
Brief Announcement: Reliable End-User Communication
Under a Changing Packet Network Protocol

∗

Brendan Juba
†

MIT CSAIL & Harvard SEAS
Cambridge, MA, USA
bjuba@alum.mit.edu

ABSTRACT

We present the first end-user protocol, guaranteeing the de-
livery of messages, that automatically adapts to any new
packet format that is obtained by applying a short, efficient
function to packets from an earlier protocol.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols; C.4 [Performance of Systems]: Fault toler-
ance, Reliability, availability, and serviceability

General Terms

Theory, Reliability

1. INTRODUCTION
Although the general public tends to regard computa-

tional infrastructure as appliances, the rapid growth and
change of computational infrastructures invalidates this con-
ception: software needs to be kept up-to-date. As the In-
ternet grows, it grows less feasible to expect that all of the
devices could be modified to cope with any change in the
underlying protocol. And yet, the address space of the orig-
inal protocol (IPv4) is nearing exhaustion, necessitating just
such a change. Although a replacement protocol, IPv6, was
established as a standard over a decade ago, the adoption
rate has been modest at best. Many end-users are unaware
of the issue, and those who are aware are generally reluc-
tant to upgrade until incompatibility presents a problem.
Furthermore, conversely, the obstacles to adoption of a new
standard naturally instill a sense of conservatism in the de-
velopment of new standards: even if a redesign of the pro-
tocol would improve some aspect of the network from users’
perspectives, it stands little chance of being deployed unless
it is compatible with the existing protocol.
The bottom line is that due to the scale of the Inter-

net and the expectations or lack of awareness of users, the
current model for updating computer infrastructure is inad-
equate. Motivated by this, Juba and Sudan [6] considered
whether or not it would be possible for computers to adapt
to changes in protocols automatically. They suggested that,

∗Adapted from the author’s Ph.D. thesis [5, Chapter 9].
†Supported by NSF Award CCF-0939370

Copyright is held by the author/owner(s).
PODC’11, June 6–8, 2011, San Jose, California, USA.
ACM 978-1-4503-0719-2/11/06.

by focusing on the goal of the communication – i.e., the func-
tionalities provided – it might be possible to design commu-
nication protocols that support broad compatibility. Subse-
quent work by Goldreich et al. [4] developed a framework for
such problems, and established roughly that whenever cor-
rect functioning can be locally verified, broad compatibility
can be guaranteed. Furthermore, they show that guarantee-
ing correct functioning while supporting broad compatibility
requires local verifiability.

Returning to our motivating example of the internet-layer
packet protocol, we note that this protocol is designed to
support the functionality of a (unreliable) channel. Unfor-
tunately, Juba and Sudan [6] observed that this specific goal
for communication cannot be guaranteed for broad classes
of protocols, due to the inability of end-users to distinguish
between incompatible encodings of distinct messages (an in-
ability to locally verify correctness). So, unfortunately, we
can’t hope to design such a packet protocol with broad com-
patibility. Nevertheless, the observation does not rule out
the possibility that for some specific higher-level functional-
ity, end-users might still be able to adapt to changes in the
lower-level packet protocol—e.g., specifically for a transport-
layer protocol similar to TCP [2] to adapt to changes in the
supporting internet-layer protocol, as we consider here.

Our main result in this work is the construction of a modi-
fied version of TCP that achieves essentially the same ends –
implements a reliable channel – and can automatically adapt
to “sufficiently small” changes in the internet-layer protocol,
with the caveat that either the users must know each oth-
ers’ addresses or else there can only be two users. The main
contribution in this work is in showing how the higher-level
protocol can be modified to provide the necessary feedback
to the lower-level protocol to enable adaptive behavior. A
secondary (related) contribution is the definition of an ap-
propriate class of “sufficiently small” changes for which it
is possible to prove that the protocol adapts to changes in
a reasonable amount of time: an issue with the techniques
in prior works [4, 6] is that the overhead of the adaptive
protocol (in terms of the running time or number of errors,
drops, etc.) tends to grow exponentially with the size (e.g.,
in bits) of the unknown protocol. In this case, we bound the
overhead in terms of the size of the modification to an earlier
protocol, which we hope to be much more reasonable.

2. PROBLEM AND SOLUTION CONCEPT
We use the framework introduced by Goldreich et al. [4]

to model communication without a fixed protocol. Essen-
tially, this means that we fix a “goal for communication”



capturing the functionality we wish to support, and a class
of (network) protocols with respect to which we wish to ex-
hibit compatibility. In this work, we consider communica-
tion from the perspective of a pair of end-users. The goal for
our end-users is to realize a channel using a network connect-
ing them: that is, each end-user receives as input an infinite
sequence of messages (of some bounded maximum length
N) and the goal is achieved if the users respectively produce
their partner’s input sequence as output. The network, mod-
eling the Internet, is assumed to have a packet format for
each of the users such that when a packet in the respective
users’ formats is sent to the network, the network (probably,
eventually) forwards the packet to that user. We allow the
network to drop packets (randomly with some fixed proba-
bility δ) and delay and/or reorder the packets adversarially
up to some known maximum delay bound D; if there are too
many packets addressed to one of the users in a given period
(e.g., if both users together attempt to send more than D

packets to one user) then the network is also allowed to drop
new packets addressed to that user.
Now, we suppose that the network is chosen adversari-

ally from a class of networks using different packet formats
that we describe below. The problem is for the end-users
to achieve their goal with the unknown packet format. Our
solution concept is an algorithm for the end-users such that
they correctly receive each others’ messages when commu-
nicating across this network, no matter which packet for-
mat (from the class to be specified) is chosen. Naturally,
the larger this class of protocols is, the more flexible the
end-users are, but there are limits to what we can hope
for. In particular, Goldreich et al. [4] show that in general
there is an exponential lower bound on the number of rounds
needed to achieve a goal in terms of the length of a protocol.
Therefore, in order to achieve reasonable performance, it is
necessary to restrict the class of protocols somehow. Our
choice of restriction here is to assume that some protocol is
known to the end-users, and that the network protocol is
a “small modification” of this known protocol. Specifically,
we assume that packets encoded in the old format may be
translated to valid packets in the new format by some func-
tion described by a program of some a priori bounded length
ℓ. Thus, although we may pay an exponential price in terms
of the lengths of these modifications, we may still be able to
adapt to gradual changes to the protocol over time without
paying too severe a price.
The specific class of protocols we consider are packet net-

work protocols that moreover compute the packet encoding
in a single pass over the message, while using at most b

bits of state (i.e., 2b distinct states). It is interesting to
consider such a weak and restricted class of protocols since
we merely wish to guarantee “compatibility” with some rel-
atively broad, explicit class of modifications. Our class of
protocols is powerful enough to attach headers and compute
checksums, and is therefore powerful enough to compute the
encodings of most real packet network protocols.

3. THE ADAPTIVE END-USER PROTOCOL
Prior work by Goldreich et al. [4] implies that the ability

to verify correct functioning is necessary and sufficient to
construct solutions to our compatibility problem. Thus, the
main idea is that the end-users can attach a MAC (or signa-
ture, e.g., as proposed by Gilbert et al. [3]) to their messages
prior to encoding so that the recipient can verify when the

message is decoded correctly; unconditional constructions
of such MACs exist because the number of states b of the
protocol is bounded, as is the size of the modification ℓ.1

Thus, users can decode correctly (e.g., via trial-and-error).
Given that the users can decode correctly, they can run a
sliding-window scheme (following TCP [2]) so that they can
confirm that a message was sent via an acknowledgement,
and hence they can learn to encode messages as well.

The construction sketched above is sufficient to guarantee
correctness, but because of the unreliability of the network,
enumeration achieves poor performance—a protocol may fail
due to a drop, and a näıve enumeration then cycles through
the entire enumeration before returning to the “right” for-
mat. This performance issue can be circumvented by using
an algorithm for the nonstochastic bandit problem [1] to
select a candidate modification, rewarding the algorithm’s
choice whenever an acknowledgement is received, so the to-
tal reward received by the algorithm is a lower bound on
the number of messages sent. (This doesn’t reduce the ini-
tial overhead or improve the protocol search, but rather
achieves a long-term transmission rate that approaches op-
timal.) The only difficulty is that the algorithm’s choice
needs to be evaluated before it makes a new choice, so the
algorithm as stated can only handle a send window of size
one. We circumvent this issue by using a number of copies
of the algorithm equal to the (maximum) size of the send
window, and invoking them in round-robin fashion. This in-
creases the rate of failures due to bad choices by (only) the
square root of the maximum size of the send window, which
is independent of the total number of messages we attempt
to send, so over time the algorithm’s overall success rate still
approaches the optimal rate of 1− δ.2

4. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.

Schapire. The nonstochastic multiarmed bandit
problem. SIAM J. Comput., 32(1):48–77, 2003.

[2] V. G. Cerf and R. E. Kahn. A protocol for packet
network intercommunication. IEEE Trans. Comms.,
Com-22(5):637–648, 1974.

[3] E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane.
Codes which detect deception. Bell Sys. Tech. J.,
53:405–424, 1974.

[4] O. Goldreich, B. Juba, and M. Sudan. A theory of
goal-oriented communication. Technical Report
TR09-075, ECCC, 2009.

[5] B. Juba. Universal Semantic Communication. PhD
thesis, MIT, 2010.

[6] B. Juba and M. Sudan. Universal semantic
communication I. In Proc. 40th STOC, 2008.

[7] J. Kamp, A. Rao, S. Vadhan, and D. Zuckerman.
Deterministic extractors for small-space sources. In
Proc. 38th STOC, pages 691–700, 2006.

1Although we assume that the key for the MAC is known
to both end-users, we can circumvent this assumption by
using deterministic extractors, as constructed for the class
of encodings we consider here by Kamp et al. [7], to exchange
keys during a handshake (without knowing the encoding).
2Still, to allocate feedback correctly, we retransmit the mes-
sages one at a time. As long as the probability of a drop
is sufficiently small relative to the size of the send window,
though, this achieves reasonable performance.


