
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Artificial Intelligenc e
Memo . No . 179

	

August 1969

The arithmetic-statement pseudo-ops ; .I & . F

B .K .P . Horn

This is a feature of MIDAS which facilitates the rapid writin g
and debugging of programs involving much numerical calculation .
The statements used are ALGOL-like and easy to interpret .

An arithmetic-statement expander :

Since the Incompatible Timesharing, System (ITS) doe s
not support an ALGOL style compiler and LISP is s o
Cumbersome in dealing with arithmetic statements, i t

is very tedious to perform even the simples t algorithms

of numerical analysis . To alleviate this problem

without an inordinate amount of effort, two pseudo-ops

where added to MIDAS (The macro-assembly language) .

The pseudo-ops are .F and .1 . The first of these wil l

have the arithmetic in the arithmetic statement following

it performed in floating point, the latter in fixed
point .

Each statement is treated without reference to any
.of the others . Spaces may appear in a statement almos t

everywhere and are ignored . Exceptions are in the

continue part of a continuation statement and in a
subscript .(See later on)

Arithmetic statements are combinations of variable
names, numbers, function names an<A operators . Normally

each statement specifies the calculation of one or

more values and where they are to oe stored.

The operators are :

<

	

T /

A number is a character-string starting with a numeri c

character (0,1 . . . 9) followed by non-operators . Thi s

number should make sense to MIDAS . The operator T i s
permitted to appear

the number, being the separato r

Used in `i iDAU for the exponent a ' number .

 (Ot)
 ;:
 ;ai:i

 ur Ui ii~i ,
 T . .)
 Lis

evaluation proceeds LQ
 stiii

 O` B41 C a (A tB)f C

 the FORTRAN .convention A**B*"C'sA**(B**C) .
Nested pairs of parentheses are evaluated-frow the

Intermediate results are kept in a stack which
be in the accumulators and is by the user. Thes e
accumulators . ._ . Ay . If-fixed poin t

 Aj 4 1 if i < j . Most
AO -- 1, Al --,2 Usually only the first few
 .

 arguments of a function . Th e

arguments are separated by ,'s . Thus a name as define d

above is a function name if it is followed by a < .

For example

MAX< A-B*CV,23 .4, and LANDOb10

Functions r+aturn a single value in
code includes a PUSHJ P, to the function, the use r

being responsible for providing a suUxuutine 4Uieh

accepts the arguments as presented in AO, Al etc . ,

does not disturb any accumulators othex; than ttAuo e

in which the arguments where passea and retuins th e

result in AO before executing a :OL J P,

A variable name followed directly by a (is cun$idereu

to be a vector . The subocript between the (and the

matching) can of the following form s

AC ' NUM

tNUM + AC

Where AC is the variable name of an accumulator in
which the subscript is assumed to have been loaded .
NUM is a number, acting as a displacement.

= indicates that the value availabl e
(as calculated by the portion of the arithmeti c

statement to the right) is to be stored as the value
of the variable name to its left . More than one = may

thus appear in one arithmetic statement . For example

This invokes the multiplication of FOO by BARB' ,

storage of the result in LOSS . Next LOSS is subtracte d

from ARM and the result stored in both A and t .

More complicated constructs are possible by making us e

of parentheses . Some care is required in arrangin g
the right sequence of storage operations so as not

to overwrite values needed further on, (Perhaps a

more intuitive structure could be given to multipl e
equals if one did not adopt ttte FORTRAN like

convention of having the statement follow the equals)

40 permits the passing of arguments by name rathe r

than by value, ie . is it performs a 4uot;in, action .

This is particularlj useful for subroutines operating

on vectors (Dotproduct for example), or subroutine s

executed for their effect rather than their value . I t

also permits the passing of a function address as

an argument . This is achieved by surrounding the variabl e

name with [and 1

indicates acontinuation and must be uirectly followe d
by a 'return carriage', 'line feed'(usuully supplie d
by TECO anyway) and either .1 or .F (which is ignored)

a space or tab and the continuation of the statement .

For example :

.F ANSWER=275 .0/T ti

.F -IN*VEST*MiiNT

Unitary + and * are ignored . Unitary / and - are
interpreted as 1.0/ and 0 .0- respectivly . = and
may not appear unitarily .

Since @ and may be part of a variable natht, one can
make full use of MIDAS's indirect addressing and

automatic variable storage assignment conventions .

The use of @ comes in very handy when working with

multi-dimensional arrays addressed through margin-arrays .

T normally generates a call to a function calle d

EXPLOG, which gets two arguments . .To facilitat e

generation of fast inline exponentiation one may follow

the 'r directly by the single digits 1,2,3 or 4 . For

example :

.F R=S;,ZRT Z X t 2 +) T 2>

Some unusual constructs are possiule which are usuall y
interpreted as one would intuicivly expect . For

no eluals sign need to appear in an expression, eii e

result is then merely left in AO . Next the comma may
be used to force evaluation to take place in highe r

sluts in the stack A0,A1 . . . Ay . So for example :

.F A*Z,LENGTH,S .RT < 365 .4/XSS ,ABEL/CAIN

is interpreted as meaning the calculation of the four

specified expressions and leaving the results i n

AO, Al, A2 and A3 .

.F SAVA'=,SAVB' .,SAVC '

Here stored in SAVA, in SAVB etc .

is just a convenient way of combining four operations
in one atatsment .(At this stage)= has a higher weight
than , and so the fitst expression will be carried

out in AO, the second in Al etc . with storage of

results starting at QUARK and ending at DISLTS.

The statement expander is not optimal in its use of
accumulators, thus small savings in program length
and execution speed can be had by writing th e

precedence-forcing parentheses in the right order .
For example

.F Y=(((A*X+B)*X+C)*X4L)*x+E

uses one accumulator in the stack and the minimal numbe r

of instructions, while

.F Y=E4X*(D+x*(C-lx*(B4A.*x)))

uses eight accumulators in the stack and as many extr a

MOVE instructions - although the accumulator to accumulato r

instructions used are slightly faster than the storag e

to accumulator instructions used

the first example .

These examples are rather extreme however and it hardly

ever pays to worry about :.such minor questions of efficiency .

To use the statement expander on merely uses TCO a s

usual to create a MIDAS program containing the require d

pseudo-ops - remembering to define A~,Al etc . and th e

push-down accumulator P . During the subsequent assembl y

with MIDAS error messages concerning the arithmetic

statement pseudo-ops are presented in manner .

The offending statement is typed, with a questionmark

where the error was first noticed and an explanation

of the error on the next line . No assembled output i s

generated erroneous statements .

The standard functions SIN, GOS, ATAN, LOG, EXP, S ;'11T ,

ABS, F;XPLOG, FRACT, 1NTU, MOD, RANDO can be foun d

in the file SUPPRT ROUT (on DSK : BKPH ;) . This
contains floating point and output routines t o

teletype printer . Other features are interupt-handling ,

control character features and a simple command language .

Most of these features can ue exised selectivly, usin g

switches on the first page of the program . This program is
intended to be inserted by means of the .NSRT pseudo-o p

and consists of bits and pieces high-jacked from

L .J .Kraxauer, T .Binford, O .Nelson, R .Greenolat and others .

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

