
Universal Semantic Communication I

Brendan Juba
∗

MIT CSAIL
32 Vassar St.

Cambridge, MA 02139

bjuba@mit.edu

Madhu Sudan
†

MIT CSAIL
32 Vassar St.

Cambridge, MA 02139

madhu@mit.edu

ABSTRACT

Is it possible for two intelligent beings to communicate mean-
ingfully, without any common language or background? This
question has interest on its own, but is especially relevant in
the context of modern computational infrastructures where
an increase in the diversity of computers is making the task
of inter-computer interaction increasingly burdensome. Com-
puters spend a substantial amount of time updating their
software to increase their knowledge of other computing de-
vices. In turn, for any pair of communicating devices, one
has to design software that enables the two to talk to each
other. Is it possible instead to let the two computing enti-
ties use their intelligence (universality as computers) to learn
each others’ behavior and attain a common understanding?
What is “common understanding?” We explore this question
in this paper.

To formalize this problem, we suggest that one should
study the “goal of communication:” why are the two enti-
ties interacting with each other, and what do they hope to
gain by it? We propose that by considering this question ex-
plicitly, one can make progress on the question of universal
communication.

We start by considering a computational setting for the
problem where the goal of one of the interacting players is
to gain some computational wisdom from the other player.
We show that if the second player is “sufficiently” helpful
and powerful, then the first player can gain significant com-
putational power (deciding PSPACE complete languages).

Our work highlights some of the definitional issues under-
lying the task of formalizing universal communication, but
also suggests some interesting phenomena and highlights po-
tential tools that may be used for such communication.

∗Supported by an Akamai Presidential Fellowship, a NSF
Graduate Research Fellowship, and NSF Awards CCR-
0514915 and CCR-0726525.
†Supported in part by NSF Awards CCR-0514915 and CCR-
0726525.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08, May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

Categories and Subject Descriptors

F.0 [Theory of Computation]: General; E.4 [Coding

and Information Theory]: Formal models of communi-
cation

General Terms

Theory

Keywords

Linguistics, interaction, computational complexity

1. INTRODUCTION
Consider the following scenario: Alice, an extraterrestrial,

decides to initiate contact with a terrestrial named Bob by
means of a radio wave transmission. How should he respond
to her? Will he ever be able to understand her message? In
this paper we explore such scenarios by framing the under-
lying questions computationally.

We believe that the above questions have intrinsic inter-
est, as they raise some further fundamental questions. How
does one formalize the concept of understanding? Does com-
munication between intelligent beings require a “hardwired”
common sense of meaning or language? Or, can intelligence
substitute for such requirements? What role, if any, does
computational complexity play in all this? We also examine
some practical motivations for studying this topic at length
in Section 3.1.

1.1 Some history: prior approaches
Despite the fantastic nature of the topic (of conversation

with an alien), it has been seriously considered in the past.
In particular, Minsky [10] suggested that communication
should be possible from a philosophical standpoint, but did
not provide any formal definitions or constructions.

LINCOS: The most notable and extensive prior approach
to this problem is due to Freudenthal [3], who claims that it
is possible to code messages describing mathematics, physics,
or even simple stories in such a radio transmission which
can be understood by any sufficiently humanlike recipient.
Ideally, we would like to have such a rich language at our
disposal; it should be clear that the “catch” lies in Freuden-
thal’s assumption of a “humanlike” recipient, which serves
as a catch-all for the various assumptions that serve as the
foundations for Freudenthal’s scheme.

It is possible to state more precise assumptions which form
the basis of Freudenthal’s scheme, but among these will be

some fairly strong assumptions about how the recipient in-
terprets the message. In particular, one of these is the as-
sumption that all semantic concepts of interest can be char-
acterized by lists of syntactic examples. (See Appendix A
for a discussion.) These assumptions seem, for the moment,
to be too strong to be considered truly universal.

In our work, we attempt to reduce the “commonality” as-
sumptions to more semantic ones. To illustrate what we
mean by this, suppose that the two communicating agents
share knowledge of the laws of physics, or mathematical
principles (they may have the same system of logic, and rely
on some form of Peano’s axioms etc.). If so, we would prefer
not to suggest a specific form in which they store this infor-
mation, but rather are aware of what is feasible or infeasible
under such laws. Of course, our assumptions will be essen-
tially about common awareness of information-theoretic and
computational “laws.”

Information Theory: Communication has, of course,
been studied from a mathematical perspective before, and
so we mention the difference between the goal there and in
our case. The classical theory of communication [13] does
not investigate the meaning associated with information and
simply studies the process of communicating the informa-
tion, in its exact syntactic form. It is the success of this
theory that motivates our work: computers are so success-
ful in communicating a sequence of bits, that the most likely
source of “miscommunication” is a misinterpretation of what
these bits mean.

Communication Complexity: The theory of commu-
nication complexity [14] starts to associate meaning to the
bits being communicated e.g., the reason Bob wants Alice
to send x is that he wants to compute some function f(x, y)
where he knows y and both Alice and Bob know f(·, ·). So
the “intent” of the communication is to enable Bob to com-
pute f(x, y) and knowing this intent, one may be able to
achieve further efficiency in the communication. The idea
that Bob may wish to know x for a given reason, will be
useful in our setting as well, but the common knowledge of
“f” does not apply to our setting.

Interactive Proofs and Knowledge: Finally, the the-
ory of interactive proofs and knowledge [6] (and also the
related theory of program checking [2]) gets further into the
gap between Alice and Bob, by ascribing to them different,
conflicting intents, though they still share common seman-
tics. It turns out this gap already starts to get to the heart
of the issues that we consider, and this theory is very use-
ful to us at a technical level. In particular, in this work we
consider a setting where Bob wishes to gain knowledge from
Alice. Of course, in our setting Bob is not mistrustful of
Alice, he simply does not understand her.

1.2 Modeling issues
Our goal is to cast the problem of “meaningful” communi-

cation between Alice and Bob in a purely mathematical set-
ting. We start by considering how to formulate the problem
where the presence of a “trusted third party” would easily
solve the problem.

Consider the informal setting in which Alice and Bob
speak different natural languages and wish to have a dis-
cussion via some binary channel. We would expect that a
third party who knows both languages could give finite en-
coding rules to Alice and Bob to facilitate this discussion,
and we might be tempted to require that Alice’s statements

translate into the same statements in Bob’s language that
the third party would have selected and vice-versa.

In the absence of the third party, this is unreasonable to
expect, though: suppose that Alice and Bob were given en-
coding rules that were identical to those that a third party
would have given them, except that some symmetric sets of
words have been exchanged—say, Alice thinks “left” means
“right,” “clockwise” means “counter-clockwise,” etc. Unless
they have some way to tell that these basic concepts have
been switched, observe that they would still have a conver-
sation that is entirely sensible to each of them.1 Thus, if
we are to have any hope at all, we must be prepared to ac-
cept interactions that are indistinguishable from successes
as “successes” as well. We do not wish to take this to an
extreme, though: Bob cannot distinguish among Alices who
say nothing, and yet we would not classify their interactions
as “successes.”

At the heart of the issues raised by the discussion above is
the question: what does Bob hope to get out of this conver-
sation with Alice? In general, why do computers, or humans
communicate? Only by pinning down this issue can we ask
the question, “can they do it without a common language?”

We believe that there are actually many possible moti-
vations for communication. Some communication is moti-
vated by physical needs, and others are motivated purely by
intellectual needs or even curiosity. However these diverse
settings still share some common themes: communication is
being used by the players to achieve some effects that would
be hard to achieve without communication. In this paper,
we focus on one natural motivation for communication: Bob
wishes to communicate with Alice to solve some computa-
tional problems.

The choice of this setting is partly for concreteness: it
allows us to present one scenario where the presence of a
common language between Alice and Bob would lead to an
easy solution to Bob’s problems, but absence of a common
language poses some hurdles (and indeed limits Bob’s abil-
ities). But we also believe that this setting reflects some of
the concerns that appear generically in any motivation for
communication. We study the more general motivations in
upcoming work (see Section 3.2).

1.3 Our approach and results
We now formalize a computational motivation for commu-

nication (from Bob’s perspective). Consider the case where
Bob is a probabilistic polynomial time bounded interactive
machine, whose goal is to decide membership in some set S.
(For instance, Bob’s goal may be to detect if a given pro-
gram is a virus and so the set S may be the set of programs
that are not viruses.) His hope is that by interacting with
Alice, he can solve this hard computational problem. We
consider an all-powerful Alice who can decide membership
in any set. If Alice and Bob understood and trusted each
other completely, then this could allow Bob to solve any
membership problem! Note that the setting where Alice
and Bob understand each other, but don’t necessarily trust
each other is the setting considered in interactive proofs,
and here we have that Bob can solve (precisely) decision
problems in PSPACE [9, 12]. Our setting is the “dual” one

1Bob Berwick has pointed out to us that Quine [11] makes
a similar but much stronger assertion of indeterminacy of
translation. Frustratingly, he leaves justification for these
claims largely to the reader’s imagination.

where Alice and Bob don’t necessarily mistrust each other,
but they definitely don’t start off understanding each other.
Somewhat strikingly, we show that this setting turns into
the same setting as its dual, and that Bob can decide pre-
cisely those problems in PSPACE. (This is not always so
– an exponential-time Bob who is satisfied with erring on
only finitely many instances can only decide problems in
ESPACE, whereas in the dual setting, he can decide any
decidable problem – see Appendix B for details.)

We show this in two parts: first we show that given an
all-powerful (or even a PSPACE-powerful) and sufficiently
helpful Alice, Bob can decide membership for any problem in
PSPACE (see Theorem 4). So, Alice manages to communi-
cate the answer to any such set membership question to Bob
in spite of their lack of a common language to begin with.
The crux of this step is to come up with a proper definition
of “sufficiently helpful” that helps avoid pitfalls such as ex-
pecting to do this with an Alice that doesn’t communicate,
or just spits out random answers, yet also without restrict-
ing Alice so much that the issue of common language simply
goes away. Our definition is given in Section 2.2 where we
discuss why this is a (“most”) reasonable definition. Next,
we show that under any sufficiently strong definition of “lack
of common language” between Alice and Bob, Bob can not
solve problems outside PSPACE even if Alice is sufficiently
helpful (see Theorem 6).

Both our proofs above are based on “enumeration” argu-
ments. In the case where S ∈ PSPACE, Bob enumerates
potential methods for intepreting Alice’s language and rules
out incorrect choices by using his power to verify answers
given by Alice (using this interpreted version of Alice as
a prover). This argument extends a similar argument by
Levin [8] giving an optimal algorithm for NP-search prob-
lems, assuming NP=P. In fact, as pointed out by Oded Gol-
dreich [4], our argument can be abstracted as giving an (ex-
plicit) randomized polynomial time algorithm for PSPACE
assuming PSPACE=BPP. We remark that positive uses of
enumeration are somewhat rare in complexity (as opposed
to the standard use for proving impossibility results) and we
are only aware of such use in [8] and in [5].

Our limitation result, showing S must be in PSPACE,
considers some S outside PSPACE and uses diagonalization
to show that for every Bob there exists an Alice that is help-
ful (to somebody) and yet communicates misleading things
to Bob.

The enumeration argument in our positive result yields a
somewhat weak positive result. In order to establish com-
munication between Alice and Bob, Bob runs in time expo-
nential in a parameter that could be described informally as
the length of the dictionary that translates Bob’s language
into Alice’s language. (Formally, the parameter is the de-
scription length of the protocol for interpreting Alice in his
encoding of Turing machines.) In Theorem 7, we argue that
such an exponential behavior is necessitated by our model
of “lack of understanding” assuming BPP 6= PSPACE, and
a sufficiently general class of “Alices.”

2. COMMUNICATION WITH A COMPUTA-

TIONAL GOAL
In this section we formalize a computational goal for com-

munication and prove feasibility and infeasibility results for
universal communication in this setting. More specifically,

we define a notion of a“helpful”Alice, and the goal of a“uni-
versal” Bob. We show that there is a universal Bob that can
decide PSPACE complete problems when interacting with
any sufficiently powerful and helpful Alice. We also prove
a matching negative result showing that Bob can not de-
cide problems outside of PSPACE, provided the “language”
of Alice is sufficiently unknown. Again crucial to this step
is formalizing the concept of the language being unknown.

2.1 Basic notation
We start by setting up our basic notation for interactive

computation (borrowed from the classical setting of interac-
tive proofs). We assume that Alice and Bob exchange mes-
sages by writing finite length strings from a binary alphabet
on common tape. We assume they are well synchronized2,
i.e., they alternate writing, and they know when the other
has finished writing. Thus a history m of the interaction
consists of a sequence of strings m = 〈m1, . . . , mk〉 where
mi ∈ {0, 1}∗. The odd messages are written by Alice, and
the even ones by Bob. Each player may toss random coins
and have some private inputs. For example, if the k + 1th
message is written by Alice, it is a function of the history
thus far, as well as Alice’s randomness and private inputs.
We describe her response by the function A(m). (We remark
that we don’t highlight her randomness and private inputs,
since these will be irrelevant to Bob.) Similarly Bob’s mes-
sages are also (probabilistic) functions of the history and
any private inputs he may have. Bob’s message on private
input x and history m is denoted B(x;m). Once again this
function may depend on the history of random coins tossed
by Bob but we will suppress this aspect in our notation.

Conditioned on a history m, Alice’s responses in the fu-
ture may be viewed as a new incarnation of Alice. We use
Am to denote her future responses and thus Am(m′) =
A(m ◦ m′) where m ◦ m′ denotes the concatenation of the
histories m and m′.

At the end of an interaction with Alice, Bob will output a
Boolean verdict. (A, B(x)) will denote the random variable
produced by Bob’s output following the interaction between
Alice and Bob, where Bob has private input x. We will
abuse notation in a natural way to let a decision problem
L also denote a Boolean function: L(x) = 1 if x ∈ L and
L(x) = 0 otherwise.

Definition 1. We say that Alice helps Bob decide a prob-
lem L if for every x ∈ {0, 1}∗, it is the case that Pr

ˆ

(A,B(x)) =

L(x)
˜

≥ 2/3.

2.2 Main Definitions and Results
Our general approach is to consider the situation where

Bob interacts with some member of a large class A of Al-
ices, but does not know which specific member of the class
he is interacting with. Essentially, we would like Bob to
be successful in deciding the problem L for every member
of the class A. (Sometimes we may also wish to consider
what Bob does when Alice does not belong to A.) In order
to make this viable, the class A should only include Alices
that are powerful (enough to decide L), and helpful. While

2This and similar syntactic assumptions may already be
questioned in the general setting of “intergalactic commu-
nication.” Indeed these simplify our task, however they do
not trivialize the problem and we are optimistic that these
can be removed at a later stage.

the former is easy to formalize, the latter notion is some-
what subtle. One aspect we’d like to capture here is that
her ability to decide L should be based on her “external
characteristics,” namely on her input/output response, but
this is still insufficient. For instance suppose that for each
round i, Alice has chosen a random bit bi (known only to
her) and then answers any question y with the bit L(y)⊕ bi.
In this setting her input/output response at time i repre-
sents her ability to decide L – someone who knew some bi

would be able to easily obtain L(y) for any y – but this is
clearly not detectable by (poor) Bob. This introduces an
additional element that “helpfulness” must capture, namely
Alice’s behavior as a function of the history of messages thus
far.

In the following definition we attempt to formalize the
notion of a powerful and helpful Alice by setting minimal
restrictions on Alice. Roughly, we insist that Alice be able
to help some Bob′ decide L, conditioned on any prior his-
tory. The requirement that Alice should be able to help
some Bob′ decide L is necessary if we would like to design
a specific Bob to decide L by interacting with Alice. More-
over, observe that if no such Bob′ exists, no matter what
is said to Alice and no matter in what language, Alice pro-
vides no assistance, so the difficulty is surely not merely one
of “lack of a common language.” The requirement that this
should happen independent of any history does restrict Alice
somewhat, but we argue that it is a simple way to overcome
issues such as the time-varying Alice described above, and
therefore a reasonable “universal” principle.

Definition 2 (L-Helpful Alice). We say that Alice
is L-helpful if there exists a probabilisitic algorithm Bob and
a polynomial p, such that for every prior history m, the
incarnation of Alice conditioned on the history, Am, helps
Bob decide L in p(n) steps (independent of m).

We remark that this Alice is not assumed to be an oracle;
her responses may depend on m in general,3 and this is
essential for our approach to claim any relevance. We only
require that Bob is successful independent of m.

We now formalize Bob’s goal in this computational set-
ting.

Definition 3 (L-Universal). We say that Bob is a
universal decider for a decision problem L, or L-universal,
if for any L-Helpful Alice, Alice helps Bob decide L and there
exists a polynomial p such that for every instance x ∈ {0, 1}∗
Bob runs in expected time p(|x|).

Our main theorem is the following result, which gives a
universal Bob for problems in PSPACE.

Theorem 4. For every PSPACE complete problem L, there
is a Bob that is L-universal.

This result uses the power of interactive proofs and in par-
ticular the fact that PSPACE has short interactive proofs [9,
12]. Effectively Bob attempts to get from Alice, not only the
answer to a question of the form “Is x ∈ L?”, but also an
interactive proof of this answer.

3Hence, in particular, checkability of L will be insufficient,
cf. Theorem 6 unless PSPACE=EXP [1].

Next we will rule out the possibility of obtaining a L-
Universal Bob for L /∈ PSPACE. We prove this by show-
ing that if we consider any sufficiently broad class of help-
ful Alices A, then for every probabilistic polynomial time
bounded Bob, there exists an Alice in the class A such that
the decision problem (promise problem to be more precise)
that Alice helps Bob decide is contained in PSPACE. To
get a minimal version of such a result, one could simply
let A be the the class of all L-helpful Alices. However in
this case, the inability of Bob to understand Alice could po-
tentially be attributed to the “deviousness” of Alice, rather
than misunderstanding between Alice and Bob. So we con-
sider instead more restricted classes A—ones that contain
any one L-helpful Alice A and all her “linguistic cousins,”
i.e. all other Alices who carry exactly the same power as
A, but whose language can be translated to that of Alice
by a logspace computable and logspace invertible function.
We chose logspace functions because it is a natural uniform
class that is closed under composition and eliminates cer-
tain kinds of unpredictability (e.g., pseudorandomness un-
der one-way access to random bits [7]). We formalize such
classes in the definition below. In the following, an incarna-
tion Af

A′ is simply A who uses the dictionary f to convert

from A’s language to hers and the dictionary f−1 to convert
back, and uses A′ to respond to messages that aren’t in her
language.

Definition 5 (Semantically closed class). We say
that a class of Alices A is semantically closed if for ev-
ery injective function f where f and f−1 are computable
in logspace and for every logspace Alice A′, for each mem-
ber A ∈ A, the following incarnation Af

A′ is also in A:

Af

A′ responds with A′(m1, . . . , mr) for messages mr outside
the range of f , and otherwise for mr in the range of f ,
Af

A′ responds with f(A(m′
1, . . . , m

′
k, f−1(mr))) where m′

j =

f−1(mij
) for the sub-history mi1 , . . . , mik

of all prior con-
secutive pairs of messages in the range of f .

We now state our impossibility result for L-universal de-
ciders for L 6∈ PSPACE.

Theorem 6. Let L be a decision problem that is not in
PSPACE. Let A be a semantically closed class of L-helpful
Alices. Then for every probabilistic algorithm B, there exists
an Alice A ∈ A such that B fails to decide L with the help
of A.

The insistence that we deal only with semantically closed
classes is somewhat broad so we discuss the definition next.
This definition is consistent with our goal that we make few
assumptions about language, and this definition suggests
that every logspace computable translation of a“natural lan-
guage” is also natural. This is, of course, somewhat broad,
yet we don’t believe this is the aspect that limits the power
of universal semantics. This is merely a definition under
which we can prove the limitations.

Perhaps a more distressing consequence of the level of gen-
erality we seek is that the running time of the universal Bob
constructed in Theorem 4 is exponentially long in the de-
scription length of the shortest asymptotically optimal pro-
tocol for interpreting Alice (in Bob’s encoding). Notice that
with a trusted third party, Bob would have had only a poly-
nomial dependence on the encoding of this protocol. The
following theorem asserts that this is necessary:

Theorem 7. Let L be a PSPACE-complete decision prob-
lem, let A be a semantically closed class of L-helpful Al-
ices, and let A|t ⊂ A be the subclass that help some protocol
running in time O(t(n)). Then, unless PSPACE=BPP, if
a probabilistic algorithim Bob decides instances of L using
the help of an arbitrary Alice in A|t in time O(nk), Bob’s
running time must also be exponential in the description
length of the shortest protocol that is helped by Alice in time
O(t(n)).

To prove this theorem we exhibit an infinite family of Al-
ices such that each Alice helping a protocol of description
length k + O(1) expects a different “password” of length k.
Since Alice is a black-box to Bob, a Bob running in time
subexponential in k does not have time to try every pass-
word, and thus must output a verdict without Alice’s help.

2.3 Proofs of theorems
We begin by observing that it is a trivial consequence

of the definition of L-Universal that any L-Universal Bob
satisfies the following “weak soundness” condition:

Definition 8 (Weak Soundness). We say that Bob
has weak soundness if for every L-helpful Alice and all x,
the probability that (A, B(x)) 6= L(x) is at most 1/3.

By contrast, we could have considered the following “strong”
definition of L-Universality

Definition 9 (Strongly L-Universal). We say that
Bob is a strongly universal decider for a decision problem L,
or strongly L-universal, if it satisfies the following condi-
tions:

Completeness If Alice is L-Helpful, then Alice helps Bob
decide L and there exists a polynomial p such that for
every x ∈ {0, 1}∗ Bob runs in expected time p(|x|).

Soundness For every Alice and all x, the probability that
(A, B(x)) 6= L(x) is at most 1/3.

Before proving our main theorems in this setting, we dis-
cuss this definition a bit, especially the strong vs. weak
soundness condition. We are envisioning an exchange be-
tween a helpful Alice and Bob, and the completeness condi-
tion merely states our goal that Bob should be able to exploit
Alice’s help. The soundness condition leads to a choice. Bob
doesn’t understand Alice; should he trust her in spite of this?
The weak soundness condition is the trusting scenario, and
says that Bob should not make incorrect decisions when Al-
ice is being helpful, though if Alice is malicious/non-helpful,
there are no guarantees. The strong soundness condition is
the more xenophobic one, allowing the lack of understand-
ing to lead to a lack of trust. As we will see below, the
distinction turns out to be really not important.

For our main theorem, we will actually prove the following
(seemingly stronger) positive result, which gives a strongly
universal Bob for PSPACE-complete problems.

Theorem 10 (Theorem 4, strong version). For ev-
ery PSPACE complete problem L, there is a Bob that is
strongly L-universal.

Proof. Recall that we need to construct a Bob B that
can interact with an Alice A to compute L(x). We start
with an overview first.

Note that since Alice is helpful there exists some Bob B∗

that can decide L with Alice’s help. The Bob B we con-
struct (using an idea originally due to Levin [8] and further
developed by Goldreich and Ron [5]) enumerates all Bobs

B̃ hoping to guess B∗. If B̃ = B∗ then Bob gets an “ora-
cle prover”with the power to answer any PSPACE problem.
This allows our Bob B to simulate an interactive proof of the
fact that x ∈ L (using the fact that PSPACE in contained
in IP [9, 12], where the prover only needs be in PSPACE).

If B̃ 6= B∗, then since B can never be convinced of a wrong
assertion (of the form x ∈ L when actually x 6∈ L), this sim-

ulation does not lead B astray. It simply rules out B̃ as the
guess and moves on to the next guess for B∗. In the details
below we attempt to ensure that B’s running time is not too
large when Alice is helpful, and also to ensure termination
(though not in polynomial time) when Alice is not helpful.

Construction of B: Let VL denote the verifier for the
language L′ = {(x, b)|L(x) = b}. We assume that VL ex-
changes at most r(|x|) messages with any given prover for
some polynomial r. Let PL denote the “optimal binary
prover”for this language, i.e., PL(x, b,m, y) gives the Boolean
answer to question y that is most likely to cause VL to ac-
cept on input (x, b) after history of interactions being m.
Note the PL is computable in PSPACE and so there exists
a reduction fL such that fL reduces the optimal prover’s
computation to a decision problem in L. In other words
PL(x, b,m, y) = L(fL(x, b, m, y)). We show how to use fL

and VL to help construct Bob B. Our final Bob B runs two
Bobs B1 and B2 in parallel and halts whenever either of
them halts and outputs the answer of the one that halted.

B1 is simply the Bob that runs in time 2p1(|x|) for some
polynomial p1 to decide if L(x) = b. We hope not to use
this Bob much with a helpful Alice. It is used to provide a
bound on the number of times we simulate the interaction
between PL and VL, and thereby permits us to guarantee a
negligible probability of failure.

B2 is the crucial element in our construction. On input
x, B2 enumerates triples (B̃, t, b) where B̃ is a probabilistic
algorithm, t is an integer, and b is a bit. Following Goldreich
and Ron [5] we enumerate triples (B̃, t, b) in phases: in the

ith phase, for both b ∈ {0, 1}, we enumerate all B̃ having
programs of length at most i − 2 lg i, with each program of

length ℓ having t = 2i

ℓ22ℓ . For each such triple, B2 attempts

to use (A, B̃(·)) as an oracle for PSPACE to simulate the
interactive proof to verify if L(x) = b as follows:

• It simulates the probabilistic computation of the veri-
fier VL.

• To simulate the optimal prover it attempts to compute
PL(x, b,m, y) = L(fL(x, b,m, y)) by interacting with

A according to B̃(x, b,m, y), and taking the verdict of

B̃ as the prover’s message.

For (B̃, t, b), in total we only simulate up to t steps of these
computations. We repeat this simulation n+18p1(n) times,
and we keep count of how many times the conversation halts
with VL accepting. If the majority of the simulations accept,
then B2 halts and outputs L(x) = b; if not it continues on

to the next triple (B̃, t, b).
Analysis: We now analyze the completeness and sound-

ness of B. The soundness of B is a straightforward conse-
quence of the soundness of the verifier VL, the verifier for

the language L′; notice that we finish within 2p1(n) phases,
where we have reduced the probability of failure in a phase
to 2−p1(n) · negl(n). Thus, if VL halts and accepts a pair
(x, b) with noticeable probability, it must be that L(x) = b.
So this yields that the probability that B2 halts and pro-
duces the wrong answer is negligible. B1 never produces the
wrong answer so we always have the right answer.

To finish up, we need to show that if A is L-helpful then
B halts in some fixed polynomial time and outputs L(x). To
see this note that B∗, the Bob that makes A helpful, must
be enumerated sometime by B2. Since B∗ is efficient, its
computation can be simulated in p2(n) steps for some poly-
nomial p2. Likewise, the computation of VL can be simulated
in at most p3(n) steps for some polynomial p3, and thus if
t ≥ r(n)(p2(n) + p3(n)), the simulation runs to completion
in t steps. At this stage B2 has access to an optimal prover
for PSPACE which will convince it to accept L(x) = b, for
the right choice of b. This ensures completeness of the Bob
B. It is easy to verify that if B∗ has length ℓ∗, the choice of
enumeration guarantees that B2 spends at most 2O(ℓ∗)t(n+

18p1(n)) steps before enumerating the triple (B̃, t, b). Since
the simulations complete for t ≥ r(n)(p2(n)+p3(n)), B runs
for at most O

`

r(n)(p2(n)+ p3(n))(n+ p1(n))
´

steps in total
whenever A is helpful.

The one weakness in our definitions and constructions is
that we allow Bob’s running time to depend on Alice. This
is essential to get universality and we prove this formally in
Proposition 11 below.

Proposition 11. If, for a PSPACE complete problem L,
there exists a B and a k such that for every A in the semantic
closure of an oracle for L, B decides L with the A’s help in
time O(nk), then BPP = PSPACE.

Note that any A in the semantic closure of an oracle for
L is L-helpful, so this is a weaker requirement on B.

Proof. The proof is a simple padding argument. Assume
that such a Bob B exists with running time O(nk) (that
achieves exponentially small error). Consider an Alice who

decides {x10|x|2k

: x ∈ L}. Clearly such an Alice is in the
semantic closure of an oracle for L. Now consider the task
of deciding if x ∈ L when n = |x| is sufficiently large. While
trying to decide this, Bob only has time to query Alice with

queries of the form y10|y|2k

for |y| =
√

n. Thus such a Bob
gives a (probabilistic) Cook reduction from L instances of
length n to at most nk instances of L of length O(

√
n). We

can now use the same Bob recursively to solve the smaller
problems. Analyzing the resulting recurrence (and using the
fact that the probabilities of error are negligible), we get a
net probabilistic running time of O(n2k) to decide L, where
L was PSPACE complete.

Next we show that Bob’s running time, as a function of
the length of the shortest asymptotically optimal protocol
for receiving help from Alice, really needs to be exponential,
assuming BPP is different from PSPACE.

Proof. (of Theorem 7) Let any A ∈ A|t be given. We
start by constructing a family of L-helpful Alices {Aσ}σ for
every σ ∈ {0, 1}∗, where Aσ behaves as follows: for Aφ which
always responds with the empty string and fσ(y) = σ ◦ y,

Aσ = Afσ

Aφ
.

Clearly, for the Bob B∗ that is helped by A and runs in
time O(t(|x|)), the Bob B∗

σ who converts each query to σ◦x,
converts Alice’s reponses back from this form, and otherwise
computes the same function as B∗ has description length
|σ| + O(1) and runs in time O(t(|x|)). Furthermore, every
Aσ is in the semantic closure of A, and thus is clearly also
in A|t.

Now suppose there is a L-universal Bob B whose proba-
bilistic running time when interacting with any Aσ on input
x is 2o(|σ|)|x|k, i.e., O(|x|k) and subexponential in |σ|. We
show that B can be used to decide L, which is assumed to
be PSPACE-complete.

We simulate B interacting with an Alice who always re-
sponds with the empty string. Notice that if B runs for less
than 22k lg |x| steps, then there is some σ of length 2k lg |x|
such that Aσ is consistent with this set of responses. Since
B has running time O(|x|1.5k) for all such Aσ, for all suf-
ficiently large x B must halt without receiving a response
from Alice other than the empty string, and in this case we
can output Bob’s verdict. Since all Aσ help Bob decide L,
this is sufficient.

Finally we prove Theorem 6 which shows that even un-
der the“weak”definition of L-universality, Bob is essentially
restricted to accepting languages in PSPACE.

Proof. (of Theorem 6) We prove this theorem in two
steps. First we show that if a Bob B is strongly L′-universal
(meeting both the completeness and soundness conditions),
then L′ must be in PSPACE. We then show that if for some
language L 6∈ PSPACE, Bob meets the completeness condi-
tion for L-universality, but is unsound against some Alice,
then he is unsound against some (helpful) Alice in A.

Step 1: Let B be strongly universal and let A∗ be any
L′-helpful Alice; since B satisfies the completeness condi-
tion, there is some polynomial p such that the interaction
(A∗, B(x)) halts within p(|x|) steps in expectation for every
x.

Now, given x, consider Ax, the Alice who sends B a mes-
sage that maximizes the probability that B halts within
6p(|x|) steps. Since Markov’s inequality says that when B
interacts with A∗ the probability that B takes more than
6p(|x|) steps is less than 1/6, the interaction (Ax, B(x)) also
halts within 6p(|x|) steps with probability greater than 5/6
(since Ax maximizes this).

Since B satisfies the soundness condition, we find that
(Ax, B(x)) = L′(x) in 6p(|x|) steps with probability greater
than 1/2. We now observe that in polynomial space, on
input x, we can calculate Pr[(Ax, B(x)) = 1 in 6p(|x|) steps]
where we will decide L′ if we accept precisely when this
probability is greater than 1/2.

Step 2: We now consider a language L 6∈ PSPACE and a
L-universal Bob B. Since B can not be sound (by Step 1),
we have that there exists A, x, and a finite set of coin tosses
occurring w.h.p., for which B halts on interacting with A
and (A,B(x)) 6= L(x). Let ℓ be the length of the longest
message sent by B(x) on these coins when interacting with
A. We now convert such an Alice A into a helpful one A′

x: let
Ã be any L-helpful Alice in A with B̃ being a Bob that can
decide L with the help of Ã. If A′

x answers messages of the
form 0ℓ+1 ◦y as Ã answers y padded with 0ℓ+1, and answers
as A does on prefixes of the finite set of histories where
B errs, then A′

x is helpful (to the Bob B′
x who simulates

B̃ by padding each message m to 0ℓ+1 ◦ m and converting

the response back), yet w.h.p. B returns the wrong answer
on x when interacting with A′

x, violating the completeness
condition. Finally note that some such A′

x is in the semantic
closure of Ã.

3. CONCLUSIONS AND FUTURE WORK
In the previous sections we studied the question, “how

can two intelligent interacting players attempt to achieve
some meaningful communication in a universal setting, i.e.,
one in which the two players do not start with a common
background?” We return now to the motivation for studying
this question, and the challenges that need to be dealt with
to address the motivations.

3.1 Practical motivation
We believe that this work has raised and addressed some

fundamental questions of intrinsic interest. However this is
not the sole motivation for studying this problem. We be-
lieve that these questions also go to the heart of “protocol
issues” in modern computer networks. Modern computa-
tional infrastructures are built around the concept of com-
munication and indeed a vast amount of effort is poured
into the task of ensuring that the computers work properly
as communication devices. Yet as computers and networks
continue to evolve at this rapid pace, one problem is becom-
ing increasingly burdensome: that of ensuring that every
pair of computers is able to “understand” each other, so as
to communicate meaningfully.

Current infrastrusctures ensure this ability for pairs to
talk to each other by explicitly going through a “setup”
phase, where a third party who knows the specifications of
both elements of a pair sets up a common language/protocol
for the two to talk to each other, and then either or both
players learn (download) this common language to estab-
lish communication. An everyday example of such an oc-
curence is when we attempt to get our computer to print on
a new printer. We download a device driver for our com-
puter which is a common language written by someone who
knows both our computer and the printer.

We remark that this issue is a fundamental one, and not
merely an issue of improper design. Current protocols are
designed with a fixed pair of types of devices in mind. How-
ever, we expect for our computers to be capable of com-
municating with all other communication devices, even ones
that did not exist when our computer was built. While it
would be convenient if all computers interacted with each
other using a single fixed protocol that is static over time,
this is no more reasonable to expect than asking humans to
agree on a single language to converse in, and then to ex-
pect this language to stay fixed over time. Thus, to satisfy
our expectations in the current setting, it is essential that
computers are constantly updated so as to have universal
connectivity over time.

The current model for maintaining connectivity is based
(implicitly) on trusted“third parties”who advise us on when
to update our languages. This process, however, leads to
compromises in terms of efficiency as computers spend more
of their time downloading languages and less on real com-
putation or communication; reliability, since the protocols
often lead to inadvertent errors; and security, because many
viruses and other corrupting elements are introduced at this
stage. In particular defining interfaces/protocols is an ex-
tremely complex task, made especially so because the players

at the two ends are “universal computers” and could behave
in any of a countable number of different ways. Anticipating
all possible behaviors and reasoning about them is a daunt-
ing task, to say the least.

This work was motivated by a somewhat radical alter-
native scenario for communication. Perhaps we should not
set computers up with common languages, but rather ex-
ploit the universality in our favor, by letting them evolve
to a common language. But then this raises issues such as:
how can the computers know when they have converged to
a common understanding? Or, how does one of the com-
puters realize that the computer it is communicating with is
no longer in the same mode as they were previously, and so
the protocol for communication needs to be adjusted? The
problem described in the opening paragraph of the introduc-
tion is simply the extremal version of such issues, where the
communicating players are modeled as having no common
background.

Of course, we did not settle such questions in this first
work! The aim of this work is to provide a precise formula-
tion of such questions. Perhaps the main contribution of this
work is to suggest that communication is not an end in itself,
but rather a means to achieving some general goal. Such
a goal certainly exists in all the practical settings above,
though it is no longer that of deciding membership in some
set S. Our thesis is that one can broaden the applicability of
this work to other settings by (1) precisely articulating the
goal of communication in each setting and (2) constructing
“universal protocols” that achieve these goals. In upcoming
work we consider some generalizations, which we describe
next.

3.2 Forthcoming work
In upcoming work we consider two extensions of this work.
In the first we consider a broader class of “informational

goals” that Bob may wish to achieve by interacting with Al-
ice. For instance, we consider a setting in which Alice is also
computationally bounded and can only solve problems in P.
In such a setting Bob can no longer expect to gain com-
putational “wisdom” from Alice since he can solve all the
problems she can. Yet, a vast fraction of human commu-
nication occurs in this setting, and it seems unreasonable
to declare all of it a waste. Presumably such interactions
satisfy some goal other than that of seeking “wisdom.” In
upcoming work, we attempt to describe some goals that at-
tempt to model such “intellectual curiosity” and show how
to achieve universal communication in such settings.

In the second extension, we consider a generic abstraction
of the notion of “goals of communnication.” This setting
attempts to present a single formulation of a “generic goal
of communication” which includes both intellectual goals,
such as the one considered in this work, as well as more
control-oriented goals, such as that of a computer printing
on a printer. We show that whenever such generic goals are
verifiable by “Bob,” universal communication is possible.

3.3 Open Problems
Given that the task of correctly printing on a printer is a

“verifiable”task (at least with some human intervention), the
second extension described above should have completely
settled the task of designing a universal printing protocol.
Yet obviously this is not so. Why? The principal bottle-
neck to converting any of the proposed approaches of this

work and those in the forthcoming ones is that they all em-
ploy brute force enumeration of all possible protocols as a
means for searching for the right one. Can this be avoided
or otherwise ameliorated? The lower bound from Theorem 7
says that this exponential lower bound on the running time
can not be avoided. But it does so under our definition of
“semantic closure” of Alices. Clearly this lower bound is a
consequence of this somewhat broad view of reasonable “Al-
ices.” Our lack of a narrow yet functionally rich class of
Alices that would allow efficient universal communication
is, in our opinion, a major challenge to enabling universal
communication. At the moment we do not know if any such
class can be characterized by reasonable definitions.

Even if such a class does not exist, the utilization of uni-
versal protocols in practical settings is not ruled out en-
tirely. One of the implicit suggestions in this work is that
communicating players should periodically test to see if the
assumption of common understanding still holds. When this
assumption fails, presumably this happened due to a “mild”
change in the behavior of one of the players. It may be
possible to design communication protocols that use such
a “mildness” assumption to search and re-synchronize the
communicating players where the“exponential search” takes
time exponential in the amount of change in the behavior of
the players. Again, pinning down a precise measure of the
change and designing protocols that function well against
this measure are open issues.

Acknowledgments

We would like to thank Silvio Micali and Ronitt Rubinfeld,
for encouraging us through early stages of this work. We
are deeply indebted to Oded Goldreich for his enthusiastic
support of this work and for the wisdom he shared with us.
His detailed comments and suggestions clarified our work to
us, and hopefully have helped improved the writeup. We’d
like to thank Bob Berwick for his interest and his efforts to
educate us on the work in linguistics, and many illuminating
conversations. We would also like to thank Manuel Blum
and Steven Rudich for illuminating conversations, and Ryan
Williams for taking the time to read and provide comments
on an earlier draft of this writeup. Finally, we thank our
anonymous reviewers for their suggestions.

4. REFERENCES

[1] L. Babai, L. Fortnow, and C. Lund. Non-deterministic
exponential time has two-prover interactive protocols.
Computational Complexity, 1(1):3–40, 1991.

[2] M. Blum and S. Kannan. Designing programs that
check their work. In Proc. 21st STOC, pages 86–97,
1989.

[3] H. Freudenthal. LINCOS: Design of a Language for
Cosmic Intercourse. North-Holland Publishing
Company, Amsterdam, 1960.

[4] O. Goldreich. Personal communication, February 2007.

[5] O. Goldreich and D. Ron. On universal learning
algorithms. Information Processing Letters,
63:131–136, 1997.

[6] S. Goldwasser, S. Micali, and C. Rackoff. The
knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, 1989.

[7] M. Kharitonov, A. V. Goldberg, and M. Yung. Lower
bounds for pseudorandom number generators. In Proc.
30th FOCS, pages 242–247, 1989.

[8] L. A. Levin. Universal search problems. Probl. Inform.
Transm., 9:265–266, 1973.

[9] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan.
Algebraic methods for interactive proof systems.
Journal of the ACM, 39(4):859–868, October 1992.

[10] M. Minsky. Communication with alien intelligence. In
E. Regis, editor, Extraterrestrials: Science and Alien
Intelligence, pages 117–128. Cambridge University
Press, New York, USA, 1985.

[11] W. V. O. Quine. Word and Object. MIT Press,
Cambridge, 1960.

[12] A. Shamir. IP = PSPACE. JACM, 39(4):869–877,
1992.

[13] C. E. Shannon. A mathematical theory of
communication. Bell System Technical Journal,
27:379–423, 623–656, 1948.

[14] A. C.-C. Yao. Some complexity questions related to
distributed computing. In Proc. 11th STOC, pages
209–213, 1979.

APPENDIX

A. ON LINCOS
The aim of LINCOS [3] is to provide a means to send

meaningful messages across intergalactic distances to “hu-
manlike” recipients with whom we have had no prior con-
tact. Because our current understanding of the laws of
physics suggests that communication across such vast dis-
tances is necessarily slow, it is essentially necessary that the
method be non-interactive (in contrast to the protocols we
have considered). Thus, over the course of a transmission,
Freudenthal attempts to develop a vocabulary, beginning
with simple, concrete concepts, and gradually building on
these to introduce more and more abstract concepts, until
a sufficiently rich vocabulary has been developed to permit
the desired message to be sent in a form that the recipient
will understand.

Freudenthal assumes that the message will be transmitted
by means of radio waves, and uses physical properties of the
waves to illustrate the earliest concepts (again, in contrast
to our setting of pure information, where we have abstracted
away these properties). For example, a pulse of a given du-
ration is used to illustrate a length of time, and a natural
number n is initially illustrated by n pulses. New vocabulary
are introduced by including a new “symbol” (waveform) in
a list of example messages illustrating the use of that sym-
bol. Again, for example, suppose that we wish to define a
symbol that means “equals.” Let · denote a pulse, and let =
denote the waveform we wish to associate with the notion
of equality. We would then send a message of the following
form, letting spaces be communicated by pauses: · = · =
· · · · · = · · · · · · · · · · · · = · · · · · · · · · ·· = · · ·· etc. After many,
many such examples, roughly corresponding to messages of
the form “n = n” for various values of n, Freudenthal as-
serts that a “humanlike” recipient will have observed that
the quantities preceding and following the waveform for =
are always equal, and has inferred that “=” is generally used
when these quantities are equal. Therefore, we assume that
henceforth the symbol “=”may be used to communicate the
concept of equality.

Our primary criticism of LINCOS is that Freudenthal does
not define precisely what his setting is, where in the absence

of formal definitions, there is no way to prove that the inten-
tions are achieved. If we attempt to provide a formal setting
for LINCOS, we quickly see that there are some unresolved
issues, as follows. Aside from taking basic, concrete notions
(pauses, natural numbers, etc.) for granted, we may ob-
serve that the central assumptions of LINCOS are that: (i)
Sufficiently many examples are given so that the intended
concept is “obvious.” (ii) The concept being illustrated is
associated with the symbol being introduced. Where, even
if we take the subtle issue in assumption (ii) for granted,
it is still unclear how to determine in general the number
of examples necessary for assumption (i) to hold. A more
rigorous analysis of LINCOS would be desirable, but this
seems to be beyond our capabilities at the moment.

B. MISTRUST VS. MISUNDERSTANDING
Given that our questions about how rich a class of con-

cepts can be communicated without a common language
were resolved in a way that closely parallels the resolution to
the analogous questions about IP, it is natural to wonder if
the settings were really ever different—whether we had sim-
ply restated a disguised version of IP = PSPACE. Although
we feel that the model we have presented is intuitively ap-
pealing and addresses the “right” question, and was worthy
of study on those grounds alone, we would now like to point
out that our model of misunderstanding is, in general, actu-
ally quite different from the usual model of mistrust.

To establish this difference we consider a new class of
“Bobs.” In this setting, we consider an exponential time Bob
(or a Bob interested in deciding a unary language), whose
goal is to decide a language L, but is willing to tolerate er-
rors on a finite set of instances in his quest for universality.
Below we formalize the concept of a helpful Alice in this set-
ting, and a “finite-error universal Bob.” We then show that
every decidable problem L has such a finite-error universal
Bob running in exponential time. To derive this result, we
make positive use of the technique of “lazy diagonalization.”

As described above, we make two modifications to our
setting. First, we will “scale up” to an exponential time
notion of language.

Definition 12 (L-Helpful for Exponential-time).
We say that Alice is L-helpful for Exponential-time if there
exists a probabilisitic time 2O(n) bounded Bob, such that for
every prior history m, the incarnation of Alice conditioned
on the history, Am, helps Bob decide L.

Second, we will relax our requirements for Bob. We allow
Bob to err on a finite set of instances depending on Alice,
and relax his running time condition on failures.

Definition 13 (Finite-error Exp-time L-Universal).
We say that Bob is a finite-error universal exponential-time
decider for a decision problem L, or Finite-error Exponential-
time L-universal, if for any Alice who is L-helpful for exponential-
time, there exists a constant CA and a polynomial pA such
that for all x ∈ {0, 1}∗ of length at least CA, Pr[(A, B(x)) =

L(x) in pA(2|x|) steps] ≥ 2/3

Notice that in interactive proofs, if we utilize an exponential-
time verifier, the arguments in IP = PSPACE “scale up” to
give us proof systems for precisely ESPACE. Allowing the
verifier to err on a finite set of instances and run for a long

time on instances where the proof fails does not change the
class of problems, since these “corrections” could be hard-
coded into the simulator for the proof system. Thus, in this
context, the following is striking:

Theorem 14. For any decidable L, there is a finite-error
exponential-time L-universal Bob.

We will use the following enumeration in the construction

Lemma 15. There is an enumeration of all triples (B̃, σ, k)

where B̃ is a probabilistic interactive Turing machine, k is
an integer, and σ is a string, such that if each B̃ is simu-
lated on input σ for 2k|σ| steps in enumeration order, the
following properties are satisfied

1. Any fixed B∗ and input x of length n is simulated for
2kn steps within 2O((|B∗|+k)n) steps.

2. For any fixed B∗ and k∗, there is an integer N(B∗, k∗)

such that there are at most N(B∗, k∗) pairs (B̃, k′) such

that for any x, the triple (B̃, x, k′) is enumerated before
(B∗, x, k∗).

3. For any fixed B∗ and k∗, the triples (B∗, σ, k∗) appear
enumerated according to a standard length-increasing
enumeration of binary strings.

Proof. The enumeration proceeds in phases, i = 1, 2,
In phase i, for each j = 1, . . . , i − 1, we check if j|i. If so,
we put m = i/j, and for each σ of length m in standard
order, we repeat the following. For each ℓ = 1, . . . , j − 1, we
put k = j − ℓ, and for each B̃ with a description of length ℓ
(listed in some fixed order), the next triple is (B̃, σ, k).

Analysis We verify the three claimed properties.

1. Notice first that when we are running the simulations
for the tuples corresponding to a fixed ℓ, k, and σ of
length m, there are 2ℓ such interactive Turing machines
and each is run for 2km steps. Thus, for a fixed σ, the
simulations take at most 2(j−1)m+2 steps. There are
2m σ of length m, so the simulations for each m take
at most 2m2(j−1)m+2 = 2jm+2 steps.

Now, notice that for a given phase i, there are at most i
pairs (j, m) such that j ·m = i so the total running time
in a given phase i is at most 22i+2. So in particular, up
to the completion of the ith phase, the total running
time is at most 22i+3. Since the triple (B∗, x, k) for
x of length n is enumerated when j = |B∗| + k and
i = j ·n = (|B∗|+ k)n, this triple is enumerated during
the (|B∗| + k)nth phase, which thus completes within

22(|B∗|+k)n+3 steps.

2. Notice that for any given σ of length m, for a partic-
ular |B∗| and k∗, we enumerate (B∗, σ, k∗) whenever
j = j∗ = |B∗|+k∗. Prior to this triple, on the same in-

dex j∗ we always enumerate the same set of pairs (B̃, k)

with |B̃|+ k = j∗. Now, suppose we output (B∗, σ, k∗)
on index i∗ = j∗m. Notice also that since i is strictly
increasing, if we consider the triples output with differ-
ent values of j, for a fixed length m, only pairs (B̃, k)

with |B̃| + k = j < j∗ can have been enumerated since
otherwise j > j∗ and we would have for some i′ ≤ i∗

i′ = j · m > j∗ · m = i∗. Notice that there are at most
j pairs (|B̃|, k) satisfying |B̃| + k = j, and therefore

at most j2j triples (B̃, σ, k) at any index j ≤ j∗, and

hence N(B∗, k∗) = 22(|B∗|+k∗)+1 suffices.

3. For a fixed (B∗, k∗), for each σ of some fixed length m,
we output a triple containing (B∗, k∗) precisely once
each time we consider j∗ = |B∗| + k∗. Notice that,
for a fixed m, we consider the strings σ of length m in
standard order. So, for each m, the triples (B∗, σ, k∗)
for σ of length m are output in standard order. Again
now, since i is strictly increasing, prior to m, we could
only have considered j∗ with m′ < m since otherwise
we would have for i′ < i i′ = m′ · j∗ > m · j∗ = i.
Thus, we output the triples (B∗, σ, k∗) in the desired
length-increasing standard order.

Proof. (of Theorem 14) We wish to construct a Bob
B that, for all sufficiently long instances x, when interacting
with Alice A, computes L(x).

The construction is similar to the one used in Theorem 4,
with two major differences. First, rather than using a proof
system to guarantee soundness, Bob computes L(y) on as
many small instances y as he can within his time bound.
For each guess B̃ in Bob’s enumeration, Bob will then check
the answers B̃ obtains from Alice on these small instances.
We can then guarantee that if Bob would obtain an incorrect
answer by following B̃ on y, for sufficiently long x, Bob has
computed L(y) himself, and knows that B̃ is not the Bob
B∗ who decides L with Alice’s help, so Bob moves on to the
next guess B̃ in his enumeration. Thus, since B∗ occurs at
some finite index in the enumeration, there is some finite
bound on the number of times Bob must change B̃, and
hence some longest small instance y for which Bob needs to
compute L(y) to prompt a revision. So, our analysis here
will resemble “learning in the limit,” rather than universal
search.

This reasoning is only sound if Bob makes queries from
the same distribution independent of x so that Alice really
misleads each ith B̃ on the same instances yi. So, our second
change is that, to decide x, Bob uses B̃ to ask about every
instance z preceding x in some (length-increasing) enumer-
ation. This achieves the desired effect, but makes essential
use of the fact that Bob is allowed exponential time to run.

Construction of B: Let {σi} be the standard enumer-
ation of binary strings. Since L is decidable, let M be a
decision procedure for L, let T (y) denote the running time

of M on input y, and let Kn = max
n

k :
Pk

i=1 T (σi) < 2n
o

.

On input x, B first simulates M on inputs σ1, σ2, . . . for
up to 2n steps, and thus computes L(σ1), . . . , L(σKn). Bob

then enumerates triples (B̃, σ, k) according to the enumer-

ation guaranteed to exist in Lemma 15. For each (B̃, σ, k),

Bob simulates B̃ to interact with A for up to 2km steps on
input σ, repeating the interaction up to 36(m + 2) times
if it completes. If all 36(m + 2) interactions complete and
σ ∈ {σ1, . . . , σKn}, Bob checks that the majority agrees with

L(σ); if not, Bob marks (B̃, k) as FAULTY. Finally, if σ = x,

and (B̃, k) is unmarked, Bob halts and outputs the majority

answer for (A, B̃(x)) as his verdict.
Analysis: Observe first that only Bob’s stopping rule de-

pends on his input x; otherwise, Bob’s interaction with Alice
is independent of x. Since Alice is L-Helpful for Exponential-
time, there is some B∗ running in time 2k∗n such that for
all inputs z, Pr[(A, B∗(z)) = L(z)] ≥ 2/3. For k′ = k∗ + 1,
clearly all 36(m + 2) interactions should complete within

2k′m steps on inputs of length m. Observe that the enu-
meration guarantees that there are at most N = N(B∗, k′)

pairs (B̃, k) occurring prior to (B∗, k′) on each input in the
enumeration.

Claim 16. There is a sequence of r ≤ 6N2 instances
y1, . . . , yr = σz such that if Kn ≥ z, then for each (B̃, k) be-

fore (B∗, k′) in Bob’s enumeration, either (B̃, k) is marked

as FAULTY, or else (B̃, k) fools Bob into outputting a wrong
answer with probability at most 1/6N

Proof. (of claim) Consider the sequence of instances
y1, y2, . . . where yi is the first instance (in standard order)
for which, on input yi, Bob computes L(yi−1) and for some

(B̃, k) before (B∗, k′) in the enumeration, Bob would output

a wrong answer after concluding the simulations of (A, B̃(yi))

with probability at least 1/6N . Let BADCOINS((B̃, k), i)
be the set of coin tosses that lead Bob to this event.

Observe that, if (B̃, k) would mislead Bob into outputting
an incorrect answer on some sequence of coin tosses on any
σs ∈ {y1, . . . , yi−1} and Kn ≥ s, then after the simula-
tions resulting from that sequence of coin tosses Cs, Bob
would notice that the answer obtained from (A, B̃(σs)) did
not match his computed value L(σs), and so by construc-

tion (B̃, k) would be marked as FAULTY. Of course, by our
choice of yi, Bob computes L(σs) on input yi. Therefore,
since Bob’s behavior is deterministic on any fixed sequence
of coin tosses, (B̃, k) is marked as FAULTY on this input on
any sequence of coin tosses having Cs as a prefix. In partic-
ular, by construction now, observe that since Bob considers
the instances in order and (B̃, k) cannot mislead Bob if it is

marked FAULTY, the sets BADCOINS((B̃, k), i) are prefix-

free, and thus, for a fixed (B̃, k), the events of picking a se-

quence of coin tosses that have a prefix in BADCOINS((B̃, k), i)
are disjoint, and so the probability of some such event occur-
ring is the sum of the probabilities of the individual events.

Finally, observe that if there were more than 6N2 such
instances, some (B̃, k) must be fooling Bob with probability
at least 1/6N on more than 6N distinct instances. Since
these are disjoint events, the probabilities would then sum
to greater than one.

Now, we observe that on any instance σ, by our guarantee
on the correctness of B∗, (B∗, k′) only has a majority of in-
correct answers with probability at most e−2m−4 < 2−2m−4.
Notice that each triple (B∗, σ, k′) is enumerated exactly once
and thus, the probability that (B∗, k′) is marked as FAULTY
is at most

P∞
m=1 2m 1

16
2−2m = 1

16

P∞
m=1 2−m = 1

16
Whenever (B∗, k′) is not marked as FAULTY on some

sequence of coin tosses, our choice of enumeration guaran-
tees that for input x, there are at most N pairs (B̃, k) prior

to (B∗, k′) such that (B̃, x, k) appears in the enumeration.
Notice that by our claim, if n is sufficiently large, either
each such pair is marked as FAULTY or else causes Bob to
output an incorrect verdict with probability at most 1/6N ,
and hence by a union bound, Bob outputs an incorrect ver-
dict before simulating (B∗, x, k′) with probability at most
1/6. Moreover, notice that if (B∗, k′) would not be marked
as FAULTY, then Bob outputs a correct verdict after com-
pleting the simulation for (B∗, x, k′), where our enumeration

guarantees that this simulation will complete within 2O(n)

steps. Thus, the probability that Bob does not output a cor-
rect verdict within 2O(n) steps is at most 1/6 + 1/16 < 1/3
as needed.

