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Abstract

We informally survey current work in the study of brain function with an eye for complexity-
theoretic aspects. We then discuss in more detail why we expect computational complexity
theory to play a larger, more explicit role in the future, examine the validity of such an approach,
and attempt to outline how such a complexity-theoretic study might proceed.

Introduction

As you might be aware, Manuel Blum has recently been leading a project to develop a computer
scientist’s working definition of consciousness, called “CONSCSness,” where CONSCS stands for
CONceptualizing Strategizing Control Systems. Although Manuel has been interested in conscious-
ness for a long time, at first glance it’s a surprising move for him, given that his early career involved
the development of computational complexity theory and the foundations of modern cryptography.
As for myself, despite having worked with Manuel, Ryan Williams, and Matt Humphrey on CON-
SCS for a year or so, I tend to describe my interests as “complexity theory,” and it is difficult
to casually add, “I'm also working on consciousness.” The statement always merits significantly
deeper explanation: what business do I have or does any complexity theorist have, “working on”
consciousness?

This piece is intended to answer that question, although I attempt to answer it in a way that
pertains more broadly to studies of high-level aspects of brain function, freely replacing “con-
sciousness” with “intelligence” or other such high-level concept. 1 hope to convince the reader of
two things: one, that complexity theory is well suited to tackle problems arising in the study of
brain function and two, that the sort of abstract theory that would arise from a computational
complexity theoretic analysis of brain function would be highly desirable for solving certain basic
problems, such as resolving whether or not attributes similar to consciousness or intelligence are
present in other systems. This material bears some similarity in tone and content to portions of a
talk Manuel gave at the 20th Computational Complexity Conference [2], but I hope specifically to
explore the foundations of the program in a little more depth, and without assuming familiarity of
much beyond the English language.
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Background

Emerging views of the function of the brain

It has been generally accepted for a long time now that the basic functional unit of the brain is the
neuron, and that the basic means for transferring information through the brain is via spikes in
electric potential. Likewise, the basic “fire together, wire together” rule was put forth by Donald
Hebb [7] over fifty years ago, and is now largely accepted in some form or another as the basic
rule governing modification of the strengths of connections between neurons. Beyond this, it is
well known from clinical data that certain structures or regions in the brain seem to come to serve
certain functions.

It is worth noting that although some such large-scale patterns in the way brains are organized
have been observed, there is still a remarkable diversity of structure from brain to brain. Also,
brains are noted for their plasticity, their tendency to rewire and adapt to new inputs. Thus,
although one could imagine, in principle, drawing a map of a given brain at one point in time
by tracing the connections in these neural circuits, this map, this particular circuit is of limited
significance to an overall theory of the brain’s function; it is merely one of numerous configurations
that this particular brain would exhibit over its lifetime, to say nothing of the variety exhibited
across different brains.

Now, out of the mountains of data that have been collected over the years, we are finally be-
ginning to see some theoretical frameworks emerging to try to explain how high-level aspects of
brain functions arise. In particular, basic frameworks for consciousness have been proposed by
Francis Crick and Christof Koch [9], proposed by Gerald Edelman [3] (also with Giulio Tononi
[18]), and proposed by others as well. Similarly, an informal characterization of intelligence and
understanding was proposed by Jeff Hawkins [6] founded on high level frameworks for the inter-
actions between regions of the cortex such as those proposed by Rajesh Rao and Dana Ballard
[14] and Tai Sing Lee and David Mumford [10]. It is important to note that these frameworks
attempt to explain brain function in terms of electrochemical neural activity in a comprehensible
way, and are thus in contrast to proposals that the brain is too complex to be understood; that
brain function arises in some significant way from quantum effects which would render some degree
of knowledge about any brain, again, as “unknowable;” or that new laws of physics will need to
be discovered to unravel the workings of the brain. Many believe that it is still too early to resort
to such pessimistic positions—although the lack of concrete understanding of the brain’s workings
might seem to support these proposals, a scientific program of study of the brain could not exist
prior to the establishment of a guiding framework to supply hypotheses to be investigated.

Thus, these frameworks are an important step toward understanding how the brain functions,
but all are still early revisions, which are likely to be refuted or rewritten in parts as data tar-
geting these frameworks are collected in the coming years. One should note that all are tied in
varying degrees to the architecture observed in the brain, though they do generally suggest what
is functionally important about the architecture. While all of the proposals will probably require
additional fleshing out in years to come, the explanatory powers of some of the more holistic ac-
counts in particular leave much to be desired at present. The gaps in such accounts, particularly
when some claim of emergence — the system having capabilities and properties that the individual
components do not — is invoked, seem to fall neatly within the scope of computational complexity
theory.



Relevant achievements and goals of computational complexity theory

We will be particularly interested in circuit complexity, the branch of computational complexity
theory that studies how computational power varies with the number of elements used in a circuit,
the “circuit size,” or with the number of layers of elements used in a circuit, the “circuit depth,” or
both. Generally, a class of circuits is specified in terms of the types of elements involved (e.g., what
gates are used and how many inputs they may have) and the size or depth of the circuit is specified
with respect to the size of an input to the circuit. As an example, we will consider the class ACy:
its members are families of circuits — one circuit for each number of inputs — for which the depths
of the circuits are bounded by a constant, and the size of the circuit is bounded by any polynomial
function of the number of inputs. These circuits operate on Boolean values and are comprised of
the familiar AND, OR, and NOT gates with unbounded fan-in: that is, we permit an unlimited
number of inputs to each AND and OR gate. Studies in circuit complexity generally take the form
of establishing whether or not a particular class of circuits has members that can output the correct
answer to any given input, thus solving a computational problem. I hasten to add that although
we are most familiar with Boolean circuits, we are not necessarily restricting our attention to such
circuits—in particular, there are several models of algebraic computation (applicable for circuits
operating on real-valued inputs, for example) for which a sophisticated body of work exists; the
ambitious reader is directed to Ben-Or’s lower bound on the depth of Algebraic Computation Trees
solving the element distinctness problem [1], as an example.

Demonstration that a class of circuits can solve some problem is often accomplished by con-
structing a circuit in the class that solves the problem in question, and is almost always straight-
forward in principle, at least. For example, it is easy to see that the problem of checking for a fixed
substring can be solved by ACy: for any given string of interest, say 01100, in an input of length
n we can compute a function such as

OR(AND(_'.%'l, x2,X3, T4, _|l'5), s AND(_\.’,Ifn_4, Tn—3,Tn—-2, " Tn—1, _':L'n))

and it is clear that the resulting circuits are at most three gates deep and (if designed properly)
never have size greater than 2n + 1 gates. Meanwhile, arguments demonstrating that a particular
class of circuits cannot solve some problem — a lower bound on the resources required for the
problem — are notoriously difficult to conjure. Such lower bound results have been exhibited: an
important result by Furst, Saxe, and Sipser, demonstrated that ACy circuits cannot compute the
parity of the input string [4]. Although such work was initially met with much optimism, it has
not produced much stronger results than the aforementioned to date. Nevertheless, techniques for
making lower bound arguments do exist, and these arguments comprise an important part of circuit
complexity.

Now, observe that we could equivalently have defined ACy to be circuits of merely OR and NOT
gates, or just NAN D gates, and in any case, the class remains the same since the missing gates can
be reconstructed with at worst a multiplicative constant increase in the depth and a polynomial
increase in the size. These sorts of equivalences across different models of computation have been
prominent from the earliest days of Computer Science, starting with the original Church-Turing
thesis where it was observed that A notation, Turing machines, recursive functions, and many other
systems yielded equivalent classes of functions, which were then identified with the notion of effective
computability. Since then, many computational problems have been identified as computationally
equivalent to the problem of evaluating various computational models or complete for the class of
problems solvable by those models. One of the strengths of the Theory of Computation is that we



can work with whatever model is most convenient for our purposes, which merely happens to often
be the Turing machine or familiar Boolean circuits.

Our larger goals have been inspired by the fact that computational complexity theory has
been extremely successful at providing definitions of high-level concepts. One notable example
is the definition of a function as “pseudorandom” by examining the probability, over random
inputs to the function, of any detector circuit being fooled into claiming the function’s output
was random versus the probability of that detector correctly identifying a truly random string; if
the size of the detector needed to achieve some degree of performance grows rapidly, we call the
function pseudorandom. This definition has been made precise and, above all, has proved useful in
demystifying pseudorandom number generators. We thus suspect that complexity theoretic ideas
could be similarly useful in characterizing these high-level aspects of the function of the brain in
more general and robust terms.

Current foundational work: the existing intersection

The first facet of an approach to studying the brain should be evident. We hope to identify the
brain, or regions of the brain, with some class(es) of circuits. This idea is not new at all, and the
consideration of circuits built using model neurons as gates dates back to the work of McCulloch
and Pitts [11], at least. Once a class of circuits has been formally specified, we would then hope to
be able to discuss precisely what sorts of functions could or could not be computed by such circuits,
thereby bolstering or refuting claims about how the brain functions. Again, work has long been
done based on our formal models of neurons along these lines, demonstrating the ability of a neural
network to function as an associative memory [13], for example. In recent years, this challenge
has been undertaken in a much wider scope by Leslie Valiant [20], who has been attempting to
demonstrate the abilities of such simple models while seriously taking into account the sorts of
parameters actually exhibited in the brain. This sort of work is precisely what is needed to flesh
out claims of emergence in theories of brain function, since it considers precisely whether or not it
is possible for the model system to exhibit the claimed properties.

I should also discuss the recent work on modeling the feedforward path of the visual cortex,
carried out independently by Thomas Serre et al. [15], and Simon Thorpe et al. [16, 17], not only for
its significance to the project at hand, but also since it serves as a mild cautionary tale. These two
teams of researchers gave quantitative models of the function of the visual cortex constructed from
“biophysically plausible” circuits, and demonstrated via computer simulations that the models so
constructed performed well on standard vision tasks. This is a highly significant achievement, as it is
a substantial and necessary test of any would-be theory of the workings of the brain. Consequently,
both teams seemed to feel confident that they had proposed a model that would likely become
the starting point for developing “the” model of the visual areas, and ultimately the entire brain.
Imagine, then, the surprise of the researchers to discover that another team had achieved similar
results utilizing quite dissimilar underlying mechanisms! The major difference between the two
approaches was how data was encoded: Serre et al. had used a more traditional spike rate based
encoding scheme, whereas Thorpe et al. used a temporal scheme, i.e., one in which earlier spikes
have higher weight. Thorpe [16] initially argued for a temporal coding based on the difficulties
that a rate-based scheme would encounter in accounting for the fast response times observed in
practice, and Guyonneau et al. [5] have performed a more extensive theoretical study suggesting
that the timing of spikes is what shapes a neuron’s response. On the other hand, Serre et al. [15]
have tested the performance of their model against the performance of human subjects extensively,



and found that it does fairly well at predicting the performance of the human subjects on visual
tasks, tests that have not yet been performed for the model of Thorpe et al. While I have no doubt
that the community will soon sort out which of these models, if either, is likely to be correct, 1
claim that the lesson we should take away from this incident is that the tasks of identifying the
physiology and identifying the functionality are quite distinct, and should not be confused.

The fact that two rather different underlying models were able to produce similar results should
not surprise us so much. From our prior discussion of equivalences across models of computation,
I hope to have made it clear that often a given class of problems will have many equivalent formu-
lations. In other words, it’s frequently possible for one model to simulate another and vice-versa,
and from a functional standpoint, it does not matter which model we use. I should remark that
such an idea is not entirely foreign to biologists and neuroscientists; the related notion of different
circuits that exhibit equivalent behaviors (which we certainly would expect to encounter in the
cortex) is discussed at length by Edelman [3], who calls such systems degenerate. The difference
in Edelman’s notion of degeneracy is that he is considering equivalent structures in a fixed model,
whereas here we are concerned with the possibility that two different models of the underlying
physiology could yield equivalent behavior. So, while the underlying model is critical from the
standpoint of neurophysiology and often important from the standpoint of experimental design,
studying the functional capabilities will not help us identify which of a set of computationally
equivalent models best describes the underlying physiology, so we must be careful not to claim too
much about what such studies say about the physiology. Likewise, if we manage to successfully
identify the computational power of the cortex with a class of circuits, further work on identifying
the physiology that “truly” yields the computational model will generally not contribute to our
understanding of its function. I should note now that it is not immediately clear to me whether or
not the models of Serre et al. and Thorpe et al. are computationally equivalent; the point is only
that the functionality essentially never identifies a unique model, to say nothing of the underlying
physiology that (in a sense) implements the model. Having made this distinction, I would like
to make explicit that the object of study in computational complexity theory is the relationship
between such a bounded computational model and its functional capabilities.

About the approach

There are two distinct programs of study in which I foresee computational complexity theory playing
two rather different roles. The first is in continuing the low-level studies of Serre et al. [15], Thorpe
et al. [16, 17], and Valiant [20], where the objective is to understand which functions the brain is
computing. In continuing this study, I propose that treating highly plastic regions of the brain as an
arbitrary member of an appropriate class of circuits and performing a complexity-theoretic analysis
of this class may be helpful in understanding its functional capabilities. The second program of
study aims to explain how the activity of the brain gives rise to familiar high-level properties
such as intelligence and consciousness, following work by Crick and Koch [9], Edelman and Tononi
[18, 3], Rao and Ballard [14], and Lee and Mumford [10]. Manuel’s CONSCS project [2] is such a
study; the role of computational complexity theory in service of this program is largely to provide
a vocabulary for defining properties that we would identify with these phenomena in a sufficiently
general terms that we can use them across domains. In addition to outlining how complexity theory
could facilitate these programs, I will also discuss why the ability to transfer theories of high-level
brain function across domains is significant and how such a study is justified.



The role of complexity theory in the low-level study of brain function

Turning to the future now, as we move further from the regions of the cortex receiving inputs, we
also enter the more plastic regions of the cortex, where we expect to encounter a wide variety of
functionality. In discussing what these circuits do, it is probably most appropriate to talk in terms
of a complexity class: since in such regions the brain is known or believed to frequently “rewire”
itself while the number of neurons remains roughly bounded across time and different subjects,
the class of functions that can be expressed using at most the number of neurons in these regions
seems to be an appropriate characterization of what these regions are capable of, in principle at
least. Certainly, given the sheer diversity of the brain’s functionality, we know that brains have
computed some vast class of functions, so unraveling the functionality of the brain is going to
require understanding some such class of functions, with the class yielded by bounding the neural
circuit size being a natural candidate. In any event, this is no small feat.

Fortunately, Mountcastle’s common cortical algorithm hypothesis [12], which states that the
underlying model elements behave essentially the same across the cortex, should permit us to at
least understand how the elements of these circuits behave by examining them in, say, the visual
areas; we expect that the only distinction across regions of the cortex should be the parameters
such as the size, depth, connectivity, etc. of the circuits. Thus, a complexity-theoretic analysis
of these regions should be feasible. By contrast, it is not clear at all how the current techniques
will manage to unravel the workings of these regions, since the variety of different behaviors we
exhibit is daunting, and the relationship between these behaviors and the recordings we would
obtain in such regions is murkier: in the regions of the brain more distant from the points of entry
for its inputs, our ability to study its response to a controlled stimulus (such as it is) will only
grow more limited, especially since we lack the ability to track which other neurons a given neuron
is signaling. Ultimately, I expect that new techniques will need to be developed to try to better
understand how functionality in the brain is controlled, but I anticipate that a nothing less than a
complexity-theoretic analysis will capture all of the functionality of the brain. In any case, It will
certainly be essential to transferring what we learn about the brain to and from studies in other
settings.

The necessity of abstract and generalized theories

In the study of the function of the brain, following Manuel [2], we claim that it is desirable to
define properties such as consciousness or intelligence in an abstract or generalized manner. Such
a theoretical description of these concepts would of course be complementary to the study of the
physical brain: in the physical study, certain processes would be observed which could be verified to
have the necessary properties to be called “consciousness” or “intelligence” in the abstract theory.
These theories are desirable because they are necessary for the study of our high-level features in
other domains.

Specifically, if we wished to decide whether or not an ant colony or a robot is conscious or
intelligent, it would obviously be unsatisfying to conclude that since neither of these two objects
use a primate’s brain (where most of the physical studies have been carried out), neither one could
be conscious or intelligent. At the other extreme, although Turing’s test [19] in which a judge
converses with a human and a machine, attempting to tell which is which is a clever attempt
at distinguishing intelligence without knowing what “intelligence” is, the test has some serious
shortcomings, minimally including its failing of subjects who refuse to participate or, for whatever
reason, cannot communicate in the judge’s language. Clearly, we need to develop theories that



describe what it is about the function of the brain that gives rise to these properties without being
tied to the particular implementations in the systems we observe. When a subject is intelligent or
conscious, these theories should permit a simple demonstration of this property by describing how
the required systems are implemented. While the theory should also make it possible in principle
to demonstrate conclusively that a system is not intelligent or conscious, I would hesitate to claim
that demonstrating the absence of these properties would necessarily be so simple. It is entirely
possible that arguing such a claim would necessitate demonstrating that the system in question is
incapable of computing some necessary functions using some lower-bound argument.

Regardless of the difficulties that might arise in demonstrating that a system cannot be con-
scious, intelligent, etc., merely being able to demonstrate that some systems do have such properties
should be extremely beneficial to AI. Although it is entirely possible that an Al researcher will im-
plement a system that satisfies all of our conditions for being intelligent without a clear idea of what
those conditions are, it should be clear that this sort of blind success is doubtful. By contrast, once
the requirements for machine intelligence are clearly stated, it is likely that researchers will be able
to solve the problem of building an intelligent machine—after all, this problem has been solved in
the workings of the brain, so it is reasonable to expect that the problem is at least computationally
tractable, if not simple.

Evasion of philosophical debates: the validity of the program

It is presently worth examining the sort of philosophical side step that has already been employed
in the scientific study of consciousness. To avoid being bogged down by debates over physicalism
versus dualism — for example, whether or not consciousness is due to some undetectable “soul stuft”
as proposed by Descartes — and the like, Francis Crick and Christof Koch have emphasized that
they are only studying the Neural Correlates of Consciousness (NCC). They have stated the largely
non-contentious hypothesis that mental states should be correlated with certain neural states. This
maneuver has been employed by many others as well in founding scientific studies of consciousness,
and the underlying hypothesis is well-supported by a variety of data. The interested reader is
referred to Koch’s book, The Quest for Consciousness [9].

Rather than discuss the details of the hypothesis and the supporting evidence, we’ll consider
the implications of taking this side step. Certainly, from a physicalist’s point of view, nothing
has been lost, since the NCC are equated with consciousness—a physicalist would expect that a
property such as consciousness is equivalent to some properties of neural activity, where the aim of
the programs is clarification of this relationship. Even a dualist, though, would have to honestly
admit that studying the NCC would have some practical value. For example, once the NCC
have been identified, as Koch points out [9], it would be conceivable to build a device to measure
consciousness or to develop more effective anesthetics. What is most relevant about this maneuver,
though, is that by limiting their presumed scope to the measurable aspects of consciousness, they
study precisely the aspects of the problem that are tractable by science; that is, from a scientific
point of view, no part of the problem has been put off-limits, and the presented part of the problem
is guaranteed to be within the reach of science. Of course, studying the NCC is unlikely to resolve
the philosophical debate entirely (at best, one would be able to invoke Occham’s Razor), but our
point is that one need not resolve the philosophical concerns to obtain something useful.

I have dwelt on this point for two reasons: first, a computer scientist’s study of consciousness
would be a study of these NCC, and second, our abstracted study will need to take similar side-
steps. We can only claim, for example, that a system satisfying our properties will simulate the



NCC. By defining in what sense we “simulate,” we will be taking another such side step away from
the philosophers’ notion of consciousness.

Outline of a complexity-theoretic study of high-level brain function

As suggested above, in our study we wish to isolate the tractable portions of the problem — in this
case, the functional or mechanical aspects of our high-level attributes — from the philosophically
contentious questions of what an entity really “thinks” or “feels.” We begin by viewing the brain as
a formal system, as circuits from a particular class, where the class would be identified from studies
such as those currently being carried out in the previously mentioned work of Serre et al. [15],
Thorpe et al. [16, 17], and Valiant [20]. We continue by asking what properties of those circuits
characterize our concepts like consciousness: we are seeking the necessary and sufficient conditions
that permit our formal system to exhibit the behavioral or mechanical aspects of these high-level
properties. We then may define the high-level properties in terms of these conditions.

For example, let’s try to give a first attempt at a complexity-theoretic definition of “intelligence.”
(See Manuel’s talk [2] for a similar initial attempt at defining “consciousness.”) We will follow
Hawkins’ proposal [6] that intelligence is the ability to make predictions about one’s environment
which was supported by the work of Rao and Ballard [14], Lee and Mumford [10], and others who
suggested that the feedback connections in the cortex serve to carry predictions about future inputs.
We will attempt to show how this idea might be translated into a formal definition, illustrating
where we expect computational complexity theory to play a role. We will consider environments to
be represented by sequences of input strings, x1, o, ..., x4, .. ., although we will later have cause to
consider classes of environments, which are merely sets of possible input string sequences. We will
consider our candidate intelligent machine M to have some internal state s;, which in the language
of Turing machines would be the contents of its worktapes or in the language of modern computers
would be a dump of the contents of its memory; in a more natural setting, we could think of this
as a “snapshot” of neural activity around one moment in time. Regardless of our terminology, if
M is in state s; and sees input xy, it may perform some action and updates its internal state to
S¢+1. We assume that the action and s;y; are determined uniquely by s; and z;.

In this setting, we’ll take “the ability to make predictions” to mean that at time ¢, M frequently
has access to zyy1. We remark that although one could consider richer notions of “predictive
ability,” this simple notion is still nontrivial, and is sufficient to illustrate how we proceed in
providing such definitions. Now, in order for M to be making predictions about x;11, it must be
updating its internal state so that eventually s¢, together with x; will contain sufficient information
about x:y1 that M can do better than merely guess its contents, but we will avoid requiring it
to store this information in any particular format. Instead, we will say that M is intelligent with
respect to some class of environments C if there is some efficiently computable deciphering function
Dy such that for any environment {x;} € C, eventually, Dys(x¢, s¢) = 2441 with frequency strictly
better than chance. Clearly, a machine M for which such a deciphering function exists has sufficient
information about x4 in such a format that we may consider it to possess such a prediction,
whereas any realistic machine for which no such deciphering function can be implemented could
clearly not be doing much better than blindly guessing about the next input, so satisfying this
property is necessary and sufficient for the machine to make predictions about the next input from
environments in C.!

!The definition obtained in this way is in contrast to that proposed by Hutter [8], who only considered a goal-
oriented setting and focused on the entity’s behavior, which was assumed to be in pursuit of maximizing reward.



We remark that one feature of this definition is that it is possible to classify the degree of
intelligence of a machine M by the richness of environment classes that it can successfully predict;
it is easy to see that on one end of the spectrum, any machine is intelligent with respect to a constant
environment, but no machine is intelligent with respect to the class of all environments. We are
particularly interested in the behavior of the machine with respect to “natural” environments, by
which we mean informally the class of environments corresponding to nature. We may speculate
that such environments, if captured formally, would be produced by a process featuring an infinite
“unobserved state” and each symbol in its state at a given timestep would be computed from
portions of its state in the previous timestep that were at most some bounded distance away—a
locality constraint in its update rules, but more work would need to be done before we would be
satisfied with our definition. As part of defining intelligence, we would like in general to characterize
these environments more precisely; machines intelligent with respect to such “natural” environments
would be considered “intelligent.” We should require that any model of the low-level mechanisms
in the brain (e.g., formal models of neural circuits) be sufficiently powerful to exhibit intelligence,
defined in this way. Note that we assume that M’s storage is bounded, and hence that M cannot
simply offload the task to Djys by storing everything, so the problem of preparing to make such
predictions is nontrivial in general, and this definition does require the model that would satisfy it
to have some computational power.

Notice that this definition makes no mention of any details of how the brain carries out the
task of making predictions; rather, it abstractly characterizes or specifies what makes a machine
“capable of making predictions.” Returning to our broader goals, we would like to separate which
characteristics of the brain’s function should be considered necessary, such as making predictions
in the proposal above, and which merely serve to implement those functions; that is, we would like
to separate the specifications of the NCC, etc., from their implementations. Once this has been
accomplished, then we can say that an entity having implementations of the specified functions
has the high-level attribute described—intelligence, consciousness, understanding, etc. Manuel has
used a term like “CONSCS” to emphasize that we are only seeking a working definition for our
formal systems: we are only seeking a characterization of consciousness (properly, the NCC) when
the brain is viewed as a formal system. In this way, again, because we are only claiming to study
a formal system, the only contentious point is whether or not results about our formal system will
be relevant.

We do expect such results to be relevant since this functional description of our high-level
properties are precisely what we need for the sorts of abstract and generalized theories discussed
earlier. By separating the specifications of the functions from their implementations, we permit
implementations in different settings to be constructed or discovered. In addition, if such theories
have been developed and the special case of brains have not yet been fully understood, then we
would hope that our general complexity theoretic results would help explain how the function of
the brain could give rise to at least the observable aspects of consciousness, intelligence, etc., by
clarifying precisely what sort of functionality we are looking for and establishing what kind of
underlying models would be necessary or sufficient for exhibiting such functionality.

Conclusion

As our understanding of the low-level function of the brain has improved to the point where Serre et
al. [15] and Thorpe et al. [16, 17] can propose plausible quantitative models, scientific communities



have begun to seriously explore topics such as consciousness. Frameworks attempting to explain
how the workings of the brain give rise to consciousness have been proposed by Edelman [3], by
Crick and Koch [9], and by others, and an attempt at explaining intelligence has been offered by
Hawkins [6] based on the frameworks of Rao and Ballard [14], Lee and Mumford [10], and others.
We can expect that in the coming years, these theoretical frameworks will develop into a reasonable
account of how certain high-level attributes arise from the low-level function of the brain.

While it’s evident that researchers in other fields are making progress toward comprehending
the function of the brain, I hope I have convinced you that we, as complexity theorists, are justified
in working on brain function and moreover, that the present is an appropriate time for complex-
ity theorists to dive into the study of brain function. In many cases, hard results in complexity
would flesh out, bolster, or refute claims used in theories of the function of the brain. More-
over, computational complexity theory is well-positioned to provide exactly the sort of precise yet
“machine-independent” theories of brain function that will be required for certain applications, as
we have had background in defining other high-level concepts, such as randomness, in this way.
These similar sorts of programs have also been particularly successful for complexity theorists: we
have provided rigorous, useful definitions. Although I am confident that the researchers currently
working out the theory of these aspects of brain function could, in time, develop the necessary tools
to decipher the workings of the brain, I am likewise certain that the process will be expedited if
complexity theorists lend a hand.
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