defi-
ciency of the present work is our lack of lower bounds
in this setting. At present, we have no idea of how
much better we should expect to do, partially due to
our lack of nontrivial examples of infinite families of
related tasks, but more significantly with respect to
task-relatedness, we have established a sufficient con-
dition, but lack necessary conditions.

In other words, we can show that that under certain
conditions that compressibility suffices for good gen-
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eralization behavior, but we would really like to have
conditions that must be satisfied, so that we can al-
gorithmically reject groupings of tasks. As Caruana
(Caruana, 1997) noticed, unrelated tasks can nega-
tively affect performance, so it is highly desirable to
have a method for rejecting groupings of unrelated
tasks, or to understand better under what conditions
including additional tasks degrades performance. Un-
fortunately, we have nothing at present to say on this
topic. Compressibility is an intuitively appealing mea-
sure of relatedness, and seems to capture the sense of
relatedness described by Caruana, but until we have
shown a firm quantitative relationship, our intuition
has accomplished nothing.

Intuition aside, we might expect to be able to use
compressibility as a measure of relatedness due to the
relationships between compressibility and learning in
the single task setting. A potentially fruitful way of
framing the relationship between compression and re-
latedness is to investigate under what conditions a
multitask learning algorithm can be used to provide
compression, in the style of Schapire (Schapire, 1990),
Board and Pitt (Board & Pitt, 1990), Li et al (Li
et al., 2003b), and many others. It is entirely pos-
sible that existing results for the single task setting
can be tweaked in some way to obtain interesting re-
sults for the multitask setting. Still, it is not clear
that such a result, interesting though it may be, would
yield algorithmically testable conditions—after all, it
is not possible to algorithmically provide nontrivial
lower bounds on the compressibility of strings (Li &
Vitányi, 1997).

Another possibility for providing necessary conditions
on task-relatedness is investigating the compression-
based similarity metrics of Li et al (Li et al., 2003a).
Although the Kolmogorov-complexity based metrics
suffer from not being approximable from either above
or below, their “Normalized Compression Distance” is
used as an approximation to an ideal distance in a way
that served as partial inspiration for the present work.
While it’s unclear whether or not anything of sub-
stance can be proved directly about the NCD, the fact
that it can be evaluated in practice makes it worth seri-
ously investigating. Even in the ideal setting, it would
be interesting to see if it is possible to demonstrate a
relationship between the compression distances of the
hypotheses or data sets of different tasks and the effect
of sharing data between those tasks.
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