
Massachusetts Institute of Technology
The Artificial Intelligence Laboratory

A.I. Memo No. 1071 December 1988

Parallel Networks for Machine Vision

Berthold K.P. Horn

Abstract: The amount of computation required to solve many early vision prob-
lems is prodigious, and so it has long been thought that systems that operate
in a reasonable amount of time will only become feasible when parallel systems
become available. Such systems now exist in digital form, but most are large and
expensive. These machines constitute an invaluable test-bed for the development
of new algorithms, but they can probably not be scaled down rapidly in both phys-
ical size and cost, despite continued advances in semiconductor technology and
machine architecture.

Simple analog networks can perform interesting computations, as has been
known for a long time. We have reached the point where it is feasible to experi-
ment with implementation of these idea in VLSI form, particularly if we focus on
networks composed of locally interconnected passive elements, linear amplifiers,
and simple nonlinear components. While there have been excursions into the
development of ideas in this area since the very beginnings of work on machine
vision, much work remains to be done. Progress will depend on careful attention
to matching of the capabilities of simple networks to the needs of early vision.

Note that this is not at all intended to be anything like a review of the field,
but merely a collection of some ideas that seem to be interesting.

Key Words: Analog networks, Early vision, Coupled networks, Networks with
feedback, Resistive networks, Layered networks, Relaxation, Cooperative compu-
tation, Gaussian convolution, Edge detection, Multiple scales, Position and orien-
tation, Interpolation, Motion vision, Direct motion vision.

© Massachusetts Institute of Technology, 1988

Acknowledgements: This paper describes research done at the Artificial Intelligence Lab-
oratory of the Massachusetts Institute of Technology. Support for this research was pro-
vided by a grant from the National Science Foundation, Number MIP-8814612 and by Du
Pont Corporation.



0. Introduction

The term “parallel networks” in the title may appear to be redundant,
since the computations at different nodes of an analog network naturally
proceed in parallel. In several of the examples explored here, however, a
number of different interacting networks are used, and these do indeed
operate “in parallel.” We have to try and understand the kinds of computa-
tions that simple networks can perform and then use them as components
in more complex systems designed to solve early vision problem.

Some of the ideas are first developed in continuous form, where we
deal, for example, with resistive sheets instead of a regular grid of re-
sistors. This is because the analysis of the continuous version is often
simpler, and lends itself to well known mathematical techniques. Some
thought must, of course, be given to what happens when we approximate
this continuous world with a discrete one. This typically includes mathe-
matical questions about accuracy and convergence, but also requires that
the network be laid out on a two-dimensional plane, since today’s im-
plementations allow only very limited stacking in the third dimension.
This can be a problem in the case where the network is inherently three-
dimensional, or layered, or where several networks are used cooperatively.
There are four major topics addresses here:

1. A Gaussian convolver for smoothing that operates continuously in
time.

2. Coupled resistive networks for interpolation.
3. Moment calculation methods for determining position and orienta-

tion.
4. Systems for recovering motion and shape from time-varying images.

In the process we touch on several important subtopics, including:

• Feedback methods for solving constrained optimization problems us-
ing gradient projection, normalization and penalty functions.

• Interlaced arrangements of the cells of the layers of a multi-resolution
network on a two-dimensional surface.

• Tradeoffs between closed form solutions favored on serial computers
and iterative or feedback methods better suited for analog networks.

• Laying out time as an extra spatial dimension so as to build a system
in which information flows continuously.

• An equivalence between two apparently quite differently uses of a
resistive network.

Note, by the way, that the four sections of this memo are fairly indepen-
dent and not arranged in any particular order.



2 Parallel Networks for Machine Vision

1. A Non-Clocked Gaussian Convolver for Smoothing.

Gaussian convolution is a useful smoothing operation, often used in early
vision, particularly in conjunction with discrete operators that estimate
derivatives. There exist several digital hardware implementations, includ-
ing one that exploits the separability of the two-dimensional Gaussian op-
erator into the convolution of two one-dimensional Gaussian operators
[Larson et al. 81]. Analog implementations have also been proposed that
use the fact that the solution of the heat-equation at a certain time is the
convolution of a Gaussian kernel with the initial temperature distribution
[Knight 83].

One novel feature of the scheme described here is that data flows
through continuously, with output available at any time. Another is an
elegant way of interlacing the nodes of layers at several resolutions. First
comes a brief review of why there is interest in Gaussian convolution.

1.1. Edge Detection

The detection of step-edge transitions in image brightness involves nu-
merical estimation of derivatives. As such it is an ill-posed problem [Pog-
gio & Torre 84] [Torre & Poggio 86]. All but the earliest efforts (see, for
example, [Roberts 65]) employed a certain degree of smoothing before or
after application of finite difference operators in order to obtain a more
stable estimate. Equivalently, they used computational molecules of large
support (see, for example, [Horn 71]). While most of the early work fo-
cused on the image brightness gradient, that is, the first partial derivatives
of image brightness, there where some suggestion that second-order par-
tial derivatives might be useful. Rotationally symmetric ones appeared
particularly appealing and it was noted that the Laplacian is the lowest
order linear operator that (almost) allows recovery of the image informa-
tion from the result [Horn 72, 74].

It was also clear early on that smoothing filters should be weighted so
as to put less emphasis on points further away than those nearby1. The

1There was, however, intense disagreement about whether the composite edge
operator should have a sharp transition in the middle or not. Some argued that
the transition should be rapid, since a matched filter has an impulse response
equal to the signal being detected, which in this case was assumed to be an ideal
step transition. Others claimed that the aim was to suppress higher spatial
frequencies to improve the signal to noise ratio. This latter argument took into
account the fact that the signal drops off at higher frequencies while the noise
spectrum tends to be fairly flat. The view of the edge operator as a composition
of a smoothing filter and a finite difference approximation of a derivative finally



1. A Non-Clocked Gaussian Convolver for Smoothing. 3

Gaussian was popular for smoothing because of a number of its mathe-
matical properties, including the fact that the two-dimensional Gaussian
can be viewed as the product of two one-dimensional Gaussians, and,
much more importantly, as the convolution of two one-dimensional Gaus-
sians [Horn 72]. This gave rise to the hope that it might be computed
with reasonable efficiency, an important matter when one is dealing with
an image containing hundreds of thousands of picture cells. Note that
the Gaussian is the only function that is both rotationally symmetric and
separable in this fashion [Horn 72]. The separability property, which was
the original impetus for choosing the Gaussian as a smoothing filter, was
forgotten at times when proposals where made later to build hardware
convolvers (but, see [Larson et al. 81]).

1.2. Multi-Resolution Techniques

There are other reasons for smoothing a discretized image, including sup-
pression of higher spatial frequency components before sub-sampling.
Sub-sampling of an image produces an image of lower resolution, one that
contains fewer picture cells. Ideally, one would hope that this smaller im-
age retains all of the information in the original higher resolution image,
but this is, of course, in general not possible. The original image can be
reconstructed only if it happens not to contain spatial frequency compo-
nents that are too high to be represented in the sub-sampled version. This
suggests suppressing higher frequency components before sub-sampling
in order to avoid aliasing phenomena. An ideal low-pass filter should
be used for this purpose2. While the Gaussian filter is a poor approx-
imation to a low pass filter, it has the advantage that it does not have
any over- or undershoot in either the spatial or the frequency domain.
Consequently, the Gaussian smoothing operator has been used in several
multi-scale schemes, despite the fact that it is not a good approximation
to a low-pass filter.

The difference of two spatially displaced Gaussians was used quite
early on in edge detection [MacLeod 70a, 70b]. The idea of working at mul-
tiple scales occurred around about this time also ([Rosenfeld & Thurston 71,
72] and [Rosenfeld, Thurston & Lee 72]). An elegant theory of edge de-
tection using zero-crossings of the Laplacian of the Gaussian at multi-
ple scales was developed by Marr and Hildreth ([Marr & Hildreth 80] and

reinforced the latter view.
2For an excellent finite support approximation to a low-pass filter look in [Rif-
man & McKinnon 74] [Bernstein 76] [Abdou & Wong 82].



4 Parallel Networks for Machine Vision

[Hildreth 80, 83]). This reversed an earlier suggestion that a directional
operator may be optimal [Marr 76].

Since then, it has been shown that the rotationally symmetric opera-
tors do have some drawbacks, including greater inaccuracy in edge loca-
tion when the edge is not straight, as well as higher sensitivity to noise
than directional operators (see, for example, [Berzins 84] and [Horn 86]).
Operators for estimating the second derivative in the direction of the
largest first derivative (the so-called second directional derivative) have
been proposed by Haralick [Haralick 84] (see also [Haralick 80] [Hartley 85]
[Horn 86])3. Recently, Canny developed an operator that is optimal (in
a sense he defines) in a one-dimensional version of the edge detection
problem [Canny 83]. His operator is similar, but not equal to, the first
derivative of a Gaussian. A straightforward (although ad hoc) extension
of this operator to two-dimensions has recently become popular.

If we view the problem as one of estimating the derivatives of a
noisy signal, we can apply Wiener’s optimal filtering methods [Wiener 66]
[Anderson & Moore 79]. Additive white noise is uncorrelated and so
has a flat spectrum, while images typically have spectra that decrease as
some power of frequency, starting from a low-frequency plateau [Ahuja
& Schachter 83]. The magnitude of the optimal filter response ends up
being linear in frequency at low frequencies, then peaks and drops off
as some power of frequency at higher frequencies. Under reasonable as-
sumptions about the spectra of the ensemble of images being considered,
this response may be considered to match (very roughly) the transform
of the derivative of a Gaussian.

The above suggests that while there is nothing really magical about
the Gaussian smoothing filter, it has been widely accepted and has many
desirable mathematical properties (although only a few of these were dis-
cussed here). It is thus of interest to find out whether convolutions with
Gaussian kernels can be computed directly by simple analog networks.

1.3. Binomial Filters

In practice, we usually have to discretize and truncate the signal, as well
as the filters we apply to it. If we sample and truncate a Gaussian, it loses
virtually all of the interesting mathematical properties discussed above.
In particular, truncation introduces discontinuities that assure that the
transform of the filter will fall off only as the inverse of frequency at high

3While the second directional derivative is a non-linear operator, it is coordinate-
system independent, as is the Laplacian operator.



1. A Non-Clocked Gaussian Convolver for Smoothing. 5

frequencies, not nearly as fast as the transform of the Gaussian itself.
Furthermore, while the transfer function of a suitable scaled Gaussian
lies between zero and one for all frequencies, the transfer function of a
truncated version will lie outside this range for some frequencies. These
effects are small only when we truncate at a distance that is large com-
pared to the spatial scale of the Gaussian.

In addition, when we sample, we introduce aliasing effects, since the
Gaussian is not a low-pass waveform. The aliasing effects are small only
when we sample frequently in relation to the spatial scale of the Gaussian.
It makes little sense to talk about convolution with a “discrete Gaussian”
obtained by sampling with spacing comparable to the spatial scale, and
by truncating at a distance comparable to the spatial scale of the under-
lying Gaussian. The resulting filter weights could have been obtained by
sampling and truncating many other functions and so it is not reasonable
to ascribe any of the interesting qualities of the Gaussian to such a set of
weights.

Instead, we note that the appropriate discrete analog of the Gaussian
is the binomial filter, obtained by dividing the binomial coefficients of or-
der n by 2n so that they conveniently sum to one. Convolution of the
binomial filter of order n with the binomial filter of order m yields the
binomial filter of order (n+m), as can be seen by noting that multiplica-
tion of polynomials corresponds to convolution of their coefficients. The
simplest binomial smoothing filter has the weights:{

1
2
,
1
2

}
.

Higher order filters can be obtained by repeated convolution of this filter
with itself: {

1
4
,
2
4
,
1
4

}
⊗
{

1
2
,
1
2

}
=
{

1
8
,
3
8
,
3
8
,
1
8

}
.

The transform of the binomial filter of order n is simply

cosnω/2,
since the transform of the simple filter with two weights is just cosω/2.
This shows that the magnitude of the transform is never larger than one
for any frequency, a property shared with a properly scaled Gaussian.
Such a filter cannot amplify any frequency components, only attenuate
them.

1.4. Analog Implementation of Binomial Filters

Binomial filters can be conveniently constructed using charge coupled de-
vice technology [Sage 84] [Sage & Lattes 87]. It is also possible to use



6 Parallel Networks for Machine Vision

potential dividers to perform the required averaging. Consider, for exam-
ple, a uniform one-dimensional chain of resistors with inputs applied as
potentials on even nodes and results read out as potentials on odd nodes.
The potentials on the odd nodes clearly are just averages of the potentials
at neighboring even nodes4.

One such resistive chain can be used to perform convolution with
the simple two-weight binomial filter. To obtain convolution with higher-
order binomial filters, we can reuse the same network, with inputs and
outputs interchanged, provide that we have clocked sample-and-hold cir-
cuits attached to each node. At any particular time one half of the sample-
and-hold circuits are presenting their potentials to the nodes they are
attached to, while the other half are sampling the potentials on the re-
maining nodes.

But we are here more interested in non-clocked circuits, where out-
puts are available continuously. The outputs of one resistive chain can be
applied as input to another, provided that buffer amplifiers are interposed
to prevent the second chain from loading the first one. We can cascade
many such resistive chain devices to obtain convolutions with binomial
filters of arbitrary order.

It is possible to extend this idea to two dimensions. Consider nodes
on a square grid, with each node connected to its four edge-adjacent neigh-
bours by a resistor. Imagine coloring the nodes red and black, like the
squares on a checker-board. Then the red nodes may be considered the
inputs, where potentials are applied, while the black nodes are the out-
puts, where potentials are read out. Each output potential is the average
of four input potentials, and each input potential contributes to four out-
puts.

Unfortunately, the spatial scale of the binomial filter grows only with
the square root of the number of stages used. Thus, while a lot of smooth-
ing happens in the first few stages, it takes many more stages later in the
sequence to obtain significantly additional smoothing. Also, the smoothed
data has lost some of its high frequency content and so can perhaps be
represented by fewer samples. These considerations suggest a multi-scale
approach, where the number of nodes decreases from layer to layer. Av-
eraging of neighbours at a later layer involves connections between nodes
corresponding to points that are far apart in the original layer. Thus the
smoothing that results in one of the later layers is over a larger spatial
scale. We discuss later how to efficiently interlace the nodes of several

4The outputs in this case are offset by one half of the pixel spacing from the
inputs, but this is not a real problem. In particular, an even number of such
filtering stages produces results that are aligned with the original data.



1. A Non-Clocked Gaussian Convolver for Smoothing. 7

such layers of different resolution on a two-dimensional surface. But first
we will approach this smoothing method from the point of view of the
equivalent continuous system. For this reason, we next review some prop-
erties of resistive sheets.

1.5. Resistive Sheets

Continuous resistive sheets solve Poisson’s equation

∆u(x) = −ρ i(x),
where the output u(x) is the potential on the sheet at the point x, while
the input i(x) is the current density injected and ρ is the resistivity “per
square.” Viewed this way, one can think of the solution of this second-
order partial differential equation for u(x), given i(x), as application of
the “inverse of the Laplacian operator.” In image processing, we are usu-
ally concerned with the two-dimensional case

uxx(x,y)+uyy(x,y) = −ρ i(x,y).
Discrete arrangements of resistors can be designed to solve difference
approximations of Poisson’s equation. These resistive networks are re-
markably robust against small changes in individual resistances and even
errors in interconnection. This has all been known for a very long time,
used in analog computer simulations of steady state heat flow, for ex-
ample, and has even been exploited in machine vision (see, for example,
[Horn 74]).

Discrete approximations of Poisson’s equation can also be solved by
a simple network of operational amplifiers and resistors [Horn 74]. The
Laplacian of a function can be considered to be the limit of the convolution
of the function with a rotationally symmetric center-surround operator of
local support, as the scale of this operator shrinks to zero. We can, for
example, think of application of the Laplacian as the limit of convolution
with

Lε(x,y) =
⎧⎪⎨⎪⎩
−2/πε4, for 0 ≤ x2 +y2 < ε2;
+2/3πε4, for ε2 ≤ x2 +y2 < 4ε2;
0, for 4ε2 ≤ x2 +y2.

,

as ε tends to zero [Horn 86]. This view of the Laplacian is implicit in the
usual discrete approximations of the Laplacian. A resistive network with
operational amplifiers can compute the inverse of convolution with such
a center-surround operator. Such networks actually can be used to easily
invert any convolution with local support, and so are more general than
resistive sheets. They can accommodate spatially varying linear operators



8 Parallel Networks for Machine Vision

also, since the feedback arrangement merely has to mimic the forward
operation [Horn 74].

Note that the inverse operation can, of course, not recover any spa-
tial frequency components removed by the forward operation. In this case
boundary conditions are needed to arrive at a unique stable solution of
the inverse problem. Similarly, in the presence of noise, spatial frequency
components that are strongly attenuated by the forward operation will be
recovered inaccurately by the inverse operation. The inverses of local op-
erations are in general global, but they have a special structure that makes
it possible to compute them using local feedback methods, as described.
They are at times called quasi-local or pseudo-local for this reason.

1.6. Solving the Heat Equation

By adding capacitance, and removing the input, a resistive sheet can be
used to solve the heat equation∆u(x) = κ ut(x),
which in two dimensions reads,

uxx(x,y, t)+uyy(x,y, t) = κ ut(x,y, t),
where κ is the product of the resistivity (resistance “per square”) and the
capacitance per unit area. The steady state of such a sheet is given by the
solution of Laplace’s equation, since ut = 0 in the steady state.

If the potential at time t = 0 is forced to equal some given input
function, U(x,y) say, we obtain, at a later time, the convolution of the
input function with some Gaussian kernel [Courant & Hilbert 62]. The
result can be written in the form

u(x,y, t) =
∫∫
D
U(ξ, η)

1
4πκt

e−
(x−ξ)2+(y−η)2

4κt dξ dη,

as can easily be verified by taking the required partial derivatives, and
noting that the Gaussian

1
2πσ 2

e−
x2+y2

2σ2

becomes the unit impulse function as σ tends to zero. Here the standard
deviation of the Gaussian is given by

σ =
√

2κt.

Convolutions with Gaussians of different widths can be obtained by wait-
ing varying amounts of time. This is the observation exploited by Thomas
Knight in his Gaussian convolver chip design [Knight 83]. Note that the
spatial scale (σ ) of the Gaussian only grows with the square root of time.



1. A Non-Clocked Gaussian Convolver for Smoothing. 9

In an edge detector, one is actually looking for derivatives of the con-
volved output, or combinations of derivatives, such as, for example, the
Laplacian5. In the scheme above, the partial derivatives have to be com-
puted in a separate step. Since differentiation is a linear shift-invariant
operation, it commutes with the Gaussian convolution step. Consequently
these operations can be performed in either order. A subtlety often over-
looked is that the result of convolution with a Gaussian is likely to be
very smooth and so differences of quantities that are nearly equal have
to be taken when derivatives of the result are to be found. If the inter-
mediate result is quantized (or noise added), the differenced output may
in extreme cases be almost totally worthless. It is better then to apply
the discrete difference operator first, and then smooth the result. This
approach, however, increases the amount of computation required when
more than one directional derivative is to be estimated, since the Gaussian
convolution has to be repeated for each derivative.

1.7. Non-clocked Approach

The approach given in the previous section for obtaining the convolution
of an image with a Gaussian requires that the input be loaded into the net-
work at a certain time, the input then disconnected and the output read a
fixed time later. It may be more convenient to have a non-clocked system,
where the input is applied continuously to one end of a three-dimensional,
layered resistive network, while the output is available continuously at the
other end. If Gaussians of differing width are needed, these can be read
out from intermediate layers of the network. Ideally, it should also be
possible to directly read out the Laplacian of the Gaussian at any stage.

These objectives can be met by a system composed of several lay-
ers of resistive sheets, where time is in essence laid out as another spa-
tial dimension. Each sheet solves Poisson’s equation with an input cur-
rent density that is forced to be proportional to the difference in po-
tential at corresponding points in successive sheets. Successive layers
correspond to different times in the solution of the heat equation by
the sheet mentioned earlier, so the potential difference between layers,
u(n+1)(x,y) − u(n)(x,y), is a discrete approximation of (a multiple of)
ut , the time derivative.

5The Laplacian of the Gaussian can be approximated by the difference of two
Gaussians of different widths. This, however, is a good approximation only
when the two Gaussians have almost exactly the same width. The results of
convolutions with two Gaussians of almost the same width will be very similar,
and so numerical problems arise when the results are subtracted.



10 Parallel Networks for Machine Vision

Now a resistor draws a current that is proportional to the difference
of potentials on its ends. So resistors connected between correspond-
ing nodes on two successive layers would appear to inject the desired
currents into the second layer. But we cannot just interconnect adjacent
sheets using a layer of resistors, since the current they inject into one
sheet is extracted from the other sheet. This disturbs the solution on the
earlier sheet. In fact, such a network solves Laplace’s equation in three
dimensions, rather than the heat equation in two dimensions. The result
in this case can be written in the form

u(x,y, z) =
∫∫
D
U(ξ, η)

1
2πz2

1(
1+ (x−ξ)2+(y−η)2

z2

)3/2 dξ dη,

as can easily be verified by taking the required partial derivatives, and
noting that

1
2πz2

1(
1+ x2+y2

z2

)3/2

becomes the unit impulse function as z tends to zero. This is not what we
want. For one thing, this smoothing function falls off much more slowly
with radial distance than the Gaussian.

All that we need to make the basic idea work is to add a layer of
buffer amplifiers that copy the potential of one sheet without drawing any
current from it. The outputs of these amplifiers are then connected to the
next sheet by means of suitably chosen resistors (equivalently, we can use
a differential transconductance amplifier with high input impedance, that
produces a current at its output proportional to the potential difference
between input and output [Mead 89]).

1.8. Convolution with the Laplacian of the Gaussian

If we wish to extract the Laplacian of the Gaussian, we can read out the
currents in the resistors (or the buffer amplifiers) connecting successive
layers. The reason is that these correspond to the time derivative ut in
the heat equation and hence are proportional to the Laplacian, since

uxx(x,y, t)+uyy(x,y, t) = κ ut(x,y, t).
By reading out the currents in different interconnecting layers, we can
obtain convolutions with the Laplacians of Gaussians of different widths.
Usually we are only interested in the zero-crossings of the result, so we
may not need to extract all of these measurements. Instead, neighbor-
hoods are located where some currents are positive while others are neg-
ative.



1. A Non-Clocked Gaussian Convolver for Smoothing. 11

Actually, interpolation can be used to recover the location of the
edge fragments to considerably better accuracy than the spacing between
nodes in the network of resistors. In digital simulations one finds almost
an order of magnitude improvement in resolution when the signal is rea-
sonably free of noise. There is then a tradeoff between a network with very
many simple nodes versus a network with fewer complex nodes capable
of supporting the interpolation process. This may be an issue of consid-
erable importance if there is a limit on the total number of nodes that can
be conveniently constructed using a particular fabrication technology.

1.9. Effects of Discretization

In practice we typically have to discretize the continuous analog system
that computes the desired convolution. For a start, we are now using
discrete layers in the z-direction (which was the time direction before).
This means that the convolution we obtain is actually not with a Gaussian,
but the zero-th order modified Bessel function, K0(r). The result can be
written in the form

u(n+1)(x,y) =
∫∫
D
u(n)(ξ, η)

ρg
2π

K0

(√
ρg
√
(x − ξ)2 + (y − η)2

)
dξ dη,

where g is the conductance per unit area of the material connecting the
(buffered) output of the n-th layer to the (n+ 1) layer. The zero-th order
modified Bessel function is not a particularly good approximation to the
Gaussian—for one thing, it has a singularity at the origin6. Fortunately, if
we repeat this convolutional operation many times we obtain an effective
overall response that is close to Gaussian, as a consequence of the central
limit theorem7.

The convolutional operator changes once again when the continuous
resistive sheet is replaced by a regular discrete grid of resistors. No closed
form solution is known in this case, for either square or hexagonal tesse-
lations, although the response can be estimated readily using numerical
techniques.

It is also interesting to compare this scheme, derived by mapping
the time dimension into a third spatial dimension and then discretizing,
with the binomial filter scheme discussed earlier. One of the differences
between the two schemes is that there are no resistors between layers in

6K0(r) ≈ − log r for small r .
7Another possibility is to use networks that solve the discrete analog of the
bi-harmonic equation. In this case the resulting convolutional kernel is a bet-
ter approximation to the Gaussian—for one thing, the kernel does not have a
singularity at the origin [Poggio et al. 85] [Harris 89].



12 Parallel Networks for Machine Vision

the binomial filter scheme, connections are made directly to the outputs
of the buffer amplifiers from the previous layer. Another difference is that
the output nodes are distinct from the input nodes in the binomial filter
scheme, whereas all nodes act as both inputs and outputs in the scheme
discussed here. In other respects the two methods are similar.

1.10. Multiple Scales

The information is smoothed out more and more as it flows through the
layers of such a system. Consequently we do not need to preserve full
resolution in layers further from the input. Very roughly speaking, the
information is low-pass filtered and so fewer samples are required to rep-
resent it. This suggests that successive sheets could contain fewer and
fewer nodes.

Note also that it would be difficult indeed to superimpose, in two
dimensions, multiple layers of the three dimensional network described
above, if each of them contained the same (large) number of nodes. Now
if, instead, a particular layer contains only 1/k times as many nodes as
the previous layer then the total number of nodes is less than

k
k− 1

times the number of nodes in the first layer, as can be seen by summing the
apprropriate geometric series. If, for example, we reduce the number of
nodes by one half each time, then a network containing a finite number of
layers has less than twice the number of nodes that the first layer requires.
(If we reduce the number of nodes to a quarter each time, then the whole
network has less than 4/3 times as many as the first layer.)

1.11. Growth of Standard Deviation with Number of Layers

Another argument for sub-sampling is that, if all the layers and the inter-
connections are the same, then the width of the Gaussian grows only with
the square root of the number of layers, as can be seen from the form of
the explicit solution of the heat equation given earlier. This suggests that
arrangements be made to ensure that κ varies from layer to layer. We can
increase κ either by decreasing the resistances in the sheets themselves,
or by decreasing the conductance in the interconnecting layers. But note
that if successive layers contain fewer nodes, while the resistances be-
tween nodes are kept the same, then κ in effect is increased automatically.



1. A Non-Clocked Gaussian Convolver for Smoothing. 13

This can be exploited to attain exponential growth of the effective width
of the Gaussian with the number of layers.

In the case of a square grid of nodes, a simple scheme would involve
connecting only one cell out of four in a given layer to the next layer.
This corresponds to a simple sub-sampling scheme. Sampling, however,
should always be preceded by low-pass filtering (or at least some sort of
smoothing) to limit aliasing. A better approach therefore involves first
computing the average of four nodes in a given 2× 2 pattern in order to
obtain a smoothed result for the next layer8. Each cell in the earlier layer
contributes to only one of the averages being computed in this scheme.

The average could be computed directly using four resistors, but
these would load down the network. The average can be computed in-
stead using resistors connected to buffer amplifiers. Each cell in the ear-
lier layer feeds a buffer amplifier and the output of the amplifier is applied
to one end of a resistor. The other ends are tied together in group of four
and connected to the nodes in the next layer. Note that the nodes of the
latter sheet should be thought of as corresponding to image locations be-
tween those of the earlier sheet, rather than lying on top of a subset of
these earlier nodes. But this subtlety does not present any real problems.

1.12. Layout of Interlaced Nodes

A four-to-one reduction in number of nodes is easy to visualize and leads
to rapid reduction in the number of nodes in successive layers, but it
does not yield a very satisfactory discrete approximation to the original
continuous domain equation. A better approximation can be attained if
the number of nodes is reduced only by a factor of two. Note that in
this case the total number of nodes in any finite number of layers is still
less than twice the number of nodes in the first layer. An elegant way
of achieving the reduction using a square grid of nodes is to think of
successive layers as scaled spatially by a factor of

√
2 and also rotated

45◦ with respect to one another. Once again, each of the new nodes is fed
a current proportional to the difference between the average potential
on four nodes in the earlier layer and the potential of the node itself.
This time, however, each of the earlier nodes contribute to two of these
averages rather than just one, as in the simple scheme described in the
previous section. A node receives contributions from four nodes that

8Naturally, since this is not an ideal low-pass filter, some aliasing effects cannot
be avoided. In fact, the resulting transfer function goes through zero not at
the Nyquist frequency, but only at twice that frequency, but this is much better
than not doing any smoothing at all.



14 Parallel Networks for Machine Vision

are neighbors of its ancestor node in the earlier layer, but it receives no
contribution directly from that ancestor.

An elegant partitioning of a square tessellation into sub-fields may
be used in the implementation of this scheme in order to develop a sat-
isfactory physical layout of the interlaced nodes of successive layers of
this network (Robert Floyd drew my attention to this partitioning in the
context of parallel schemes for producing pseudo grey-level displays on
binary image output devices [Floyd 87]). This leads to the interlaced pat-
tern shown in Figure 1, where each cell is labelled with a number indicating
what layer it belongs to.

0 1 3 1 5 1 3 1 7 1 3 1 5 1 3 1 9
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
5 1 3 1 6 1 3 1 5 1 3 1 6 1 3 1 5
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
7 1 3 1 5 1 3 1 8 1 3 1 5 1 3 1 7
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
5 1 3 1 6 1 3 1 5 1 3 1 6 1 3 1 5
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
9 1 3 1 5 1 3 1 7 1 3 1 5 1 3 1 6

Figure 1: A way to interlace nodes of several layers of a multi-scale
network so they can be laid out on a two-dimensional surface. The
network containing nodes labelled (n + 1) has half as many nodes as
the network whose nodes are labelled n. The total number of nodes is
less than twice the number of nodes in the finest layer.

This scheme leads to an arrangement where the nodes of the first layer
are thought of as the black cells in a checkerboard. The red cells form a
diagonal pattern with

√
2 times the spacing of the underlying grid. We can

now consider this new grid as a checkerboard, turned 45◦ with respect to
the first. The black cells in this checkerboard belong to the second layer.
The remaining red cells form a square grid aligned with the underlying



1. A Non-Clocked Gaussian Convolver for Smoothing. 15

grid but with twice the spacing between nodes. Considering this as a
checkerboard in turn, we let the black cells be the nodes of the third layer,
an so on . . .

Note that one half of the cells are labelled 1, one quarter are labelled
2, one eigth are labelled 3 and so on. The top left node, labelled 0, does
not belong to any of the partitions. If we consider the nodes labelled with
their row number i and there column number j, both starting at zero at
the top left node, we find that a node belongs to layer k if the binary
representation of i2 + j2 has k− 1 trailing zeros!



16 Parallel Networks for Machine Vision

2. Coupled Poisson’s Equation for Interpolation

Uniform resistive networks that solve Poisson’s and Laplace’s equations
have many other applications. One is in interpolation, where data may
be provided on just a few contours, as happens in the edge matching
approach to binocular stereo [Grimson 81]9. Many modern interpolation
methods are based on physical models of deformation of elastic sheets
or thin plates. So these are briefly reviewed here first.

2.1. Mathematical Physics

An elastic membrane takes on a shape that minimizes the stored elastic
energy. In two dimensions the stored energy is proportional to the change
in area of the membrane from its undisturbed shape, which we assume
here is flat. The area is given by∫∫

D

√
1+ z2

x + z2
y dx dy,

where z(x,y) is the height of the membrane above some reference plane.
If the slope components zx and zy are small,√

1+ z2
x + z2

y ≈ 1+ 1
2

(
z2
x + z2

y

)
.

Thus the membrane minimizes∫∫
D
(z2
x + z2

y)dx dy,

provided that the partial derivatives zx and zy are small. A unique min-
imum exists if the sheet is constrained to pass through a simple closed
curve ∂D on which the height is specified. The Euler equation for this
calculus of variation problem yields

zxx + zyy = 0 or ∆z = 0,
except on the boundary where the height z(x,y) is specified [Courant &
Hilbert 53].

9The problem of interpolation is harder if data is given only on a sparse set of
points, as opposed to contours. Consider, for example, Laplace’s equation with
some constant value specified on a simple closed curve with a different value
given at a single point inside the curve. The solution minimizes the integral
of the sum of squares of the first partial derivatives. It turns out that this
is not a well-posed problem, since there is not a unique solution. One of the
“functions” that minimizes the integral takes on the value specified on the
boundary everywhere except at the one point inside where a different value
is given. Clearly no “interpolation” is occurring here. This problem is not
widely discussed, in part because the discrete approximation does not share
this pathological behaviour [Grzywacs & Yuille 87].



2. Coupled Poisson’s Equation for Interpolation 17

2.2. Interpolation from Sparse Contours and Isolated Points

The above equation has been proposed as a means of interpolating from
sparse data specified along smooth curves, not necessarily simple closed
contours. We explored the use of this idea, for example, in generating
digital terrain models from contour maps in our work on automated hill-
shading ([Strat 77] and [Horn 79, 81, 83]) as well as in remote sensing
([Bachmann 77], [Horn & Bachmann 78] and [Sjoberg & Horn 83]). Some
undergraduate research opportunities project work was based on this idea
[Mahoney 80], as were the bachelor’s theses of [Goldfinger 83], and [Nor-
ton 83]. Recently, a 48×48 cell analog chip has been built to do this kind
of interpolation [Luo, Koch & Mead 88].

The result of elastic membrane interpolation is not smooth, however,
since, while height in the result is a continuous function of the indepen-
dent variables, slope is not. Slope discontinuities occur all along contour
lines, and the tops of hills and bottoms of pits are flat10.

This is why we decided to use thin plates for interpolation from con-
tour data instead. The potential energy density of a thin plate is

A
(

1

ρ2
1

+ 1

ρ2
2

)
+ 2B
ρ1ρ2

,

where A and B are constants determined by the material of the plate,
while ρ1 and ρ2 are the principal radii of curvature of the deformed plate
[Courant & Hilbert 53]. Again, assuming that the slopes zx and zy are
small, we can use the approximations

1
ρ1
+ 1
ρ2
≈
(
zxx + zyy

)
and

1
ρ1ρ2

≈ zxxzyy − z2
xy.

This allows one to approximate the potential energy of the deformed plate
by a multiple of∫∫

D

(
(zxx + zyy)2 − 2(1− µ)(zxxzyy − z2

xy)
)
dx dy,

where µ = B/A. If the material constant µ happens to equal one, this
simplifies to the integral of the square of the Laplacian:∫∫

D
(∆z)2 dx dy.

The Euler equations for this variational problem lead to the bi-harmonic
equation ∆(∆z) = 0,

10Discontinuities in slope are not a problem for many applications of interpolated
depth or range data. Shaded views of the surfaces, however, clearly show the
discontinuities, since shading depends on surface orientation.



18 Parallel Networks for Machine Vision

except where the plate is constrained. This fourth-order partial differen-
tial equation has a unique solution when the height z(x,y), as well as the
normal derivative of z(x,y) are specified on a simple closed boundary
∂D.

It turns out that the same Euler equation applies when the material
constant µ is not equal to one, because (zxxzyy −z2

xy) is a divergence ex-
pression [Courant & Hilbert 53]. Solution of the bi-harmonic equation,
while involving considerably more work than Laplace’s equation, pro-
duces excellent results in interpolation from contours. Iterative methods
for solving these equations are available (see for example [Horn 86]). Some
obvious implementations may not be stable, particularly when updates
are executed in parallel, so care has to be taken to ensure convergence.
The problem is that computational molecules or stencils with negative
weights are needed, and these can amplify errors with some spatial fre-
quencies rather than attenuate them. (The corresponding system of linear
equations is not diagonally dominant.) This issue is not pursued any fur-
ther here. The proper way of dealing with boundary conditions is also not
discussed here, for details, see the cited references.

The same methods where used in interpolation of surface depth from
stereo data along brightness edges [Grimson 81, 82, 83]. Grimson ob-
served that the null-space of the quadratic variation (z2

xx+2z2
xy +z2

yy) is
smaller than that of the squared Laplacian (∆z)2, and so decided to use
the quadratic variation as the basis for his binocular stereo interpolation
scheme. This corresponds to choosing µ = 0. Note that this affects only
the treatment of the boundary; one still solves the bi-harmonic equation
inside the boundary.

The methods discussed here rapidly get rid of high spatial frequency
components of the error, but may take many iterations to reduce the low
frequency components. The number of iterations required grows quadrat-
ically with the width of the largest gap between contours on which data
is available. Efficient multiresolution algorithms were developed to speed
up the iterative computation of a solution [Terzopolous 83]. Terzopolous
also applied these ideas to variational problems other than interpolation
[Terzopolous 84].

2.3. Resistive Networks for the Bi-Harmonic Equation

It is clear that methods for solving the bi-harmonic equations are im-
portant in machine vision. Unfortunately, simple networks of (positive)
resistances can not be constructed to solve discrete approximations of



2. Coupled Poisson’s Equation for Interpolation 19

this equation. Computational molecules or stencils [Horn 86] for the bi-
harmonic operator involve negative weights and connections to nodes two
steps away.

It is of interest then to discover ways of using methods for solving
Poisson’s equation ∆z(x,y) = f(x,y)
in the solution of the bi-harmonic equation, since simple resistive net-
works can be constructed to solve Laplace’s equation. One simple idea is
to use the coupled system,∆z(x,y) = u(x,y) and ∆u(x,y) = f(x,y),
since here ∆(∆z) = ∆u = f(x,y).
The constraints on z(x,y) can be handled easily in this formulation, but
constraints on the partial derivatives of z(x,y) are harder to incorporate.
This idea will not be pursued further here.

An alternative explored recently by Harris [Harris 86] involves mini-
mization of the functional∫∫

D

(
(zx − p)2 + (zy − q)2 + λ(p2

x + p2
y + q2

x + q2
y)
)
dx dy.

The Euler equations for this calculus of variation problem yield∆z = px + qy,
λ∆p = p − zx,
λ∆q = q − zy.

In this scheme, three coupled Poisson’s equations are used, each of which
can be solved using a resistive network. Constraints on both z(x,y) as
well as zx and zy can be incorporated.

The relationship to the problem of solving the bi-harmonic equation
can be seen by expanding∆(∆z) = ∆(px + qy),
and noting that differentiation and application of the Laplacian are linear
operations, so that they can be interchanged:∆(px) = (∆p)x = (1/λ)(p − zx)x = (1/λ)(px − zxx)∆(qy) = (∆q)y = (1/λ)(q − zy)y = (1/λ)(qy − zyy)
and finally ∆(∆z) = (1/λ)((px + qy)− (zxx + zyy)) = 0,

since ∆z = (px + qy). (Note that this does not necessarily imply that
p = zx and q = zy .)



20 Parallel Networks for Machine Vision

This scheme is reminiscent of the one developed by Horn for recov-
ering depth z(x,y), given dense estimates of the components p and q of
the gradient of the surface (as used in [Ikeuchi 84], and described in [Horn
& Brooks 86]). There one minimizes∫∫

D
(zx − p)2 + (zy − q)2 dx dy,

for which the Euler equation yields∆z = px + qy,
where p and q are here the given estimates of the components of the sur-
face gradient. In Harris’s scheme we do not have these estimates at all
points, instead we are given z at some points, and some linear combina-
tion of p and q at some other points.

2.4. Application to Shape from Shading

Solution of the shape from shading problem, in the special case when
the light sources and the viewer are far away in relation to the size of
the object being viewed, revolves around the nonlinear first-order partial
differential equation

E(x,y) = R(zx(x,y), zy(x,y)),
the so-called image irradiance equation [Horn 86]. Solutions may be ob-
tained by the method of characteristic strip expansion [Garabedian 64].
The results can be improved considerably by solving characteristics in
parallel so as to permit application of a sharpening method to the prop-
agating solution wave-front [Horn 70]. This method adjusts estimated
surface orientations according to local brightness measurements and so
reduces the propagation of errors inherent in methods based on bright-
ness gradients.

None of these methods lend themselves to parallel implementation
on a regular grid registered with the picture cells [Horn 70]. Alterna-
tives have been explored that lead to methods similar to those used for
solving second-order elliptic partial differential equations [Woodham 77]
[Strat 79] [Ikeuchi & Horn 81]. It is difficult to come up with a convergent
iterative scheme that directly gives height z(x,y) above some reference
plane [Brooks & Horn 85] [Horn & Brooks 86]. Most methods instead com-
pute estimates of surface orientation. These may not be integrable in the
sense that they may not be consistent with any underlying surface. For
example, if the method recovers estimates of p = zx and q = zy , it may
be that py ≠ qx . This problem can be solved by finding the “nearest”
integrable surface after each iteration [Frankot & Chellappa 87].



2. Coupled Poisson’s Equation for Interpolation 21

The nearest integrable surface may be found using a set of basis func-
tions that are integrable, or by the method described above for recovering
z(x,y) from p(x,y) and q(x,y). Numerical estimates of the derivatives
of the computed z(x,y) are then used as starting values for the next
iteration.

It is possible to combine the iterative scheme for solving the shape
form shading problem with that for projecting the solution onto the space
of integrable solutions. Suppose for example that we wish to minimize
the following functional:∫∫ (

E−R(p, q))2+λ(p2
x+p2

y +q2
x+q2

y)+µ
(
(zx−p)2+ (zy −q)2

)
dx dy.

The Euler equations for this calculus of variations problem are

λ∆p = −(E − R)Rp + µ(p − zx),
λ∆q = −(E − R)Rq + µ(q − zy),∆z = px + qy.

This illustrates that the methods discussed here for interpolation from
sparse data have applications in other areas as well.



22 Parallel Networks for Machine Vision

3. Moment Calculations for Position and Orientation

Calculations of sums of products of image coordinates and functions of
the picture cell grey-levels are useful in several early machine vision algo-
rithms. These moments are easily calculated using many different archi-
tectures, including bit-sliced, pipelined, analog networks, and by means
of charge coupled devices. Such methods have several applications. A
new technique for directly estimating motion of the camera from first
derivatives of image brightness, for example, depends on the calculation
of such moments (as discussed in the next section).

In addition, a large fraction of all binary image processing methods
involve the computation of the zeroth, first and second moments of the
regions of the image considered to be the image of one object. Presently,
most commercially available machine vision systems have only rudimen-
tary mechanisms for dealing with grey-level images and are aimed mainly
at binary images. These systems typically have digital means for comput-
ing the moments. While such systems are restricted in their application,
they are widely available and well understood. They can be used, for exam-
ple, to determine the position and orientation of an isolated, contrasting
workpiece lying flat on a conveyor belt (see, for example, Chapter 3 in
[Horn 86]). Once the position and orientation of the object is known, a
robot hand with the appropriate orientation may be sent to the indicated
position to pick up the part. A device that finds the centroid of a spot
of light in the image can also be used as a high-resolution light-pen and
a means of tracking a light source, such as a light bulb attached to an
industrial robot arm.

A variety of methods is available for efficiently computing the zeroth-
and first-order moments, including methods for working with projections
of the image or run-length coded versions of the image. Less appears to
be known about how to easily compute second- and higher-order mo-
ments, except that iterated summation can be used to avoid the implied
multiplications. Such ideas are used in special purpose digital chips that
that have been built for finding moments [Hatamian 86, 87]. We never-
theless explore analog networks for this task, partly to see whether they
may have advantages over existing digital implementations, but mostly
because they constitute a stepping stone on the way to networks for the
recovery of motion from time-varying images. Analog circuitry for the
motion vision task share many of the features of the simple moment gen-
erating circuits, but are more complex.

In this section several different methods are explored for computing
moments using analog networks. It will be shown that some elegant meth-



3. Moment Calculations for Position and Orientation 23

ods exist that make it possible to obtain these moments using networks
with relatively few components.

3.1. Use of First Moments for Position

Suppose that we have a characteristic function that indicates places in the
image where the object region is thought to be. That is,

b(x,y) =
{

1, if (x,y) is in the region;
0, otherwise.

Under favorable circumstances, such a characteristic function can be ob-
tained by thresholding a grey-level image. The area of the object is obvi-
ously just the zeroth-order moment

A =
∫∫
D
b(x,y)dx dy,

where the integral is over the whole image.

The position of the object can be considered to be the location (x̄, ȳ)
of its center of area, defined in terms of the two first-order moments as
follows:

Ax̄ =
∫∫
D
x b(x,y)dx dy and Aȳ =

∫∫
D
y b(x,y)dx dy.

The center of area, or centroid is independent of the choice of coordinate
system11.

3.2. Use of Second Moments for Orientation

There are three second-order moments, and these can be used to define
the orientation of the object as well as a shape factor. The orientation of
the object may be taken to be specified by the direction of the axis of least
inertia, which is independent of the choice of coordinate system axes12.

The inertia of a particle relative to a given axis is the product of the
mass of the particle and the square of the perpendicular distance of the
particle form the axis. So the inertia of an extended object about an arbi-
trary axis in the image plane can be defined as

I =
∫∫
D
r 2(x,y)b(x,y)dx dy,

11That is, its position of the centroid relative to the object does not depend on
the choice of coordinate used in the calculation.

12If we rotate the coordinate system, we find that the axis of least inertia deter-
mined in the new coordinate system is just the rotated version of the axis of
least inertia in the original coordinate system



24 Parallel Networks for Machine Vision

where
r(x,y) = x sinθ −y cosθ + ρ

is the distance of the image point (x,y) from the line with inclination θ
(measured anti-clockwise form the x-axis) and perpendicular distance ρ
from the origin.

It is easy to show that the axis of least inertia passes through the
center of area, so it is convenient to compute the second-order moments
with respect to the center of area (see, for example, Chapter 3 in [Horn
86]). Let

a′ =
∫∫
D
x′2 b(x,y)dx dy,

b′ =
∫∫
D
x′y ′ b(x,y)dx dy,

c′ =
∫∫
D
y ′2 b(x,y)dx dy,

where x′ = (x − x̄) and y ′ = (y − ȳ). The inertia can then be expressed
as a function of the angle of inclination of the axis in the form

I = 1
2
(a′ + c′)+ 1

2
(c′ − a′) cos 2θ − b′ sin 2θ.

Differentiating this with respect to θ and setting the result equal to zero
yields

(c′ − a′) sin 2θ0 + 2b′ cos 2θ0 = 0,
for the inclinations of the axes corresponding to extrema of inertia. Note
that we don’t actually need all three of the second-order moments to com-
pute θ0, only the combination (c′ −a′) and b′ are required. This observa-
tion is exploited later in a circuit designed to find the orientation of the
axis of least inertia.

There is, by the way, a two-way ambiguity here, since the equation
is satisfied by (θ0 + π) if it is satisfied by θ0. This is to be expected,
since we are only finding the line about which the region has least inertia.
Higher order moments can be used to resolve this ambiguity, but we will
not pursue this subject any further here.

The axis through the center of area yielding maximum inertia lies
at right angles to the axis yielding minimum inertia. The maximum and
minimum inertia themselves are given by

Imax = 1
2
(a′ + c′)+ 1

2

√
b′2 + (c′ − a′)2,

Imin = 1
2
(a′ + c′)− 1

2

√
b′2 + (c′ − a′)2.

The ratio of Imin to Imax is a factor that depends on the shape of the object.
It will be equal to one for a centrally symmetric object like a circular disc



3. Moment Calculations for Position and Orientation 25

and near zero for a highly elongated object. Note that we need all three
second-order moments to compute a “shape factor.”

So-called moment invariants are combinations of moments that are
independent of translation and rotation of the object region in the image
[Cagney & Mallon 86]. The second order moment invariants are all com-
binations of the minimum and maximum inertia. There are thus only two
degrees of freedom. One may choose any convenient combinations, such
as

Imax + Imin = a′ + c′,
(Imax − Imin)2 = b′2 + (c′ − a′)2.

These invariants are sometimes used in recognition.

3.3. Additional Comments and Higher Moments

In practice the double integrals that apply in the continuous domains are
replaced by double sums, in the obvious way. So the area, for example, is
just (a multiple of)

A =
n∑
i=1

m∑
j=1

bi,j.

The second-order moments a′, b′, and c′, relative to the centroid (x̄, ȳ),
can be computed from the moments a, b, and c relative to the (arbitrary)
origin of the coordinate system, provided that the zeroth and first-order
moments are known:

a′ = a−Ax̄2, b′ = b −Ax̄ȳ, and c′ = c −Aȳ2.

Still higher moments may be used to get more detailed descriptions of
the shape. Also, as noted, the axis of least inertia leaves an ambiguity in
orientation. The third-order moments can be used to disambiguate the
two possibilities.

We have assumed so far that b(x,y) can only take on two values.
It should be obvious that the same analysis holds when b(x,y) is not
binary (yet independent of accidents of lighting and viewing geometry).
This may be advantageous, for example, when one has a coarsely sam-
pled image, in which case the position and orientation of the part may
not be determined very accurately from a mere binary image because of
aliasing problems. Intermediate grey-levels on the boundary of the object
can provide information that allows one to determine the position and
orientation to much high precision.



26 Parallel Networks for Machine Vision

3.4. Methods for Computing Moments

There are many methods for efficiently computing moments. It is pos-
sible, for example, to avoid the multiplications appearing in our simple
definition of the moments by repeated summation. Note, for example,
that

n∑
i=1

i fi =
n∑
i=1

i∑
j=1

fi =
n∑
j=1

n∑
i=j
fi,

so that this sum can be computed using the coupled multiplication-free
iterative scheme

si = si+1 + fi and Sj = Sj+1 + sj,
with sn+1 = 0 and Sn+1 = 0. The total is given by S1. A similar scheme
using two intermediate sums can be used to obtain a second moment and
so on.

In serial digital implementation, run-length coding can be used to ad-
vantage. Further, projections can dramatically compress the information.
A projection at an arbitrary angle θ is given by

pθ(t) =
∫∫
D
b(x,y)δ(x cosθ +y sinθ − t)dx dy,

or

pθ(t) =
∫
L
b(t cosθ − s sinθ, t sinθ + s cosθ)ds,

where L is the straight line x cosθ + y sinθ = t. It can be shown that all
n-th order moments can be computed from (n+ 1) projections.

Consider, in particular, the vertical and the horizontal projections
(where θ = 0, and θ = π/2 respectively):

v(x) =
∫
b(x,y)dy and h(y) =

∫
b(x,y)dx.

The integral of either projection gives us the area A, while

Ax̄ =
∫
x v(x)dx and Aȳ =

∫
y h(y)dy,

gives us the center of area. Three projections are needed to calculate the
second moments. We can use the two we already have, plus a projection
in a diagonal direction (see, for example, Chapter 3 in [Horn 86]):

d(t) =
∫
b
(
t − s√

2
,
t + s√

2

)
ds.

The moments involvingx2 andy2 can be obtained straightforwardly from
v(x) and h(y), while the moment involving xy can be computed as fol-
lows:∫∫
D
xy b(x,y)dx dy =

∫
t2 d(t)dt − 1

2

∫
x2 v(x)dx − 1

2

∫
y2 h(y)dy.



3. Moment Calculations for Position and Orientation 27

In the case of a hexagonal grid, the three projections can be conveniently
taken in directions spaced 120◦ apart. Working with projections dramat-
ically reduces the amount of arithmetic required in a digital implementa-
tion.

3.5. Feedback Method for Computing Center of Area

The computation suggested by the equations above can be embodied in
hardware in many different ways. One fairly obvious implementation of
the first-order moment calculation uses linear resistive chains to obtain a
potential proportional to x at every picture cell, and a switch that injects
a current proportional to x into a global bus wherever b(x,y) = 1. The
bus is terminated in a resistor; its potential represents Ax̄. A similar
arrangement is used to compute Aȳ . A third bus is used to compute a
potential proportional to the area A itself. (If b(x,y) is not binary, analog
multipliers will need to be used at each picture cell in order to obtain the
required products.)

The computation can also be performed by first obtaining the hori-
zontal and vertical projections. (In the case of grey-level information, the
number of analog multipliers is drastically reduced by first computing
these projections.) A one-dimensional circuit, using analog multipliers,
then computes the one-dimensional centroid of each of the two projec-
tions. Note that the projections may also be processed off chip and that
the projections may be obtained using charge coupled device technology.

Other possibilities abound. A particularly simple method involves a
feedback scheme obtained by noting that the inertia about an axis perpen-
dicular to the image plane is minimized when this axis passes through the
centroid. That is, we have to find x̄ and ȳ such that

E =
∫∫
D

(
(x − x̄)2 + (y − ȳ)2

)
b(x,y)dx dy,

is made as small as possible. The derivatives of this integral with respect
to x̄ and ȳ are
dE
dx̄

= −2
∫∫
D
(x−x̄) b(x,y)dx dy and

dE
dȳ

= −2
∫∫
D
(y−ȳ) b(x,y)dx dy.

We can use a gradient descent method to solve the least squares problem.
This leads to the scheme:
dx̄
dt

= α
∫∫
D
(x−x̄) b(x,y)dx dy and

dȳ
dt

= α
∫∫
D
(y−ȳ) b(x,y)dx dy,

where α is a gain factor that controls the speed of adjustment of the
estimates of x̄ and ȳ . When the circuit settles, the time derivatives are
zero and the extremum has been reached.



28 Parallel Networks for Machine Vision

A simple implementation of this idea uses a global bus with potential
proportional to the present estimate of x̄, the x-component of the center
of area. Each picture cell injects a current proportional to the difference
between its x coordinate and the bus potential x̄, provided that it is in the
object region, that is, if b(x,y) = 1. The current can be generated easily
by a resistor that is connected between a potential follower that buffers
the x-coordinate potential and the bus for x̄. A switch connects this resis-
tor to the buffer amplifier wherever b(x,y) = 1. A similar arrangement
is used for ȳ , the y component of the center of area. Both busses are
terminated in capacitors connected to ground13.

In the equilibrium state, the currents injected into each of the two
busses add up to zero. There is no need in this scheme to compute the
area separately, if only the center of area is needed. A discrete analog
chip has in fact been built that determines the centroid using a method
like this [DeWeerth & Mead 88].

3.6. Feedback Schemes for Orientation

The computation of orientation is a little harder, since it involves second-
order moments and requires that the center of area be known. The axis
of least inertia passes through the centroid and the distance of an image
point from the axis is just

r(x,y) = x′ sinθ −y ′ cosθ,
where x′ = (x − x̄) and y ′ = (y − ȳ). We could try to develop a feed-
back scheme for computing the angle θ directly, but this would require
evaluation of trigonometric functions and some way of letting the repre-
sentation “wrap around” when θ exceeds +π or becomes less than −π . It
is better to use a redundant representation for orientation. One can, for
example, use two quantities, c and s, proportional to the sine and cosine
of θ. The inertia integral then can be written

I =
∫∫
D
(x′s −y ′c)2 b(x,y)dx dy.

The only difficulty with a scheme based on this approach is the need to
keep the two quantities consistent, that is, some way of ensuring that
c2 + s2 − 1 = 0.

One way of dealing with this constraint is to add a Lagrange multiplier
term to obtain the modified inertia integral

I′ =
∫∫
D
(x′s −y ′c)2 b(x,y)dx dy + λ (c2 + s2 − 1).

13It may be sufficient to use the parasitic capacitance of the busses, provided
there are no stability problems resulting from unmodeled effects.



3. Moment Calculations for Position and Orientation 29

We might then consider differentiating with respect to c, s, and λ to obtain
the gradient of the modified inertia integral:

dI′

dc
= −2

∫∫
D
(x′s −y ′c)y ′ b(x,y)dx dy + 2λc,

dI′

ds
= +2

∫∫
D
(x′s −y ′c)x′ b(x,y)dx dy + 2λs,

dI′

dλ
= (c2 + s2 − 1).

By adding c times the first derivative to s times the second derivative, we
see that at the stationary point,

λ = −
∫∫
D
(x′s −y ′c)2 b(x,y)dx dy = −I.

Subtracting s times the first derivative from c times the second derivative,
we also see that at the stationary point,

sc
∫∫
D
(y ′2 − x′2)dx dy + (c2 − s2)

∫∫
D
x′y ′ dx dy = 0.

If we use polar coordinates here for a moment and let c = ρ cosθ and
s = ρ sinθ, we note that

I′ = ρ2
∫∫
D
(x′ sinθ −y ′ cosθ)2 b(x,y)dx dy + λ(ρ2 − 1).

Now
dI′

dθ
= −2ρ2

∫∫
D

(
(y ′2 − x′2) sinθ cosθ + x′y ′ (cos2 θ − sin2 θ)

)
dx dy,

which, of course, is zero at the stationary point. Also

d2I′

dθ2
= −2ρ2

∫∫
D

(
(y ′2 − x′2) (cos2 θ − sin2 θ)− 4x′y ′ sinθ cosθ

)
dx dy,

At the minimum of I, this equals∫∫
D
(
x′2 +y ′2)b(x,y)dx dy√(∫∫

D x′y ′ b(x,y)dx dy
)2 +

(∫∫
D(y ′

2 − x′2)b(x,y)dx dy
)2
.

So the second derivative of I′ with respect to θ is positive at the minimum
(and it is negative at the maximum). Unfortunately, the second derivative
of I′ with respect to ρ is zero there, given the value computed above for
λ. Also, the second derivative of I′ with respect to λ is always zero.

We conclude that the minimum of the original inertia integral, I (a
function of the single variable θ), does not correspond to a minimum of
the modified inertia integral, I′ (a function of the three variables c, s, and
λ), but rather some kind of saddle point. This means that we cannot use
steepest descent methods directly. We discuss a novel way of dealing
with this problem in the next section that requires inverting the sign of



30 Parallel Networks for Machine Vision

the gradient component in the λ direction and the addition of a penalty
term proportional to (c2 + s2 − 1)2 (see also [Platt & Barr 88]). But in this
particular case we can avoid this complication by noting that when the
solution has been found,

λ = −
∫∫
D
(x′s −y ′c)2 b(x,y)dx dy.

This provides a way of estimating λ at any given stage of the computation
that we can use instead of gradient descent for finding a new value of λ.

Another way of dealing with the problem is to make adjustments
only in directions that keep the value of c2 + s2 constant. This can be
done by removing the component of the gradient that is along the normal
to the constraint curve defined by c2 + s2 − 1 = 0. This gradient projec-
tion method leads to useful feedback schemes for finding the minimum.
Gradient projection is discussed in more detail in the next section.

3.7. Normalization of the Inertia Integral

In this particular case here we can use an approach that is a bit simpler
than gradient projection, because the integral we are trying to minimize
has a particularl scaling property. Note that if we multiply c and s by
some constant k, the integral is just multiplied by k2. This suggest that
we can circumvent the difficulty noted above simply by normalizing the
integral by dividing by (c2 + s2). This makes the result independent of
the scale of c and s. To force c and s to have the correct scale, we can
then add a penalty term proportional to the square of the error in the
constraint c2 + s2 − 1 = 0, so that overall we now have to minimize

I′′ = 1
c2 + s2

∫∫
D
(x′s −y ′c)2 b(x,y) dx dy + µ(c2 + s2 − 1)2.

Note that µ is not an unknown parameter, but a quantity we can adjust
to control the rate of convergence of the resulting system towards the
condition c2+ s2 = 1. Differentiating I′′ with respect to c and s we obtain

dI′′

dc
= +2s
(c2 + s2)2

∫∫
D
e(x,y)b(x,y) dx dy + 4µ(c2 + s2 − 1)c,

dI′′

ds
= −2c
(c2 + s2)2

∫∫
D
e(x,y)b(x,y) dx dy + 4µ(c2 + s2 − 1)s,

where

e(x,y) = x′y ′(c2 − s2)+ (y ′2 − x′2) sc.



3. Moment Calculations for Position and Orientation 31

This suggests a simple gradient descent method:

dc
dt

= −αs
∫∫
D
e(x,y)b(x,y) dx dy − βc(c2 + s2 − 1),

ds
dt

= +αc
∫∫
D
e(x,y)b(x,y) dx dy − βs(c2 + s2 − 1),

where β = 2αµ. Note that if we omit the penalty term, that is, when
β = 0, then the adjustment to (c, s) is in the direction (−s, c), which is
orthogonal to (c, s). Thus the magnitude of (c, s) is preserved by this
component of the adjustment. The other component, arising from the
penalty term, is in the direction (c, s) and thus does not affect the first
part of the modified integral, only bringing the magnitude of (c, s) closer
to unity.

The above leads to the following feedback scheme: The values of c
and s are represented as potentials on global bus lines. The combinations
sc and (c2 − s2) may be either computed locally, or distributed by other
global bus lines, fed by circuits that compute these values based on the
values of c and s. At each picture cell we compute the differences x′ =
(x − x̄) and y ′ = (y − ȳ), as well as x′y ′ and (y ′2 − x′2). Additional
circuitry is used to obtain the error term

e = x′y ′(c2 − s2)+ (y ′2 − x′2)sc.
Finally, in places where b(x,y) = 1, currents proportional to −e s and
+e c are injected into the global busses for c and s respectively. No current
is injected at picture cells where b(x,y) = 0.

The two global busses for c and s are terminated in capacitors con-
nected to ground14. A single separate global feedback circuit is used to
ensure that c2+s2−1 = 0. The error in the magnitude of the sum of c2 and
s2 is computed and used to inject currents proportional to−βc (c2+s2−1)
and −βs (c2+s2−1) into the capacitors whose potentials represent c and
s.

It may appear at first sight that there is an opportunity for instability
here, since there are two coupled first-order feedback loops. No such
problem arises, however, since the adjustments made to (c, s) by the two
systems are in orthogonal directions.

There may also appear to be potential start up problem here, since
the adjustments are zero as long as c = 0 and s = 0. But this is not a
serious concern, since this state is an unstable equilibrium and so any
small noise current will cause the system to move away from it.

14It may be sufficient to use the parasitic capacitance of the busses, provided
there are no stability problems resulting from unmodeled effects.



32 Parallel Networks for Machine Vision

In the scheme as described so far, a considerable number of local com-
putational elements are needed to obtain the factors x′y ′ and (y ′2−x′2).
Rather than computing these terms at each picture cell from values of x′

and y ′, one can obtain them using two resistive grids. This is because
both of these factors are harmonic functions, that is, they satisfy Laplace’s
equation, ∆f(x,y) = 0. A uniform resistive sheet solves Laplace’s equa-
tion when no current is injected into it. If the boundary of the grid is held
at a potential proportional to x′y ′, the interior will also settle to a po-
tential proportional to x′y ′, since this is the unique solution of Laplace’s
equations for these boundary conditions. The same holds for (y ′2−x′2),
which is actually just a scaled version of the same function rotated by
π/4. This idea is explored further later in this section.

In any case, the overall circuit will settle into one of two opposite
states, depending on initial conditions, provided that the object imaged
is not too symmetrical. (If the object is almost symmetrical, currents gen-
erated in one image area will tend to cancel currents in other image areas
and small overall noise currents will drive the result.) We have above, by
the way, indirectly solved the problem of finding the eigenvector corre-
sponding to the smallest eigenvalue of a 2× 2 symmetric matrix. It may
seem surprising that a fairly straightforward analog circuit can do this for
us! We explore a generalization of this in the next section.

3.8. Resistive Networks for Moment Calculation

If area and center of area is all we are computing, then even the simple
feedback schemes discussed above appear to constitute overkill. Consider
first a regular one-dimensional chain of N resistors each of resistance R.
Above we used such a simple resistive chain to generate potentials at
each node linearly related to the position. This potential was then used
in further calculation—to generate a current injected into a global buss.
Now consider a different way of using the very same chain. Suppose that
the chain is grounded at each end, and that we can measure the currents
Il and Ir flowing into the ground at these points. There are k resistors to
the left and (N − k) to the right of the k-th node. Suppose a potential V
develops at the k-th node when we inject a current I there. Clearly

Il = V
kR

and Ir = V
(N − k)R ,

while the total current is

I = Il + Ir = N
k(N − k)

V
R
,



3. Moment Calculations for Position and Orientation 33

so that
Il
I
= N − k

N
and

Ir
I
= k
N
.

We can compute the “centroid” of these two currents:

x̄ = xl IlI + xr
Ir
I
= xl + k

N
(xr − xl),

which is the x coordinate of the place where the current was injected.
If we inject currents at several nodes, we can show, using superposition,
that the computation above yields the centroid of the injected currents.

Now imagine a regular two-dimensional resistive grid grounded on
the boundary. Current is injected at each picture cell where b(x,y) = 1.
The currents to ground on the boundary from the network are measured.
The total current obviously is proportional to the area, that is, the number
of picture cells where b(x,y) = 1. More importantly, the center of area of
the current distribution on the boundary yields the center of area of the
injected current distribution. We show this now in the continuous case.

To see this more clearly, consider a uniform resistive sheet covering
the region D, grounded on the boundary ∂D. Current i(x,y) per unit
area is injected into the sheet at the point (x,y), where the potential is
v(x,y). The potential satisfies Poisson’s equation

∆v(x,y) = −ρ i(x,y),
where ρ is the resistivity (per unit square). Now consider the current
density per unit length extracted from the sheet at the boundary:

j(x,y) = −ρ ∂v
∂n
,

where the normal derivative of the potential can be defined by

∂v
∂n

= ∂v
∂x

dy
ds

− ∂v
∂y

dx
ds
,

with the tangent to the boundary given by(
dx
ds
,
dy
ds

)T
.

It is clear that the total current injected into the sheet must equal the total
current leaving through the boundary. We can show this formally using
the two-dimensional version of Green’s formula [Korn & Korn 68]:∫∫

D
(u∆v − v∆u) dA = ∫

∂D

(
u
∂v
∂n

− v ∂u
∂n

)
ds,

with v = v(x,y) and u(x,y) = 1. We obtain∫∫
D
∆v dA = ∫

∂D

∂v
∂n

ds,



34 Parallel Networks for Machine Vision

or ∫∫
D
i(x,y)dA =

∫
∂D
j(x,y)ds.

This works, of course, even when the boundary is not grounded.

Now, if we instead use u(x,y) = x in Green’s formula, we obtain∫∫
D
x∆v dA = ∫

∂D

(
x
∂v
∂n

− v ∂x
∂n

)
ds,

which, since v(x,y) = 0 on the boundary, becomes just∫∫
D
x∆v dA = ∫

∂D
x
∂v
∂n

ds,

so that ∫∫
D
x i(x,y)dA =

∫
∂D
x j(x,y)ds.

So the first-order moment in the x-direction of the boundary current is
equal to the first-order moment in the x-direction of the injected current.
Similarly, ∫∫

D
y i(x,y)dA =

∫
∂D
y j(x,y)ds.

The same trick can be used with any harmonic function u(x,y), that is,
a function for which ∆u = 0.

It is easy to see that xy and (y2−x2) are harmonic functions, so we
can compute their integrals in this fashion also:∫∫

D
(y2 − x2) i(x,y)dA =

∫
∂D
(y2 − x2) j(x,y)ds,

and ∫∫
D
xy i(x,y)dA =

∫
∂D
xy j(x,y)ds.

Now the first of these integrals corresponds to (c − a), while the second
corresponds to b in the calculation of orientation. This means that we
can obtain the position and orientation of a region just from the currents
on the boundary of the resistive network.

Note, however, that we cannot obtain all three second-order moments
independently from the boundary currents. We only obtain one of the two
second order moment invariants. Consequently we can also not compute
a shape factor from the boundary currents.

The two-dimensional Laplacian operator can be written in polar form
as

∆u = 1
r
∂
∂r

(
r
∂u
∂r

)
+ 1
r 2

∂2u
∂θ2

,

so we see that

uk = rk cos(kθ) and vk = rk sin(kθ),



3. Moment Calculations for Position and Orientation 35

are two families of harmonic functions. We have used the first few mem-
bers of these sets already, namely,

1, x = r cosθ, y = r sinθ, x2−y2 = r 2 cos 2θ, and 2xy = r 2 sin 2θ.

The next pair of harmonic functions one could use are the monkey-saddle
functions

x3 − 3xy2 and 3x2y − xy2.
Continuing in this way, we see that one can compute two combinations of
each of the (n + 1) moments of n-th order from the boundary currents.
We cannot compute all of the moments independently. For purposes of
determining the position and orientation, however, we only need the first
few.

3.9. Implementation Details & Previous Work

To obtain the required combinations of moments, we have to integrate
the product of the boundary current with

1, x, y, (x2 −y2) and 2xy.

The first is just the total current flowing out of the resistive network. The
computation of the rest will be affected somewhat by the shape chosen for
the resistive network. In the case of a circular image region, for example,
we multiply the currents by weights that vary as

1, cosθ, sinθ, cos 2θ and sin 2θ,

where θ is the angle measured from the center of the image. Note that
the weights are fixed for each point on the boundary. The computation
may be simplified by using a square boundary, but at the cost of loss of
rotational symmetry.

There has been considerable work on finding moments using digital
means. Special purpose systems have been developed for tracking objects
using these schemes [Gilbert et al. 80] [Gilbert 81]. Also, a number of spe-
cial purpose digital signal processing systems have been built to compute
moments. Some of these systems have much of the required circuitry on
a single digital chip [Hatamian 86, 87]. Furthermore, a discrete analog
chip has been built that determines the centroid using a gradient descent
method [DeWeerth & Mead 88]. With considerable increase in circuit com-
plexity this could perhaps be extended to also determine orientation using
the approach described in the first part of this section.

There also exists a continuous analog light-spot position sensor that
uses a method similar to the one described above (Selspot Systems). It



36 Parallel Networks for Machine Vision

consists of a single, large, square photo-diode and some electronics. Elec-
trodes are attached on four edges of the “lateral effect” photo-diode and
four operational amplifiers are used to measure the short-circuit current
out of each of the four edges. The total current is just the integral of the
signal. The ratio of the difference to the sum of the currents on opposite
edges gives the position of the centroid in one direction. The currents in
the other two edges give the other component of the centroid.

Apparently the possibility of computing combinations of higher mo-
ments from the boundary currents, and thus determining orientation also,
has not previously been noted.

3.10. A Network Equivalence Theorem

In the above we have explored two apparently quite different ways of using
a simple resistive network:

• Apply a given potential distribution along the edge of the network
and use the open-circuit potentials at interiors nodes in further cal-
culation, and

• Inject currents at interior nodes and use the measured short-circuit
currents on the edge in further calculation.

There is an intimate relationship between these two ways of using a re-
sistive network. In some cases one of the two schemes leads to much
simpler implementation than the other, so it is important to understand
the equivalence. This will now be explored in more detail for arbitrary
networks of resistors.

Consider a resistive network with external nodes segregated into two
setsA and B of sizeN andM respectively. Now perform two experiments:

1. Connect the nodes in group A to voltage sources with potentials Vn
for n = 1, 2, . . ., N and measure the resulting open-circuit potentials
on the nodes in group B. Let these be called vm, for m = 1, 2, . . ., M .

2. Connect the nodes in group B to current sources with currents im, for
m = 1, 2, . . ., M , and measure the short-circuit currents in the nodes
of group A. Let these be called In for n = 1, 2, . . ., N .

Then

N∑
n=1

InVn =
M∑
m=1

imvm

Proof: Consider in case 1 that we apply a potential only to node n in
group A, that is, Vk = 0 for k ≠ n. Let the resulting open-circuit potential



3. Moment Calculations for Position and Orientation 37

on node m in group B be called vm,n. We note that superposition tells us
that the potential on node m in group B when potentials are applied to
all of the nodes in group A is

vm =
N∑
n=1

vm,n.

Next, consider in case 2 that we inject current only at node m in group
B, that is il = 0 for l ≠m. Let the resulting short-circuit current at node
n in group A be called In,m. We note that superposition tells us that the
current in node n of group A when currents are injected into all of the
nodes of group B is

In =
M∑
m=1

In,m.

The reciprocity theorem tells us that

In,m Vn = im vm,n.
Now sum over all of the nodes in group A:

N∑
n=1

In,m Vn =
N∑
n=1

im vm,n,

or
N∑
n=1

In,m Vn = im
N∑
n=1

vm,n = im vm.

Then sum over all of the nodes in group B:
M∑
m=1

N∑
n=1

In,m Vn =
M∑
m=1

im vm,

or
N∑
n=1

M∑
m=1

VnIn,m =
N∑
n=1

Vn
M∑
m=1

In,m =
M∑
m=1

im vm,

or, finally
N∑
n=1

In Vn =
M∑
m=1

im vm.

3.11. Application

One application of this theorem is in the simplification of circuits for the
analog computation of some weighted average. Suppose that we have a
resistive network that is used to compute some quantities vm (for exam-
ple, a potential representing the x position in an image) from some fixed



38 Parallel Networks for Machine Vision

inputs Vn (for example, potentials representing x on the edge of the re-
sistive network). These potentials are then used to compute a weighted
average like

v =
∑M
m=1 im vm∑M
m=1 im

,

where the quantities im are the weights (for example, image brightness).

Then an equivalent way of obtaining the same result is to inject cur-
rents proportional to im into the resistive network, now grounded in the
places where inputs where applied earlier. Let the currents at the places
where the network is grounded be In. Then the same weighted average
can be obtained by computing instead

V =
∑N
n=1 In Vn∑N
n=1 In

.

Which of the two schemes is simpler depends on details of the implemen-
tation, including the relative sizes of N and M .

3.12. Example

In the (one-dimensional version of the) centroid-finding chip, a potential
representing x is generated from two fixed input potentials applied at
either end of a uniform resistive chain. An output current proportional
to the product of the light intensity at a picture cell and the local value
of x is injected into a global bus. The weighted average of the potentials
at the picture cells can then be computed from this current and a current
proportional to the total brightness15:

v =
∑M
m=1 vm im∑M
m=1 im

.

This allows us to determine the x position of the centroid of the light spot

x = (V2 − v)x1 + (v − V1)x2

V2 − V1
,

where x1 and x2 are the coordinates at either end of the resistive chain,
at the points where the potentials V1 and V2 are applied.

15In the feedback version of this idea, currents are generated proportional to the
difference between the potentials representing x and x. These are injected into
an unterminated global bus. In the steady state we have from Kirchhoff’s law:

M∑
m=1

(vm − v)im = 0,

which leads to the same result.



3. Moment Calculations for Position and Orientation 39

The computation can also be performed by injecting currents propor-
tional to the brightness at each picture cell into the same uniform linear
resistive chain now grounded at either end. The centroid can be computed
from the currents flowing into ground at the ends:

x = x1I1 + x2I2
I1 + I2 .

In this particular case, the second scheme appears to be simpler.

3.13. Generalizations

The same ideas can be applied in the continuous domain, where we are
dealing with resistive sheets, rather than networks of discrete compo-
nents. In particular, we can use it to design circuits that compute com-
binations of various moments of image brightness. Consider a uniform
two-dimensional resistive sheet. The potential in the interior satisfies
Laplace’s equation ∆v(x,y) = 0.
We can obtain a potential distribution proportional to an arbitrary har-
monic function v(x,y) simply by applying a potential proportional to
v(x,y) to the boundary of the sheet.

The functions 1, x, y , xy andy2−x2 are harmonic. This suggest that
we can use this idea to compute the zeroth, first, and some combinations
of the higher-order moments of image brightness. A current density pro-
portional to the product of brightness at each point in the image and the
potential at the corresponding point on the resistive sheet is injected into
a global bus. The total current is proportional to the desired combination
of moments.

Alternatively, using the method developed above, we can use the same
resistive sheet to direct the currents rather than as a way of generating
potential distributions. At each point we simply inject a current den-
sity proportional to brightness. The edge of the resistive sheet is now
grounded and the current density along the boundary is read out. The
desired moment is obtained by integrating the product of v(x,y) and
the current density on the boundary.

In the continuous domain, with a uniform resistive grid, the equiva-
lence between the two methods described above can be obtained by an
application of Green’s theorem in two dimensions for converting an inte-
gral over a region into an integral along the boundary of the region. We
have ∫∫

D
(u∆v − v∆u)dx dy = ∫

∂D

(
u
∂v
∂n

− v ∂u
∂n

)
ds.



40 Parallel Networks for Machine Vision

Now let u(x,y) be the potential on the resistive sheet, while v(x,y) is
some chosen harmonic function. Then, if the current density injected into
the sheet is i(x,y) and its resistivity ρ, we have∆u(x,y) = −ρ i(x,y),
while the current density along the boundary is given by

j(x,y) = −ρ ∂u(x,y)
∂n

.

Using the fact that u(x,y) = 0 on the boundary, and that v(x,y) is
harmonic we obtain from Green’s theorem:∫∫

D
(−v∆u)dx dy = ∫

∂D

(
−v ∂u

∂n

)
ds.

Substituting for u(x,y) in the interior in terms of the injected current
density and for the normal derivative of u(x,y) on the boundary, we
finally see that∫∫

D
v(x,y) i(x,y)dx dy =

∫
∂D
v(x,y) j(x,y)ds.

The above analysis holds as long as the multiplier is a harmonic function.

The theorem presented earlier is more general, since it applies even
to networks that are not uniform and does not require that the multiplier
function be harmonic. It also can be used directly on discrete networks
and does not involve approximating a continuous resistive sheet with a
discrete one.

In the discrete case, there is a definite implementation advantage to
the second scheme, since there are few nodes on the boundary in com-
parison to the number of nodes in the interior of the resistive grid.



4. Short Range Motion Vision Methods 41

4. Short Range Motion Vision Methods

Attacks on the motion vision problem can be categorized in a number
of ways. First of all, there is the question of how a large a change be-
tween successive images the method is meant to deal with. Feature-based
methods appear to be best suited for the so-called long-range motion vi-
sion problem, where there is a relatively large change between images.
Conversely, these methods generally are not good at estimating motions
with sub-pixel accuracy. Feature-based methods essentially solve the cor-
respondence problem, which is the central problem in binocular stereo.
Unfortunately, the problem in motion vision is typically even harder than
the binocular stereo problem, because the search for a match is not con-
fined to an epipolar line.

Gradient-based methods are better suited to situations where the mo-
tion between successive images is fairly small, that is, the short-range
motion vision problem. Correlation methods appear to fall somewhere
in between, since they cannot deal with significant changes in foreshort-
ening or photometric changes, yet are not able to produce displacement
estimates with sub-pixel accuracy.

There are several different approaches to the short-range motion vi-
sion problem. Here we briefly list some based directly on brightness
derivatives rather than matching of isolated features or correlation. We
first discuss several methods for recovering optical flow and then go on to
methods for recovering rigid body motion directly, without using optical
flow as an intermediate result.

All methods for recovering motion implicitly make some assumptions
about how images change when the viewer moves with respect to the
scene. Simple correlation methods, for example, assume that changes in
foreshortening can be ignored. This is not a good assumption in wide-
baseline binocular stereo nor in some long-range motion vision applica-
tions. Feature-based methods and correlation methods also assume that
the brightness pattern does not change drastically with viewpoint. Fortu-
nately, the brightness of many real surfaces does not depend significantly
on the viewing direction for a fixed illumination geometry.

Methods based on brightness gradients implicitly assume that the
variations in brightness at a particular point in the image due to motion
are much larger than the brightness fluctuations induced by changes in
viewpoint. This is a reasonable assumption unless the surface lacks mark-
ings and is illuminated by rapidly moving light sources. Most methods
will be fooled by the motion of virtual images resulting from specular or
glossy reflections of point light sources.



42 Parallel Networks for Machine Vision

4.1. Recovering Optical Flow from Brightness Derivatives

The motion field is the projection in the image of velocities of points in
the environment with respect to the observer. Observer motion and object
shapes can be estimated from the motion field. The optical flow is a vector
field in the image that indicates how brightness patterns move with time.
The optical flow field is not unique, since the matching of points along an
isophote in one image with an isophote of the same brightness in the other
image is not unique. Additional constraints have to be introduced in order
to select a particular “optical flow.” Under favorable circumstances the
optical flow so computed is a good estimate of the motion field. There are
several algorithms of different complexity and robustness for estimating
optical flow. At one end of the spectrum we have algorithms that assume
the flow is constant over the image, at the other, there are algorithms that
can deal with depth discontinuities. Many of the interesting variations are
listed here in order of increasing complexity:

1. Constant Optical Flow [Nagel 84] & [Weldon 86]: Here the flow ve-
locity, (u,v), is assumed to be constant over the image patch. This
may be a good approximation for a small field of view. Several cam-
eras aimed in different directions (spider head) could yield flow vec-
tors that provide the information necessary to solve for the observer
motion. Alternatively, this computation may be applied to (possi-
bly overlapping and weighted) patches of one image. A basic least
squares analysis leads to a simple algorithm. All that is required is:
(a) estimation of the brightness derivatives Ex , Ey , and Et , (b) accu-
mulation of the sums of the products E2

x , ExEy , E2
y , ExEt , and EyEt ,

and, (c) solution of two linear equations in the two unknowns u and
v . This last step could be done off-chip, using the totals accumulated
on-chip. Alternatively, the computation can be done in an iterative or
feedback mode on chip (as it is in [Tanner & Mead 87]). The band-
width going off-chip is very low in either case. If the computation is
done for many (possibly overlapping and weighted) image windows,
then an optical flow vector field results (at resolution less than the
full image resolution). Such a vector field can then be processed off-
chip to yield camera motion and scene structure using a least-squares
method (a lá [Bruss & Horn 83]).

2. Basic Optical Flow [Horn & Schunck 81]): Here the velocity field is
allowed to vary from place to place in the image, but is assumed
to vary smoothly. Depth discontinuities are not treated, but elastic



4. Short Range Motion Vision Methods 43

deformations, fluid flows and rigid body motions yield reasonable re-
sults. The calculus of variation problem here leads to a coupled pair
of Poisson’s equations for u(x,y) and v(x,y), the components of
the optical flow. The right-hand sides of these equations (that is, parts
not involving u and v) are computed from the brightness derivatives.
One needs to be able to compute values such as (α2+E2

x+E2
y) (or ap-

proximations thereto). The partial differential equations themselves,
of course, can be conveniently solved on two interlaced resistive net-
works. The inputs may be currents injected at nodes, while the out-
puts are the potentials there. The boundaries have to be treated care-
fully. The algorithm is robust with respect to small random errors in
the resistive network. (It is, by the way, not robust against round-off
error in the digital version, common when the number of bits avail-
able to representing u and v are limited). As usual, there is some
small advantage to working on a hexagonal grid.

3. Optical Flow with Multiplier [Gennert & Negahdaripour 87]: The ba-
sic optical flow algorithm is based on the assumption that the bright-
ness of a small patch of the surface does not change as it moves. In
practice there are small brightness changes, since the shading on the
surface may change slowly as a patch moves into areas that are illu-
minated differently. When the surface is highly textured, brightness
variations at a point in the image resulting from motion are much
larger than those due to changes in shading and illumination, and so
these can be safely ignored. If there is no strong texture on the sur-
face, somewhat better results can be obtained if one takes account of
these small changes in shading. One can do this using a simple mul-
tiplier model. Here the brightness of a patch in a frame of an image
sequence is assumed to be a multiple of the brightness of the same
patch in the previous frame. The multiplier (assumed to be near unity)
is allowed to vary from point to point in the image, but is assumed to
vary slowly with position. The resulting calculus of variation problem
now leads to three coupled partial differential equations. The new al-
gorithm is not much more complex (about 50% more work) than the
basic one, yet yields better results.

4. Optical Flow with Discontinuities [Koch, Marroquin & Yuille 86] [Gam-
ble & Poggio 87] [Hutchinson, Koch, Luo & Mead 87] [Murray & Buxton
87]: The notion of a line process for dealing with discontinuities in im-
ages originated with [Geman & Geman 84]. This idea was later applied
to discontinuities in optical flow by [Koch, Marroquin & Yuille 86],
[Hutchinson, Koch, Luo & Mead 87] and [Murray & Buxton 87]. To deal



44 Parallel Networks for Machine Vision

with discontinuities in the optical flow, which typically occur at object
boundaries, one introduces line processes that cut the solution and
prevent smoothing over discontinuities. The resulting penalty func-
tion to be minimized is no longer convex and the solution involves
more than simply solving a set of coupled partial differential equa-
tions. It seemed at first that this approach was doomed to failure,
since methods like simulated annealing for solving such nonlinear
problems are hopelessly inefficient on an ordinary serial computer.
However, a reasonably efficient method results if one gives up the de-
mand for the absolute global minimum and instead is satisfied with
a good solution, with cost close to the absolute minimum cost [Blake
& Zisserman 88]. It helps to base the decision about whether to in-
troduce a line process at a particular place only on the local change
in the cost of the solution [Geman & Geman 84]. Further improve-
ments in performance can be had if line processes are allowed only
very near to discontinuities in brightness, that is, edges [Gamble &
Poggio 87]. This suggests integrating some edge finding algorithm
on the same chip. The approach here leads to an analog network
that interacts with some logic circuits implementing the line-process
decision making (see Figure 5 in [Koch, Marroquin & Yuille 86]).

Often there is a concern about the rate of convergence of simple methods
for solving Poisson’s equation. Multi-grid methods are suggested as a
means of speeding up the process. This is fortunately not so much of a
concern here since:

• It is rare to have no inputs (zero right-hand side) over large patches
(that is, large patches of uniform brightness are rare).

• The analog networks ought to settle fairly rapidly, even when there
are many nodes since the time-constant should be small.

• Excellent starting values are available from the solution for the pre-
vious frame.

Because it is difficult to get good estimates of optical flow from noisy im-
age data, there has been a trend recently to go directly to the ultimately
desired information, namely observer motion and object shape. Instead
of computing these from a flow field, they are derived directly from image
brightness and the partial derivatives of brightness. These methods too
lend themselves to implementation in a parallel network (see next sec-
tion). They do, however, assume rigid body motion. Thus these methods
are of little use when we are dealing with elastic deformations and fluid
flow. Consequently there is still a strong interest in finding rapid, robust
methods for estimating the optical flow.



4. Short Range Motion Vision Methods 45

4.2. Direct Recovery of Rigid Body Motion

It is possible to derive observer motion and object shape directly from
brightness gradients using something like a least-squares approach. These
methods are not as mature as those for estimating the optical flow, but
may ultimately be of more interest. A number of special cases have been
solved so far:

1. Pure Rotation [Alomoinos & Brown 85] [Horn & Weldon 88]: In the
case of pure rotation, the motion field is particularly simple since it
does not depend on the distances of the observer from the objects
in the scene. In this case a simple least-squares analysis leads to a
set of three linear equations in the three unknown components of
the angular velocity vector ω = (A, B,C)T . The coefficients of these
equations are once again sums over the whole image of products of
brightness derivatives and image coordinates. The algorithm is re-
markably robust with respect to noise in the brightness derivatives,
since the problem is so highly overdetermined (three unknowns and
hundreds of thousands of measurements).

2. Pure Translation [Horn & Weldon 88]: In the case of pure transla-
tion, the task is to recover the direction of the translation vector. The
focus of expansion is the intersection of this vector with the image
plane, that is, it is the image of the point towards which the observer
is moving. Once the focus of expansion has been located, relative dis-
tances of selected points in the scene (where the brightness gradient
is large enough in the direction towards the focus of expansion) can
be estimated. (One simply divides the rate of change of brightness
in the direction towards the focus of expansion by the time rate of
change of brightness.) There are several methods for recovering the
direction of translation. The most promising at this point requires
eigenvector-eigenvalue decomposition of a 3 × 3 matrix constructed
using sums of products of brightness derivatives and image coordi-
nates. These sums could be computed on-chip, with the final analysis
being done off-chip. This algorithm is not nearly as robust as the one
for pure rotation, since there are now an enormous number of addi-
tional “unknowns,” namely the distances to the scene at each picture
cell. For the same reason this algorithm is much more interesting
since it allows us to recover depth and thus obtain surface shape in-
formation.



46 Parallel Networks for Machine Vision

3. Planar Surface [Horn & Negahdaripour 87]: If the scene consists of
a single planar surface (perhaps an airport viewed from a landing
aircraft), it is possible to compute the direction of translation, the
orientation of the plane, the rotational velocity of the observer, as
well as the time to impact, directly from certain sums accumulated
over the whole image. There is a two-way ambiguity in the result that
can be resolved using other sensory information or by waiting for new
solutions based on subsequent frames. The sums required are “mo-
ments,” products of the partial derivatives of brightness (Ex , Ey , and
Ez) and the image coordinates x, andy . The final calculation involves
eigenvector-eigenvalue decomposition of a 3 × 3 matrix constructed
using these sums, but this can be done off-chip. Both closed form
and iterative solutions are known. There are quite a large number of
different sums needed, but each is relatively simple to compute.

4. Other Constraints on Motion: E.J. Weldon and his students at the
University of Hawaii have been investigating a number of other special
restrictions on motion. A wheeled vehicle moving in contact with a
smooth surface is confined to translation in the local tangent plane
and rotation about the local normal. Thus the rotation vector has to
be perpendicular to the translation vector. This constraint allows a
solution of the motion vision problem that takes a form very similar to
the one discussed above. Another interesting special case arises when
the vehicle can rotate only about an axis parallel to the translational
vector. There is also strong interest in exploiting fixation or tracking.
If one fixates on a point in the moving environment, a constraint is
introduced between the instantaneous rotational and translational
velocities of the observer relative to the environment. This allows one
to simplify the motion constraint equation and reduces the problem
to something similar to that of pure translation.

The general case (arbitrary surface, both translation and rotation) has not
been solved yet. Also, the pure translation solutions are not very robust,
suggesting that to one needs to continue the solution in time in order
to get stable results (all of the methods discussed above work “instanta-
neously” using two image frames, and do not make much use of informa-
tion in earlier frames).

In the case of pure translation, depth is recovered only in places where
the local brightness gradient is strong enough in the direction towards
the focus of expansion. This suggests the need for a smooth interpola-
tion process that fills in the rest. It might take the form of the solution of
Laplace’s equation or the bi-harmonic equation. A simple passive network



4. Short Range Motion Vision Methods 47

will do for Laplace’s equation, of course. If the higher order approach is
taken, negative resistances and more connections are required. It is pos-
sible, however, as we saw earlier, to decompose the bi-harmonic equation
into coupled Laplace equations. The latter can then be solved using cou-
pled resistive network.

Finally, to deal with depth-discontinuities, one can introduce line-
processes once again. Naturally, we are now talking about a pretty com-
plex system!

4.3. Contant Flow Velocity

The method that assumes that optical flow is constant in a patch will be
considered next, as a simple illustration of the kind of approach taken.
First we review the brightness change constraint equation. Image bright-
ness E(x,y, t) is a function of three variables. If the brightness of a small
patch does not change as it moves, we can write:

dE
dt

= 0,

which can be expanded to yield:

∂E
∂x

dx
dt

+ ∂E
∂y

dy
dt

+ ∂E
∂t
= 0,

or

uEx + vEy + Et = 0,

where Ex , Ey are the components of the brightness gradient, while Et is
the time rate of change of brightness. This so-called brightness change
constraint equation provides only one constraint on the two components
of image flow, u and v . Thus image flow cannot be recovered locally
without further information.

Suppose now that the image flow components u and v are constant
over a patch in the image. Then we can recover them using a least squares
approach: We minimize the total error

I =
∫∫
D

(
uEx + vEy + Et

)2
dx dy.

Differentiation with respect to u and v leads to

dI
du

=
∫∫
D

(
uEx + vEy + Et

)
Ex dx dy,

dI
dv

=
∫∫
D

(
uEx + vEy + Et

)
Ey dx dy.



48 Parallel Networks for Machine Vision

Setting these derivatives equal to zero, we obtain

u
∫∫
D
E2
x + v

∫∫
D
ExEy = −

∫∫
D
ExEt,

u
∫∫
D
EyEx + v

∫∫
D
E2
y = −

∫∫
D
EyEt.

These are two linear equations that can be easily solved for u and v .

Du =
∫∫
D
E2
y

∫∫
D
ExEt −

∫∫
D
ExEy

∫∫
D
EyEt,

and

Dv =
∫∫
D
ExEy

∫∫
D
ExEt −

∫∫
D
E2
y

∫∫
D
EyEt,

where D is the determinant of the coefficient matrix, that is,

D =
∫∫
D
E2
x

∫∫
D
E2
y −

(∫∫
D
ExEy

)2

.

The coefficients are easily calculated in parallel, if so desired.

While this closed form solution is very appealing in a sequential digi-
tal implementation, it involves division and other operations that are not
particularly easily carried out in analog circuitry. In this case, an iterative
or feedback strategy may be favoured. Using a gradient descent approach,
we arrive at

du
dt

= −α
∫∫
D

(
uEx + vEy + Et

)
Ex dx dy,

dv
dt

= −α
∫∫
D

(
uEx + vEy + Et

)
Ey dx dy.

At each picture cell, we estimate the derivatives of brightness, and com-
pute the error in the brightness change onstraint equation

e =
(
uEx + vEy + Et

)
,

using global buses whose potentials represent u and v . Currents propor-
tional to −e Ex and −e Ey are injected into the buses for u and v respec-
tively. This is essentially how the constant flow velocity chip of Tanner
and Mead works [Tanner 86] [Tanner & Mead 87].

4.4. Special Purpose Direct Motion Vision Systems

We have seen that in short-range motion vision one need not solve the cor-
respondence problem. One can instead use derivatives of image bright-
ness directly to estimate the motion of the camera. The time rate of
change of image brightness at a particular picture cell can be predicted
if the brightness gradient and the motion of the pattern in the image is
known. This two-dimensional motion of patterns in the image, in turn,



4. Short Range Motion Vision Methods 49

can be predicted if the three-dimensional motion of the camera is given.
Given these facts, it should be apparent that the motion of the camera
can be found by finding the motion that best predicts the time rate of
change of brightness (t-derivative) at all picture cells, given the observed
brightness gradients (x- and y-derivatives). Once the instantaneous rota-
tional and translational motion of the camera have been found, one can
determine the depth at points where the brightness gradient is large and
oriented appropriately.

As discussed above, several special situations have already been dealt
with, including the case where the camera is known to be rotating only,
the case where the camera is translating only, and the case of arbitrary
motion where the surface being viewed is known to be planar. The solu-
tion in the case of pure rotation is very robust against noise (since there
are only three unknowns and thousands of constraints) and so well worth
implementing. The solution in the case of arbitrary motion with respect
to a planar surface is also quite robust, although it is subject to a two-way
ambiguity. In this case there are eight unknowns (the rotational velocity,
the translational velocity and the unit surface normal). The solution in the
case of pure translation is more sensitive to noise (since there are about
as many unknowns as constraints), but of great interest, since depth can
be recovered. An elegant solution to the general case has not yet been
found. It can, however, be expected that it will not be less robust than the
pure translation case (since there are only three more unknowns).

We will now describe in detail a method for the solution of the pure
rotation case and a method for the solution of the pure translation case.
We saw earlier that if the brightness of a patch does not change as it
moves, we obtain the brightness change constraint equation

uEx + vEy + Et = 0,

where Ex , Ey are the components of the brightness gradient, while Et is
the time rate of change of brightness. This equation provides one con-
straint on the image flow components u and v . Thus image flow cannot
be recovered locally without additional constraint.

We are now dealing, however, with rigid body motion, where image
flow is heavily constrained. The image flow components u and v depen-
dent on the instantaneous translational and rotational velocities of the
camera, denoted t = (U,V ,W)T and ωω = (A, B,C)T respectively. It can
be shown by differentiating the the equation for perspective projection



50 Parallel Networks for Machine Vision

[Longuett-Higgins & Prazdny 80], that

u = −U + xW
Z

+Axy − B(1+ x2)+ C y,

v = −V +yW
Z

+A(1+y2)− B xy − C x,
where Z is the depth (distance along the optical axis) at the image point
(x,y). combining this with the brightness change constraint equation,
we obtain [Horn & Weldon 88]

Et + v ·ωω+ 1
Z

s · t = 0,

where

v =
⎛⎜⎝+Ey +y(xEx +yEy)−Ex − x(xEx +yEy)

yEx − xEy

⎞⎟⎠ ,
and

s =
⎛⎜⎝ −Ex

−Ey
xEx +yEy

⎞⎟⎠ .
This is called the rigid body brightness change constraint equation.

4.5. Feedback Computation of Instantaneous Rotational Velocity

Horn & Weldon [1988] rediscovered a method apparently first invented by
Alomoinos & Brown [1985] for direct motion vision in the case of pure ro-
tation. This method uses integrals of products of first partial derivatives
of image brightness and image coordinates and involves the solution of
a system of three linear equations in three unknowns. When there is no
translational motion, the brightness change constraint equation becomes
just

Et + v ·ωω = 0.
This suggests a least-squares approach, where we minimize

I =
∫∫
D
(Et + v ·ωω)2 dx dy,

by suitable choice of the instantaneous rotational velocity ωω. This leads
to the simple equation(∫∫

D
vvT dx dy

)
ωω = −

∫∫
D
Etvdx dy.

This vector equation corresponds to three scalar equations in the three
unknown components A, B, and C of the instantaneous rotational veloc-
ity vector. The system of linear equations can be solved explicitly, but



4. Short Range Motion Vision Methods 51

this involves division by the determinant of the coefficient matrix. When
considering analog implementation, it is better to use a resistive network
to solve the equations. Yet another attractive alternative is to use a feed-
back scheme (not unlike the one used to solve for the optical flow velocity
components in the case when they are assumed to be constant over the
image patch being considered).

Finally, the solution can be obtained by walking down the gradient of
the total error. The derivative with respect to ωω of the sum of squares of
errors is just

dI
dωω

= 2
∫∫
D
(Et + v ·ωω)vdx dy.

This suggest a feedback scheme described by the equation
dωω
dt

= −α
∫∫
D
(Et + v ·ωω)vdx dy.

The idea revolves around a bus, with potential on three wires proportional
to the present estimates of the components A, B and C of the instanta-
neous angular velocity ωω. Estimates of the partial derivatives of image
brightness (the components of the brightness gradient and the time rate
of change of brightness) are computed at each picture cell. From them,
and the position (x,y) of the cell, one can compute v. The coordinates
x and y can be made available to each cell using resistive chains that are
connected to fixed potentials on the sides of the chip. (It may be useful
also to directly supply xy , (1 + x2) and (1 + y2), since these are coeffi-
cients in the expression for v).

Next, one computes the error term

e = Et + v ·ωω,
which, in the absence of noise, is zero when the correct solution has been
found. Currents are fed into the bus proportional to

−ev = −(Et + v ·ωω)v.
Each of the three bus wires is terminated in a capacitance16. We now have
a system that obeys an equation like

dωω
dt

= −α
∫∫
D
(Et + v ·ωω)vdx dy,

the steady state solution of which is∫∫
D
(Et + v ·ωω)vdx dy = 0,

or (∫∫
D

vvT dx dy
)
ωω = −

∫∫
D
Etvdx dy.

16Unless there are instability problems due to unmodeled effects, one may be
able to just rely on the parasitic capacitances.



52 Parallel Networks for Machine Vision

The feedback scheme involves considerably less computation than the
closed form solution (for example, we don’t have to compute the 3 × 3
matrix vvT ). Also, the feedback scheme can be shown to be stable (as
long as the integral of vvT is not singular, that is, as long as there is
sufficient contrast in the image texture).

The elementary components needed are the photo-sensors, differen-
tial buffer amplifiers that estimate spatial derivatives, approximate time
delays for estimating the temporal derivative, four-quadrant analog mul-
tipliers, and current sources. There also will be resistive chains to supply
values of x and y at each image location.

4.6. Computation of Instantaneous Translational Velocity

While the scheme described above for recovering the rotational velocity
is very robust as shown both by sensitivity analysis and experimentation
on computers with both synthetic and real images, it is does not allow us
to recover depth. This is because there is no dependence of the bright-
ness derivatives on depth when there is no translational motion. We now
consider the other extreme, when there is only translational motion.

When there is no rotational motion, the brightness change constraint
equation becomes just

Et + (s · t)
1
Z
= 0.

Note that multiplying both Z and t by a constant does not perturb the
equality. This tells us right away that there will be a scale factor ambiguity
in recovering motion and depth. We take care of this by attempting only
to recover the direction of motion. That is, we will treat t as a unit vector.

We can solve the constraint equation above for the depth Z in terms
of the unknown motion parameters. We obtain

Z = −s · t

Et
.

If our estimate of the instantaneous translational motion t is incorrect,
we will obviously obtain incorrect values for the depth from this equa-
tion. Some of these values may be negative (which correspond to points
on objects behind the camera), while others will be unexpectedly large.
Some methods have been explored that to find a direction of transla-
tional motion that yields the smallest number of negative depth values
when applied to the image brightness gradients [Horn & Weldon 88]. Al-
though these methods work, they have yet to show promise in terms of
computational expediency. We consider another approach next.



4. Short Range Motion Vision Methods 53

In many cases, particularly in industrial robotics, the depth range is
bounded and the occurrence of very large depth values is not normally
anticipated. One method for estimating the instantaneous translation ve-
locity makes use of this observation17. We essentially look for a transla-
tional velocity t that keeps Z small at most points in the image. Suppose,
for example, that we find the translational velocity that minimizes

I =
∫∫
D
Z2 dx dy =

∫∫
D

(s · t)2

E2
t

dx dy,

subject to the constraint that t be a unit vector. We cannot measure bright-
ness exactly, so there will be some error in our estimate of Et . To avoid
problems due to noise in places where Et is almost zero, we may introduce
an offset in the denominator as follows:

I =
∫∫
D
w(Et) (s · t)2 dx dy,

where w(Et) = 1/(E2
t + ε2). This integral can also be written in the form

I = tT
(∫∫

D
w(Et) ssT dx dy

)
t = tT S t,

where S is a 3×3 matrix. The expression for I is clearly a quadratic form in
t. Given the constraint that t be a unit vector, such a quadratic form attains
its minimum when t is the eigenvector of the matrix S corresponding to
the smallest eigenvalue [Korn & Korn 68].

We explore in the next section how a circuit can be devised to compute
this eigenvector.

4.7. Finding Eigenvectors Using Analog Networks

In one of the direct methods for recovering translational motion, the di-
rection of motion is found to be the eigenvector of a symmetric 3 × 3
matrix S associated with the smallest eigenvalue. The coefficients of the
matrix are sums of products of image coordinates and first derivatives of
image brightness. Note that the computation of the eigenvector needs to
be done only in one place, using data accumulated over the whole image,
rather than at each picture cell. It could potentially be done on a serial
computer using the accumulated total obtained. An interesting question
is whether this eigenvector can be found using an analog network, hope-
fully by means of a network that is not too complex. There are actually
several ways of doing this.

17The derivation of the method in terms of a minimization of the integral of Z2

is merely an explanatory artifice. There is a way of arriving at the same result
in a way that does not appear to be this ad hoc [Horn & Weldon 88].



54 Parallel Networks for Machine Vision

First of all, note that a dot-product can be computed using three mul-
tipliers, while a cross-product takes six. The product of a 3 × 3 matrix
and an arbitrary vector requires nine multipliers. If we were looking for
the eigenvector associated with the largest eigenvector, we could use the
observation that the iteration

tn+1 = S tn,
converges to a multiple of this eigenvector given virtually any starting
value

v = α1e1 +α2e2 +α2e3,
since

Sk(α1e1 +α2e2 +α3e3) = λk1α1e1 + λk2α2e2 + λk2α2e3,
where λ1, λ2, and λ3 are the eigenvalues and e1, e2, e3 are the corre-
sponding eigenvectors. As long as the eigenvalues are distinct, the term
corresponding to the largest eigenvalue will dominate after a number of
iterations (or equivalently, many time constants in a feedback implemen-
tation).

For the results of such an iteration to remain within bounds, the re-
sult must be renormalized each time. Doing this the obvious way involves
division, but a feedback circuit can achieve the same effect using only
multiplication as follows: (a) each of the components of the vector is mul-
tiplied by an adjustable positive scale factor, (b) the magnitude squared of
the result is computed and (c) the scale factor is adjusted if the magnitude
is not equal to one. The scale factor itself equals the inverse of the largest
eigenvalue when the system stabilizes. Renormalization may be based on
the maximum of the absolute values of the components instead of the
sum of squares, if this turns out to be cheaper to compute. There may be
some stability questions here, since the normalization is in essence trying
to stabilize a positive feedback loop.

We can get the eigenvector associated with the smallest eigenvalue if
we apply the same idea to the inverse matrix S−1. Of course, inverting the
matrix is in itself not trivial. But we can instead set up a network to solve
the equation S v = t for v given t, and use the iteration

S tn+1 = tn,
so that we do not have to explicitly invert the matrix.

Another method is based on a different view of the value being mini-
mized

I = tTSt.
The gradient is just

dI
dt
= 2St,



4. Short Range Motion Vision Methods 55

so we could consider adjusting the present guess for t in the direction
of steepest descent. A problem with this is that we are dealing with a
constrained minimization problem. Steepest descent will in fact just lead
to the trivial solution t = 0. We have to maintain the condition that ‖t‖2 =
1. One way of doing this is to introduce a Lagrangian multiplier and add
a term to the integral above:

I′ = tTSt+ λ(t · t− 1).

We can then take the derivatives with respect to t and λ:

dI′

dt
= 2St+ 2λt,

dI′

dλ
= t · t− 1.

Unfortunately, the minimum of the original problem corresponds to a
saddle point in this modified problem (where we have four instead of
three unknown parameters). So descent along the gradient will not get
us to the solution (but we could use the method of [Platt & Barr 88]; see
later).

One way to cirucmvent this difficulty is to note that in this special
case we can compute the value of λ at the extremum:

λ = −tTSt.

This provides us with a way of estimating λ that does not involve gradient
descent.

Another approach is to remove the component of the gradient of I′

in the direction of the gradient of the constraint function (t · t− 1). Such
gradient projection methods lead to viable feedback schemes, as shown
later.

However, in this special case, we can do something simpler. We can
normalize the integral by dividing by (t · t). This makes the result insen-
sitive to changes in the magnitude of t. To then force the result to also
satisfy the constraint, we add a term that penalizes departure from the
condition (t · t− 1) = 0:

I′′ = 1
t · t

tTSt+ µ(t · t− 1)2.

The gradient now is

dI′′

dt
= 2
(t · t)2

(
(t · t) St− (tTSt) t

)+ 2µ(t · t− 1)t.

This suggests a feedback scheme like

dt

dt
= −α((t · t) St− (tTSt) t

)− β(t · t− 1)t.



56 Parallel Networks for Machine Vision

The first term above equals

−α((t× St)× t
)
,

and so is orthogonal to t. We can conclude that the magnitude of t is
not affected by adjustments resulting from this term. It is the second
term, arising from the penalty function, that forces the magnitude of t to
approach one as time increases.

At this point we need to remember that

St =
∫∫
D
(s · t)sdx dy,

and

tTSt =
∫∫
D
(s · t)2 dx dy.

So we have to estimate the brightness derivatives Ex , Ey and Et at ev-
ery picture cell and compute s, the weighting factor w(Et), and the dot-
products (s · t) and (t · t). We then generate currents proportional to

−αw(Et) (s · t)
(
(t · t)s− (s · t)t

)
that are injected into a global three wire bus whose potentials represents
the components of the translation vector t. The bus wires are terminated
in capacitors connected to ground18.

A separate circuit computes the error in the magnitude squared of t,
and produces currents proportional to

−β(t · t− 1) t,
that are injected into the capacitors whose potentials represent the com-
ponents of t.

If t minimizes the error integral, so does −t. One thus may arrive
at one of two solutions depending on the initial conditions. Also, the
adjustments are zero when t = 0. This equilibrium point at the origin is
metastable, however, so any small disturbance will lead the system away.

All of the above should, by the way, appear to the reader to be very
familiar, since we used similar ideas in the previous section for finding
the axis of least inertia of a binary image. The only real difference is that
we were dealing there with a 2× 2 matrix instead of a 3× 3 matrix.

The elementary components of the circuit needed are similar to the
ones that are needed for the pure rotation case. One difference is that
the vector s, is simpler to compute than v, the vector needed in the case
of pure rotation. On the other hand, some nonlinear transfer function is
needed to compute the weighting factor w(Et).

18Again, the normal parasitic capacitances of the wires may be relied upon unless
there are instability problems due to unmodeled effects.



4. Short Range Motion Vision Methods 57

4.8. General Motion with Respect to Planar Surface

Another special case of considerable interest is that of general motion
(translation and rotation) with respect to a planar surface. This is the
motion vision problem confronting a pilot landing an aircraft (although,
of course, a pilot has many additional visual cues available). A planar
surface can be described by an equation of the form

n · R = 1,

where n is a vector parallel to the normal with length equal to the inverse
of the perpendicular distance of the plane from the origin. The perspec-
tive projection equation is

r = R

R · ẑ
= R

Z
,

where R = (X, Y , Z)T is the coordinate of a point in the scene, while r =
(x,y,1)T is the coordinate of the corresponding image point. In the case
of a planar surface, Z = 1/(n·r), so that the rigid body brightness change
constraint equation,

Et + v ·ωω+ 1
Z

s · t = 0,

becomes

Et + v ·ωω+ (n · r) (s · t) = 0.
Note that the equality is not disturbed if we replace n by kn while at
the same time replacing t by kt. This is just a reflection of the scale
factor ambiguity already discussed above. We can allow for it by forcing
t (or n) to be a unit vector. It can also be shown that the equality is not
disturbed if we exchange n and t and replace ωω with (ωω+ n× t) [Horn &
Negahdaripour 87]. This possibly unexpected result shows that there will
be a two-way ambiguity (unless n happens to be parallel to t).

A least-squares problem suggested by the above analysis has us min-
imize

I =
∫∫
D

(
Et + v ·ωω+ (n · r)(s · t)

)2 dx dy,

by suitable choice ofωω, t, n. Adding a Lagrange multiplier to help enforce
the condition t · t = 1, leads to

I′ =
∫∫
D

(
Et + v ·ωω+ (n · r)(s · t)

)2 dx dy + λ(t · t− 1).

Perhaps surprisingly, this problem has a closed-form solution [Horn & Ne-
gahdaripour 87]. This solution is, however, complex, involving eigenvec-
tor/eigenvalue decomposition of matrices and other operations. Iterative
solutions that were discovered earlier suggest more reasonable parallel



58 Parallel Networks for Machine Vision

implementations. We can, for example, once again consider the gradient
of the total error.

We note that the derivatives of the total error with respect to ωω, t, n,
and λ are

dI
dωω

= 2
∫∫
D

(
Et + v ·ωω+ (n · r)(s · t)

)
vdx dy,

dI
t
= 2

∫∫
D

(
Et + v ·ωω+ (n · r)(s · t)

)
(n · r) sdx dy + 2λt,

dI
dn

= 2
∫∫
D

(
Et + v ·ωω+ (n · r)(s · t)

)
(s · t) rdx dy,

dI
dλ

= (t · t− 1),

respectively. Once again, we find that the minimum of I corresponds to a
saddle point of I′, so that straightforward application of gradient descent
will not provide us with the solution. One way to avoid this problem
is to derive a closed-form expression for the Lagrange multiplier at the
extremum and use this to estimate the multiplier during the iteration,
rather than using gradient descent to adjust the estimate. Alternatively,
one can use a gradient projection method to arrive at a viable scheme.

One way of doing this is to make sure that the adjustments δt in t
are always orthogonal to t. This can be done by removing the component
parallel to t from the gradient g as follows

δt = −λ(g − (g · t)t
)
,

where we have assumed that t really is a unit vector. If it is not, we can
use instead

δt = −λ((t · t)g − (g · t)t
)
,

This can also be written as a double cross-product:

δt = −λ(g × t)× t.
Alternatively, we can just adjust t in the direction of steepest descent
and then renormalize the result. For small adjustments the two methods
produce similar same result, and the renormalization method is simpler.
We then have

tn+1 = tn − λgn

‖tn − λgn‖ .
By the way, which of the two possible solutions one arrives at will

depend on the initial conditions. Fortunately, the functional relationship
between the two solutions is known, so that one can easily compute one
from the other. Note that the computation of the local departure from
satisfaction of the brightness change constraint equation,

Et + v ·ωω+ (n · r)(s · t),



4. Short Range Motion Vision Methods 59

need be done only once. Still, there are a considerable number of multi-
plications at each picture cell, including those needed to compute s and
v. The methods developed for the other special cases should help in the
implementation of this more ambitious one.

4.9. Gradient Projection Method

In the above we have designed circuits for solving constrained minimiza-
tion problems. In several cases the form of the term to be minimized and
the form of the constraint made it possible to arrive at a related uncon-
strained problem, simply by dividing by a suitable normalizing factor (and
adding a suitable penalty factor). This cannot always be done. We now
discuss in more detail a general method for dealing with these problems.

When implementing algorithms using analog circuitry, it is often con-
venient to depend on something like steepest descent to solve a minimiza-
tion problem, even when a closed form solution is available. The reason
is that the closed form solution may involve operations (such as matrix
inversion) that are difficult to implement directly in analog circuitry. An
iterative scheme may take many steps to converge, but if the steps can
be performed rapidly, this is not a concern. Similarly, a feedback scheme
may take a time that is a large multiple of a basic time constant of the
circuitry, but this is not an issue if that time constant is small enough.

A difficulty arises, however, when the minimization problem happens
to be constrained. The introduction of Lagrange multipliers, for example,
yields a search for stationary values in a larger space, but the extremum
of the original constrained problem now corresponds to a saddle point,
and thus can not be found using steepest descent. One possibility is to
modify the equations by reversing the sign of the gradient component
in the direction corresponding to the Lagrange multiplier and so obtain
convergence, at least near the extremum of the original problem [Platt &
Barr 88]. Global convergence can often be restored by adding a penalty
term that grows quadratical with distance from the constraint surface.
This makes the overall scheme fairly complex.

Let us look at the constrained problem in more detail now. Suppose
that f(x) is to be minimized, but that the solutions are constrained to lie
on the surface g(x) = 0. If we simply follow the gradient

fx = df
dx
,

we will in general not preserve the condition that g(x) have a constant
value. What we can do is to remove the component of the gradient of



60 Parallel Networks for Machine Vision

f(x) in the direction of the gradient of g(x) to obtain:

fx − fx · gx

gx · gx
gx.

Moving in this direction, which is clearly orthogonal to gx, does not alter
the value of g(x). We can, of course, us any convenient multiple of this
vector to arrive at a feedback scheme. For example, we may wish to use

dx

dt
= −α((gx · gx)fx − (gx · fx)gx

)
.

which can also be written in the form
dx

dt
= −α((gx × fx)× gx

)
.

Clearly, (dx/dt) · gx = 0, so that g(x) remains constant if we follow this
trajectory exactly.

In practice, small errors will lead to departures from a particular sur-
face g(x) = c, and furthermore, we may not start right away on the surface
g(x) = 0. So there is a need to introduce a force that pulls the solution to-
wards this constraint surface. We could try to do this by adding a penalty
function like

µ g(x)2,
to f(x), which would yield a gradient component

2µ g(x)gx.

This component is directly along the gradient of g(x) and so would be
completely removed by the gradient projection scheme discussed above.
But there is no reason why we can not add such a term after the gradient
projection. This leads to a feedback scheme for solving the constrained
minimization problem like

dx

dt
= −α ((gx · gx)fx − (gx · fx)gx

)− βg(x)gx.

An interesting question is whether this is the gradient of some function,
perhaps some modification of f(x). In general it is not, that is, there is no
function whose derivative with respect to x is given by this expression.

Let us consider an example. Suppose we wish to find the minimum
of

Ax2 + 2B xy + C y2 subject to x2 +y2 − 1 = 0.
Here we have x = (x,y)T , so

fx = 2(Ax + By,Bx + Cy)T and gx = 2(x,y)T .

Hence

gx · gx = 4(x2 +y2) and gx · fx = 4(Ax2 + 2B xy + C y2).



4. Short Range Motion Vision Methods 61

Consequently(
(gx · gx)fx − (gx · fx)gx

) = 8
(
(C −A)xy + B (x2 −y2)

)
(−y,+x)T .

So finally we arrive at a feedback scheme like

dx

dt
= −α((C −A)xy + B (x2 −y2)

)
(−y,+x)T − β(x2 +y2 − 1)(x,y)T .

The first term drives the state along circular paths towards one of the two
point where the circle intersects a line making an angle θ0 with the x-axis,
where

(C −A) sin 2θ0 = 2B cos 2θ0.
The second term drives the state radially towards the unit circle.

We can easily generalize this example to finding the smallest eigen-
value of a symmetric matrix M (of arbitrary size). Here we have to mini-
mize

f(x) = xTMx subject to g(x) = x · x− 1 = 0.
We see that

fx = 2Mx and gx = 2 x,
and so

fx · gx = 4 xTMx and gx · gx = 4 x · x.
As a result we can use the feedback scheme

dx

dt
= −α((x · x)Mx− (xTMx)x

)− β(x · x− 1)x.

The first term, orthogonal to x, drives the state along the surface of a
sphere towards one of the two intersections of the sphere with a line
through the origin in the direction of the sought after eigenvector. The
second term drives the state radially towards the unit sphere.

The generalization to more than one constraint should be obvious.
We start by removing from the gradient of f(x) components in the di-
rections of the gradients of each of the constraint functions g(x)i. Then
additional terms are added, proportional to each of the functions g(x)i
in the direction of their gradients.

4.10. Reversal of Gradient Component and Addition of Penalty
Terms

Platt and Barr have suggested that a modification of gradient descent can
be applied to the unconstrained problem obtained by introducing a Lan-
grangian multiplier [Platt & Barr 88]. To mininize f(x) subject to g(x) = 0,
they suggest first constructing the function

F(x, λ;µ) = f(x)+ λg(x)+ µg2(x),



62 Parallel Networks for Machine Vision

where λ is a Lagrangian multiplier (to be found), while µ is a parameter
on the penalty term selected to assure global convergence. Typically, the
method converges when started near the solution even when the penalty
term is not added. This term is usually needed, however, to prevent di-
vergence when at some distance from the solution. This suggests varying
the parameter, according to a predetermined schedule, as the solution is
approached. Now

Fx = fx + λgx + 2µg(x)gx,

Fλ = g(x).
In many cases the feedback scheme

dx

dt
= −α (fx + λgx

)− βg(x)gx,

dλ
dt

= +αg(x),
leads to the solution (note the positive sign in the second equation).

Applied to the example above, we have

F(x,y, λ;µ) = (Ax2+2B xy +C y2)+λ(x2+y2−1)+µ(x2+y2−1)2,

so we obtain the set of equations

dx
dt

= −α((A+ λ)x + B y)− β(x2 +y2 − 1)x,

dy
dt

= −α(Ax + (B + λ)y)− β(x2 +y2 − 1)y,

dλ
dt

= +α(x2 +y2 − 1).



5. Summary and Conclusions 63

5. Summary and Conclusions

A number of problems in early vision have been explored here and shown
to lead to interesting analog networks. The focus was on implementations
involving resistive networks, perhaps with capacitors and analog multipli-
ers, as well as simple amplifiers. In several cases, feedback schemes where
shown to be considerably simpler to implement than circuits based on
the closed form solutions usually sought for in digital implementations.
It was noted that simple feedback networks with local connections can
invert local operations. This is of interest since the inverses of local op-
erations typically are global, and direct implementation of these inverses
would require unimplementably high wiring densities.

A theorem giving an equivalence between two apparently quite dif-
ferent ways of using the same resistive network sometimes allows one to
find a way of implementing a particular computation that is much simpler
than the obvious direct implementation. The use of gradient projection
was explored as a way of solving constrained minimization problems, al-
though in several cases it was possible to avoid this added complication
through judicious normalization of the terms to be minimized and addi-
tion of a penalty term.

Using a spatial dimension to represent time in a partial differential
equation was shown to lead to new ways of implementing certain convo-
lutional algorithms that would otherwise require a clocked architecture.
In this alternate scheme, image data flows in continuously on one end,
while processed information flows continuously out the other end.

Also described here is a novel way of interlacing the nodes of a three-
dimensional multi-resolution network in a two-dimensional tessellation.
The number of nodes decreases from layer to layer by sub-sampling after
low-passs filtering. Each layer contains half the number of nodes in its
predecessor.

It is clear that many early vision problems lend themselves to imple-
mentation in parallel analog networks. This applies particularly to so-
called direct methods, as opposed to feature-based methods, since the
direct methods deal mostly with quantities connected to measurements
at individual picture cells as well as their relationship to values at neigh-
boring picture cells. Work on analog methods for early vision probably
started more than twenty years ago, but was never very visible. It has now
received a strong new impetus from the more general availability of facili-
ties for integrated circuit design and fabrication. This renewed interest is
reflected in the pioneering work at Caltech in Carver Meads group [Mead
1989]. But no one should think that the methods explored there, or the



64 Parallel Networks for Machine Vision

ideas collected here, comprise anything more than an extremely sparse
sampling of what is yet to come!

6. Acknowledgements

The author wishes to acknowledge helpful discussions with Robert Floyd,
John Harris, Christof Koch, Jim Little, Carver Mead, Tomaso Poggio, David
Standley, and John Wyatt.

6.1. References

Abdou, I.E.& K.Y. Wong (1982) “Analysis of Linear Interpolation Schemes for Bi-
Level Image Applications,” IBM Journal of Research and Development, Vol. 26,
No. 6, pp. 667–686, November (see Appendix).

Ahuja, N. & B.J. Schachter (1983) Pattern Models, John Wiley, New York, NY.

Alomoinos, Y. & C. Brown (1984) “Direct Processing of Curvilinear Motion from Se-
quence of Perspective Images,” Proceedings of Workshop on Computer Vision
Representation and Control, Annapolis, Maryland.

Anderson, B.O. & J.B. Moore (1979) Optimal Filters, Prentice-Hall, Englewood Cliffs,
NJ.

Bachmann, B.L. (1977) “Computer Correlation of Real and Synthetic Terrain Pho-
tographs,” B.S. Thesis, Department of Electrical Engineering and Computer
Science, June.

Bernstein, R. (1976) “Digital Image Processing of Earth Observation Sensor Data,”
IBM Journal of Research and Development, pp. 40-57, January (see Appendix).

Berzins, V. (1984) “Accuracy of Laplacian Edge Detectors,” Computer Vision, Graph-
ics and Image Processing, Vol. 27, No. 2, pp. 195–210, April.

Blake, A. & A. Zisserman (1988) Visual Reconstruction, MIT Press, Cambridge, MA.

Brooks, M.J. & B.K.P. Horn (1985) “Shape and Source from Shading,” Proceedings
of the International Joint Conference on Artificial Intelligence, Los Angeles,
CA, August 18–23, pp. 932–936. Also MIT AI Laboratory Memo 820, January.

Bruss, A.R. & B.K.P. Horn (1983) “Passive Navigation,” Computer Vision, Graphics,
and Image Processing, Vol. 21, No. 1, pp. 3–20, January.

Cagney, F. & J. Mallon (1986) “Real-Time Feature Extraction using Moment Invari-
ants,” Proceedings of the SPIE Conference on Intelligent Robots and Computer
Vision, October 28–31, Cambridge, MA, Vol. 726, pp. 120–124.

Canny, J. (1983) “Finding Edges and Lines in Images,” MIT AI Laboratory Technical
Report 720, July.



6. Acknowledgements 65

Courant, R. & D. Hilbert (1953) Methods of Mathematical Physics, Vol. I, John Wiley
& Sons, New York, NY.

Courant, R. & D. Hilbert (1962) Methods of Mathematical Physics, Vol. II, John Wiley
& Sons, New York, NY.

DeWeerth, S.P. & C.A. Mead (1988) “A Two-Dimensional Visual Tracking Array,”
Proceedings of the 1988 MIT Conference on Very Large Scale Integration, MIT
Press, Cambridge, MA, pp. 259–275.

Floyd, R.W. (1987) private communication, June.

Frankot, R.T. & R. Chellappa (1988) “A Method for Enforcing Integrability in Shape
from Shading Algorithms,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Vol. 10, No. 4, pp. 439–451, July.. Also Report USC-IPI-105,
Signal and Image Processing Institute, University of Southern California, Los
Angeles, CA, 1986.

Gamble, E. & T.A. Poggio (1987) “Visual Integration and Detection of Discontinu-
ities: The Key Role of Intensity Edges,” MIT AI Laboratory Memo 970, October.

Garabedian, P.R. (1964) Partial Differential Equations, Wiley.

Geman, S. & D. Geman (1984) “Stochastic Relaxation, Gibbs’ Distributions, and the
Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 6, No. 6, pp. 721–741, November.

Gennert, M. & S. Negahdaripour (1987) “Relaxing the Constant Brightness Assump-
tion in Computing Optical Flow,” MIT AI Laboratory Memo 975, June.

Gilbert, A.L. (1981) “Video Data Conversion and Real-Time Tracking,” IEEE Com-
puter, pp. 50–56.

Gilbert, A.L., M.K. Giles, G.M. Flachs, R.B. Rogers, & Y.H. U (1980) IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 2, No. 1, January, pp. 47–
56.

Goldfinger, A.M. (1983) “Smooth Interpolation of Digital Terrain Models from Con-
tour Maps,” B.S. Thesis, Department of Electrical Engineering and Computer
Science, MIT, May.

Grimson, W.E.L. (1981) From Images to Surfaces—A Computational Study of the
Human Early Visual System, MIT Press, Cambridge, MA.

Grimson, W.E.L. (1982) “A Computational Theory of Visual Surface Interpolation,”
Philosophical Transactions of the Royal Society B, Vol. 298, pp. 395–427.

Grimson, W.E.L. (1983) “An Implementation of a Computational Theory of Vi-
sual Surface Interpolation,” Computer Vision, Graphics and Image Processing,
Vol. 22, pp. 39–69, April.

Grzywacs, N. & A. Yuille (1987) “Massively Parallel Implementations of Theories
for Apparent Motion,” MIT AI Memo 888.



66 Parallel Networks for Machine Vision

Hartley, R. (1985) “A Gaussian-Weighted Multi-Resolution Edge Detector,” Com-
puter Vision, Graphics and Image Processing, Vol. 30, No. 1, pp. 70–83, April.

Haralick, R.M. (1980) “Edge and Region Analysis for Digital Image Data,” Computer
Graphics and Image Processing, Vol. 12, No. 1, pp. 60–73, January.

Haralick, R.M. (1984) “Digital Step Edges from Zero Crossings of Second Direc-
tional Derivatives,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, Vol. 6, No. 1, pp. 113–129, February.

Harris, J.G. (1986) “The Coupled Depth/Slope Approach to Surface Reconstruc-
tion,” MIT AI Laboratory Technical Report 908, June. Also (1987) Proceedings
of the IEEE International Conference on Computer Vision, London, England,
June 8–11, pp. 277–283.

Harris, J.G. (1989) “An Analog VLSI Chip for Thin-Plate Surface Interpolation,” Pro-
ceedings of IEEE Neural Information Processing Systems Conference, Novem-
ber 28–December 1, Denver, CO.

Hatamian, M. (1986) “A Real-Time Two-Dimensional Moment Generating Algo-
rithm and Its Single Chip Implementation,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol. 34, No. 3, pp. 546–553, June.

Hatamian, M. (1987) “A Fast Moment Generating Chip,” Proceedings of the Interna-
tional Conference on Digital Signal Processing, Florence, Italy, 7–10 Septem-
ber, pp. 230–234.

Hildreth, E. (1980) “Implementation of A Theory of Edge Detection,” MIT AI Lab-
oratory Technical Report 579, April.

Hildreth, E. (1983) “The Detection of Intensity Changes by Computer and Bio-
logical Vision Systems,” Computer Vision, Graphics and Image Processing,
Vol. 22, No. 1, pp. 1–27, April.

Horn, B.K.P. (1970) “Shape from Shading: a Method for Obtaining the Shape of a
Smooth Opaque Object from One View,” MIT Project Mac Technical Report
TR-79. Also MIT AI Laboratory Technical Report 232.

Horn, B.K.P. (1971) “The Binford-Horn Linefinder,” MIT AI Laboratory Memo 285,
July.

Horn, B.K.P. (1972) “VISMEM: A bag of ‘robotics’ formulae,” MIT AI Laboratory
Working Paper 34, December.

Horn, B.K.P. (1974) “Determining Lightness from an Image,” in Computer Graphics
and Image Processing, Vol. 3, No. 1, December, pp. 277–299.

Horn, B.K.P. (1979) “Automatic Hill-Shading and the Reflectance Map,” Proceedings
of the Image Understanding Workshop, Palo Alto, CA, April 1979, pp. 79–
120. Also AD-A098261 available from National Technical Information Ser-
vice. Also SAI-80-895-WA available from Science Application Incorporated.



6. Acknowledgements 67

Horn, B.K.P. (1981) “Hill Shading and the Reflectance Map,” Proceedings of the IEEE,
Vol. 69, No. 1, pp. 14–47, January. Also, same title (1982) Geo-Processing,
Vol. 2, 1982, pp. 65-146.

Horn, B.K.P. (1983) “The Least Energy Curve,” ACM Transactions on Mathematical
Software, Vol. 9, No. 4, pp. 441–460, December.

Horn, B.K.P. (1986) Robot Vision, MIT Press, Cambridge, MA & McGraw-Hill, New
York, NY.

Horn, B.K.P. & B.L. Bachmann (1978) “Using Synthetic Images to Register Real
Images with Surface Models,” Communications of the ACM, Vol. 21, No. 11,
pp. 914–924, November.

Horn, B.K.P. & M.J. Brooks (1986) “The Variational Approach to Shape from Shad-
ing,” Computer Vision, Graphics and Image Processing, Vol. 33, No. 2, pp. 174–
208, February. Also (1985) MIT AI Memo 813, March.

Horn, B.K.P. & S. Negahdaripour (1987) “Direct Passive Navigation: Analytical So-
lution for Planes,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 9, No. 1, pp. 168–176, January.

Horn, B.K.P. & B.G. Schunck (1981) “Determining Optical Flow,” Artificial Intelli-
gence, Vol. 16, No. 1–3, pp. 185–203, August.

Horn, B.K.P. & E.J. Weldon Jr. (1988) “Direct Methods for Recovering Motion,” In-
ternational Journal of Computer Vision, Vol. 2, No. 1, pp. 51–76, June.

Hutchinson, J., Koch, C., Luo, J. & C.A. Mead (1988) “Computing Motion using
Analog and Binary Resistive Networks,” IEEE Computers, Vol. 21, pp. 52-63,
March.

Ikeuchi, K. (1984) “Reconstructing a Depth Map from Intensity Maps,” Interna-
tional Conference on Pattern Recognition, Montreal, Canada, July 30–August
2, pp. 736–738. Also “Constructing a Depth Map from Images,” MIT AI Lab-
oratory Memo 744, August 1983. Also AD-A135679 available from National
Technical Information Service.

Ikeuchi, K. & B.K.P. Horn (1981) “Numerical Shape from Shading and Occluding
Boundaries,” Artificial Intelligence, Vol. 17, No. 1–3, pp. 141–184, August.
Also in Computer Vision, Brady, J.M. (ed.), North-Holland Publishers.

Knight, T. (1983) “Design of an Integrated Optical Sensor with On-Chip Pre-Processing,”
Ph.D. Thesis, Department of Electrical Engineering and Computer Science,
MIT.

Koch, C., Marroquin, J. & A. Yuille (1986) “Analog ‘Neuronal’ Networks in Early
Vision,” Proceedings National Acadamy of Siences, USA (Biophysics), Vol. 83,
pp. 4263–4267, June. Also (1985) MIT AI Laboratory Memo 751, June.

Korn, G.A., & T.M. Korn (1968) Mathematical Handbook for Scientists and Engi-
neers, McGraw-Hill.



68 Parallel Networks for Machine Vision

Larson, N.G., K. Nishihara & B.K.P. Horn (1981) “Digital Gaussian Convolver,”
Patent Application, Registry No. 26192, April 22.

Longuett-Higgins, H.C. & K. Prazdny (1980) “The Interpretation of a Moving Retinal
Image,” Proceedings of the Royal Society of London B, Vol. 208, pp. 385–397.

Luo, J., C. Koch & C. Mead (1988) “An Experimental Subthreshold, Analog CMOS
two-dimensional Surface Interpolation Circuit,” Proceedings of IEEE Neural
Information Processing Systems Conference, Denver, November.

MacLeod, I.D.G. (1970a) “A Study in Automatic Photo-Interpretation,” Ph.D. The-
sis, Department of Engineering Physics, Australian National University, Can-
berra, Australia, March.

MacLeod, I.D.G. (1970b) “On Finding Structure in Pictures,” in Picture Language
Machines, S. Kaneff (ed.), Academic Press, London, England, pp. 231–256.

Mahoney, J.V. (1980) “Interpolation of a Contour Map of the Island of Mauritius
using Elastic Membranes and Thin Plates,” unpublished work in Undergrad-
uate Research Opportunities Program, MIT.

Marr. D. (1976) “Early Processing of Visual Information,” Philosophical Transac-
tions of the Royal Society B, Vol. 275, pp. 1377–1388.

Marr, D. & E. Hildreth (1980) “Theory of Edge Detection,” Proceedings of the Royal
Society B, Vol. 207, pp. 187–217.

Mead, C.A. (1989) Analog VLSI and Neural Systems, Addison-Wesley, Reading, MA.

Murray, D.W. & B.F. Buxton (1987) “Scene Segmentation from Visual Motion Using
Global Optimization,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 9, No. 2, pp. 147–163, March.

Nagel, H.-H. (1984) Unpublished Internal Report, University of Hamburg.

Norton, S.W. (1983) “Information Theoretic Surface Estimation Using Elevation
Data,” B.S. Thesis, Department of Electrical Engineering and Computer Sci-
ence, January.

Platt, J.C. & A.H. Barr (1988) “Constrained Differential Optimization for Neural
Networks,” Technical Report TR-88-17, Computer Science Department, Cali-
fornia Institute of Technology, Pasadena, CA. Also (1987) Proceedings of IEEE
Neural Information Processing Systems Conference.

Poggio, T.A. & V. Torre (1984) “Ill-Posed Problems and Regularization Analysis in
Early Vision,” MIT AI Laboratory Memo 773, October.

Poggio, T.A., H. Voorhees & A. Yuille (1985) “A Regularized Solution to Edge De-
tection,” MIT AI Laboratory Memo 833, May.

Rifman, S.S. & D.M. McKinnon (1974) “Evaluation of Digital Correction Techniques—
for ERTS Images,” Report Number E74-10792, TRW Systems Group, July 1974
(see Chapter 4). Also Final Report TRW 20634-6003-TU-00, NASA Goddard
Space Flight Center.



6. Acknowledgements 69

Roberts, L.G. (1965) “Machine Perception of Three-Dimensional Solids,” in Optical
and Electro-Optical Information Processing, J.T. Tippet et al. (eds.), MIT Press,
Cambridge, MA, pp. 159–197.

Rosenfeld, A. & M. Thurston (1971) “Edge and Curve Detection for Visual Scene
Analysis,” IEEE Transactions on Computers, Vol. 20, No. 5, p. 562–569, May.

Rosenfeld, A., M. Thurston & Y.H. Lee (1972) “Edge and Curve Detection: Further
Experiments,” IEEE Transactions on Computers, Vol. 21, No. 7, p. 677–715,
July.

Sage, J.P. (1984) “Gaussian Convolution of Images Stored in a Charge-Coupled
Device,” Solid State Research, Quarterly Technical Report for period from 1
August to 31 October 1983, MIT Lincoln Laboratory, pp. 53–59.

Sage, J.P. & A.L. Lattes (1987) “A High-Speed Two-Dimensional CCD Gaussian Im-
age Convolver,” Solid State Research, Quarterly Technical Report for period
from 1 August to 31 October 1986, MIT Lincoln Laboratory, pp. 49–52.

Sjoberg, R.J. & B.K.P. Horn (1983) “Atmospheric Effects in Satellite Imaging of
Mountainous Terrain,” Applied Optics, Vol. 22, No. 11, pp. 1702–1716, June.

Strat, T.M. (1977) “Automatic Production of Shaded Orthographic Projections of
Terrain,” B.S. Thesis, Department of Electrical Engineering and Computer
Science, May.

Strat, T.M. (1979) “A Numerical Method for Shape from Shading for a Single Im-
age,” S.M. thesis, Department of Electrical Engineering and Computer Science,
MIT, Cambridge MA.

Tanner, J.E. & C. Mead (1984) “A Correlating Optical Motion Detector,” MIT Con-
ference on Very Large Scale Integration, pp. 57–64.

Tanner, J.E. (1986) “Integrated Optical Motion Detection,” Ph.D. Thesis, Computer
Science Department, California Institute of Technology, Pasadena, CA. Tech-
nical Report 5223:TR:86

Tanner, J.E. & C.A. Mead (1986) “An Integrated Optical Motion Sensor,” VLSI Signal
Processing II, (Proceedings of the ASSP Conference on VLSI Signal Processing),
November 5–7, UCLA, pp 59–76.

Terzopoulos, D. (1983) “Multilevel Computational Processes for Visual Surface
Reconstruction,” Computer Vision, Graphics and Image Processing, Vol. 24,
No. 1, pp. 52–96, October.

Terzopoulos, D. (1984) “Efficient Multiresolution Algorithms for Computing Light-
ness, Shape from Shading, and Optical Flow,” International Joint Conference
on Artificial Intelligence, University of Texas, Austin, TX, pp. 314–317, 6–10
August.

Torre, V. & T.A. Poggio (1986) “On Edge Detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 8, No. 2, pp. 147–163, March Also
(1984) MIT AI Laboratory Memo 768.



70 Parallel Networks for Machine Vision

Weldon, E.J., Jr. (1986) Unpublished Internal Report, University if Hawaii

Wiener, N. (1966) Extrapolation, Interpolation, and Smoothing of Stationary Time
Series with Engineering Applications, MIT Press, Cambridge, MA.

Woodham, R.J. (1977) “A Cooperative Algorithm for Determining Surface Orien-
tation from a Single View,” International Joint Conference on Artificial Intel-
ligence, Cambridge, MA, August 22–25, pp. 635–641.


