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The intensity at a point in an image is the product of the
reflectance at the corresponding object point and the intensity o f
illumination at that point . We are able to perceive lightness, a
quantity closely correlated with reflectance . How then do we eliminat e
the component due to illumination from the image on our retina? The two
components of image intensity differ in their spatial distribution. A
method is presented here which takes advantage of this to compute
lightness from image intensity in a layered, parallel fashion .

The method is developed for a restricted class of images first used
by Land in presenting his retinex theory of color . In this theory the
problem of color perception is reduced to one of judging black and whit e
lightness on three images taken in different parts of the visua l
spectrum .

	

The method described hare fills the need for a lightnes s
judging process .

The theory has implications for potential special purpose hardwar e
in image sensing devices . It should also be of interest to cognitive
psychologists since it can explain certain effects observed in the huma n
visual system as well as predict new ones . Further, the theory provides
neuro-physiologists with suggestions about the function of certai n

structures in the primate retina.
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LIGHTNESS : Definition

The relative degree to which an object reflects light .

The Random House Dictionar y

The attribute of object colors by which the object appears to reflect o r

transmit more or less of the incident light .

Webster's SeventhNewCollegiate Dictionary

Preview

Part 1 is a review of the relevant information relating to colo r

vision and lightness. This includes a discussion of the Land retinex

model in a form suitable for the developments of the next part .

In part 2, Land ' s one-dimensional operation will be extended t o

two-dimensional images . The method depends on a layered, paralle l

computation suggestive of both biological and artificia l

implementations .

In part 3 some of the implications are explored and the information

on the new image processing technique is summarized .
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1 . Review .

1 .1 Theories of Color Perception .

There has always been great interest in how we perceive colors and

numerous explanations have been forwarded (Newton 1704, Goethe 1810,

Young 1820, Maxwell 1856, Helmholtz 1867, Hering 1875} . The human

perceptual apparatus is remarkably succesful in coping with large

variations in the illumination . The colors we perceive are closel y

correlated with the surface colours of the objects viewed, despite larg e

temporal and spatial differences in color and intensity of the inciden t

light .

	

This is surprising since we cannot sense reflectance directly .

The light intensity at a point in the image is the product of th e

reflectance at the corresponding object point and the intensity o f

illumination at that point - aside from a constant factor that depend s

on the optical arrangement. There must then be some difference between

these two components of image intensity which allows us to discount th e

effect of one . The two components differ in their spatial distribution .

Incident light intensity will usually vary smoothly, with n o

discontinuities, while reflectance will have sharp discontinuities a t

edges where objects adjoin . The reflectance being relatively constan t

between such edges .
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1 .1 .1 Tri-Stimulus Theory.

Some facts about how we see color are fairly well established . I t

appears that we have three kinds of sensors operating in bright

illumination, with peak sensitivities in different parts of the visibl e

spectrum .

	

This is why it takes exactly three colors in additiv e

mixture to match an unknown color. While it is a bit tricky to measur e

the sensitivity curves of the three sensors directly, a linear transfor m

of these curves has been known accurately for some time (Brindley 1960} .

These curves, called the standard observer curves, are sufficient t o

allow one to predict color matches made by subjects with normal colou r

vision (Hardy 1936) .

The simplest theory of color perception then amounts to locall y

comparing the outputs of three such sensors and assigning colour on thi s

basis (Young 1820, Helmholtz 1867) . This however totally fails t o

explain the observed color constancy. Perceived color does not depend

directly on the relative amounts of light measured by the three sensor s

(Land 1959, Lettvin 1967) .

1 .1 .2 Color Conversion .

A number of attempts have been made to patch up this theory unde r

the rubrics of " discounting of the illuminant", "contrast effec t

adjustment" and "adaptation" . The more complicated theories are base d

on models with large numbers of parameters which are adjusted according
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to empirical data Helson 1938 & 1940, Judd 1940 & 1962, Richards 1971}.

These theories are at least partially effective in predicting human .

color perception when applied to simple arrangements of stimuli simila r

to those used in determining the parameters .

The parameters depend strongly on the data and slight experimenta l

variations will produce large fluctuations in them. This is a phenomena

familiar to numerical analysts fitting curves to data when the number o f

parameters is large . These theories are lacking in parsimony and

convincing physiological counter-parts . Lettvin has demonstrated the

hopelessness of trying to find fixed transformations from locall y

compared output of sensors to perceived color {Lettvin 1967} .

1 .2 Land's Retinex Theory .

Another theory of color perception is embodied in Land's retine x

model (Land 1959, 1964 & 1971} . Land proposes that the three sets o f

sensors are not connected locally, but instead are treated as if they

represent points on three separate images . Processing is performed o n

each such image separately to remove the component of intensity due t o

illumination gradient . Such processing is not merely an added frill bu t

is indispensable to color perception in the face of the variability o f

the illumination .
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1 .2.1 Lightness Judging .

In essence a judge of lightness processes each image. Lightness i s

the perceptual quantity closely correlated with surface reflectance.

Only after this process can the three images be compared to reliabl y

determine colors locally . It remains to mechanize this process .

It would appeal to intuition if this process could be carried out

in a parallel fashion that does not depend on previous knowledge of the

scene viewed . This is because colors are so immediate, and seldom

depend on one's interpretation of the scene . Colors will be seen even

when the picture makes no sense in terms of previous experience . Also ,

color is seen at every point in an image .

1.2.2 Mini-world of Mondrians .

In developing and explaining his theory Land needed to postpon e

dealing with the full complexity of arbitrary scenes . He selected a

particular class of objects as inputs, modelled after the paintings o f

the turn-of-the-century Dutch artist Pieter Cornelis Mondrian . These

scenes are flat areas divided into sub-regions of uniform matte color .

Problems such as those occasioned by shadows and specular reflection ar e

avoided in this way . One also avoids shading; that is, the variation i n

reflectance with the orientation of the surface in respect to the senso r

and the light-source. For Mondrians, lightness is considered to be a

function of reflectance .
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Mondrians are usually made of polygonal regions with straight side s

- for the development here however the edges may be curved . In the

world of Mondrians one finds that the reflectance has shar p

discontinuities wherever regions meet, being constant inside each

region .

	

The illumination, on the other hand, varies smoothly over th e

image .

1 .3 Why Study the One-dimensional Case ?

Images are two-dimensional and usually sampled at discrete points .

For historic reasons and intuitive simplicity the results will first b e

developed in one dimension, that is with functions of one variable .

Similarly, continuous functions will be used at first since they allow a

cleaner separation of the two components of image intensity an d

illustrate more clearly the concepts involved .

Use will be made of analogies between the one-dimensional and two -

dimensional cases as well as the continuous and discrete ones . The fina l

process discussed for processing image intensities is two-dimensiona l

and discrete . A number of physical implementations for this scheme are

suggested .

The process will be looked at from a number of points of view :

partial differential equations, linear systems, Fourier transforms an d

convolutions, difference equations, iterative solutions, feed-back

schemes and physical models .
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1 .3.1 Notation .

The following notation will be used :

s ' Intensity of incident illumination at a point on the object .

r ' Reflectance at a point of the object .

P ' Intensity at an image point . Product of a' and r' .

s, r, : Logarithms of a', r' and p' respectively .

d Result of applying forward or differencing operator to p .

t Result of applying threshold operator to d .

I Result of applying inverse or summing operator to t .

D Simple derivative operator in one dimension .

T Continuous threshold operator, discards finite part .

I Simple integration operator in one dimension .

L Laplacian operator

	

sum of second partial derivatives .

G' Inverse of the Laplacian, convolution with (1/2 pi ) log(1/r) .

0*, T*, I*, L* and Gm Discrete analogues of 0, T, I, L and G .

The output l, will not be called lightness since there is probabl y

not yet a generally acceptable definition of this term . It is however

intended to be monotonically related to lightness . Note that I is
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related to the logarithm of reflectance, while the perceptual quantit y

is perhaps more closely related to the square-root of reflectance .

1 .4 One-Dimensional Method - Continuous Case .

Land invented a simple method for separating the image component s

in one dimension. First one takes logarithms to convert the produc t

into a sum. This is followed by differentiation . The derivative wil l

be the sum of the derivatives of the two components . The edges wil l

produce sharp pulses of area proportional to the intensity steps between

regions

	

while the spatial variation of illumination will produce onl y

finite values everywhere . Now if one discards all finite values, one i s

left with the pulses and hence the derivative of lightness . Finally one

undoes the differentiation by simple integration .

1 .4 .1 One-Dimensional Continuous Method : Details .

We have the following : Let r ' (x) be the reflectance of the objec t

at the point corresponding to the image point x . Let s ' (x) be the

intensity at this object point . Let p'(x) be their product, that is ,

the intensity recorded in the image at point x . Note that s ' (x) and

r'(x) are positive .

p' (x) - s' (x) * r' (x)



FIGURE 1 : Processing steps in the one-dimensional continuous case .



ON LIGHTNESS 1 1

Now let p(x) be the logarithm of p ' (x) and so on :

p(x) = s(x) + r(x)

Note that s(x) is continuous and that r(x) has some finit e

discontinuities .

	

Let D represent differentiation with respect to x .

d (x)

	

D (p (x)) = D (s (x)) + D (r (x) )

Now, D(s(x)) will be finite everywhere, while D(r(x)) will be zero asid e

from a number of pulses - which carry all the information . Each pulse

will correspond to an edge between regions and have area proportional to

the intensity step . If now one "thresholds " and discards all finit e

parts, one gets :

t (x) - T (D (p (x))) - D(r(x) )

To obtain r(x) one only has to invert the differentiation, that is ,

integrate .

	

Let I represent integration with respect to x, then (I)
-1 =

D and :

I (x) - I (T (D (p (x))) - r(x) + c

One can give a convolutional interpretation to the above, sinc e

differentiation corresponds to convolution with a pulse-pair, one
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negative and one positive, each of unit area . Integration correspond s

to convolution with the unit step function .

1 .4 .2 Normalization .

The result is not unique because of the constant introduced by the

integration.

	

The zero (spatial) frequency term has been lost in the

differentiation, so cannot be reconstructed . This is related to th e

fact that one does not know the overall level of illumination and henc e

cannot tell whether an object appears dark because it is grey or becaus e

the level of illumination is low.

One can normalize the result if one assumes that there are no ligh t

sources in the field of view and no fluorescent colors or specula r

reflections.

	

This is certainly the case for the Mondrians . Perhaps

the best way of normalising the result is to simply assume that the

highest value of lightness corresponds to white, or total reflectance i n

the Lambertian sense . This normalization will lead one astray if th e

image does not contain a region corresponding to a white patch in th e

scene, but this is the best one can do . Other normalization technique s

might involve adjusting weighted local averages, but this would then n o

longer amount to reconstruction of reflectance .
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1 .5 One-Dimensional Method - Discrete Case .

So far we have assumed that the image intensity was a continuous

function .

	

In retinas found in animals or artificial ones constructe d

out of discrete components, images are only sampled at discrete points.

So one has to find discrete analogues for the operations we have been

using .

	

Perhaps the simplest are first differences and summation a s

analogues of differentiation and integration respectively . This is no t

to say that other approximations could not be used equally well .

To use the new operators one goes through essentially the same

process as before, except that now all values in the differenced imag e

are finite . This has the effect of forcing one to choose a threshol d

for the thresholding function . Both components of image intensity

produce finite values after the differencing operation . The componen t

due to the edges in the reflectance is hopefully quite large compared to

that due to illumination gradient . One has to find a level that wil l

suppress the illumination gradient inside regions, while permitting th e

effects due to edges to remain .

1 .5 .1 One-Dimensional Discrete Method : Details .

Let ri': be the reflectance of the object at the point corresponding

to the image point i . Let ski be the incident light intensity at thi s

object point . Let p '1 be their product, that is the intensity in th e

image at point i .



FIGURE 2 : Processing steps in the one-dimensional discrete case .
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Now let p i be the log of pi and so on . Let 0* and I* be the operator s

corresponding to taking first differences and summation respectively .

Note that (110 -1 -. 0* .

P i = si + ri=

di = pi+1 - pi (d - D* (p) )

if ldi| < e, else 0

(I - I*(t) )

k=0

1 .5 .2 Selecting the Threshold .

What determines the threshold? It must be smaller than th e

smallest intensity step between regions . It must on the other hand be

larger than values produced by first differencing the maximu m

illumination gradients . Real images are noisy and the threshold shoul d

be large enough to eliminate this noise inside regions.

The spacing of the sensor cells must also be taken into account .



ON LIGHTNESS 16

As this spacing becomes smaller, the contribution due to illuminatio n

gradients decreases, while the component due to the edges remain s

constant .

	

A limit is reached when the component due to illumination

gradients falls below that due to noise or when the optical propertie s

of the imaging system begin to have a deleterious effect . In al l
imaging systems an edge is spread over a finite distance due to

diffraction and uncorrected aberrations . The spacing of sensors shoul d

not be much smaller than this distance to avoid reducing the componen t

due to edges in the differenced image .

Let u be the radius of the point-spread-function of the optica l

system and h the spacing of the sensor cells . Let g' be the smallest

step in the logarithm of reflectance in the scene . Then define th e

effective minimum step as :

' * min(1, h/2u )

Let a be the largest slope due to illumination gradient and a the root-

mean-square noise-amplitude. The noise will exceed a value 3 a only .3%

of the time . Choose the threshold e as follows :
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1 .5 .3 Accuracy of the Reconstruction.

In the continuous case one can exactly reconstruct the reflectance ,

aside from a constant . We are not so fortunate here, even if we selec t

a threshold according to the above criteria . This is because the values

at the edges contain small contributions due to illumination gradien t

and noise . A slight inaccuracy in the reconstruction will result . Thi s

error is minimized by making the sensor cell spacing very fine ,

optimally of a size commensurate with the optical resolution of th e

device .

	

The effect of noise can also be minimized by integrating over

time .

Note that the reconstruction is more accurate when there are fe w

edges, since it is at the edges that the error effects appear . With

many edges the illumination gradient begins to "show through" .

1 .5.4 Generalizations .

So far we have dealt with constant sensor spacing . Clearly se lon g

as the same spacing is used for both the differencing and the summing ,

the cell spacing can be arbitrary and has little effect on the

reconstruction since it does not enter into the equations . ,

Similarly we have chosen first differences as the discrete analogu e

for differentiation . We could have chosen some other weighte d

difference and developed a suitable inverse for it . This Inverse o f

course would no longer be summation but can be readily obtained using
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techniques developed for dealing with difference equation s {Richtmeyer

1957, Garabedien 1964i .

1 .5.5 Physical Models of the One-Dimensional Discrete Process .

One can invent a number of physical models of the above operations .

A simple resistive network will do for the summation process fo r

example .

	

Land has implemented a small circular "retina" with about 1 6

sensors.

	

This model employs electronic components to perform th e

operations of taking logarithms, differencing, thresholding and summing .

Land has tried to extend his one-dimensional method to Images, by

covering the image with paths produced by a random walk procedure and

applying methods like the above to each of these paths . While thi s

produces results, it seems unsatisfactory from the point of view o f

suggesting possible neuro-physiological structures neither does i t

lend itself to efficient implementation .

Methods depending on non-linear processing of the gradient along

paths in the image fail to smoothly generalize to two dimensions, an d

cannot predict the appearance of images in which different paths resul t

in different lightnesses.
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2 .' Lightness in Two Dimensional Images .

2 .1 Two-Dimensional Method - Continuous Case .

We need to extend our ideas to two dimensions in order to deal with

actual images . There are a number of ways of arriving at the process t o

be described here, we shall follow the simplest {Horn 1968} . We need t o

find two-dimensional analogues to differentiation and integration . The

first partial derivatives are directional and thus unsuitable since the y

will for example completely eliminate evidence of edges running in a

direction parallel to their direction of differentiation . Exploring the

partial derivatives and their linear combinations one finds that the '

Laplacian operator is the lowest order combination that is isotropic, or

rotationally symmetric. The Laplacian operator is of course the sum o f

the second partial derivatives .

2 .1 .1 Applying the Laplacian to a Mondrian .

Before investigating the invertibility of this operator, let us see

what happens when one applies it to the image of a Mondrian . Inside any

region one will obtain a finite value due to the variation i n

illumination intensity . At each edge one will get a pulse pair, one

positive and one negative . The area of each pulse will be equal to the

intensity step.



FIGURE 3 : Applying the Laplacian operator to the image of a

Mondrian figure .
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This can best be seen by considering the first derivative of a

step, namely a single pulse . If this is differentiated again one

obtains a doubled pulse as described . Since this pulse will extend

along the edge, one may think of it as a pulse-wall . So each edg e

separating regions will produce a doubled pulse wall . It is clear that

one can once again separate the component due to reflectance and

illumination simply by discarding all finite parts .

2 .1 .2 Inverse of the Laplacian Operator .

To complete the task at hand one then has to find a process fo r

undoing the effect of applying the Laplacian . Again there are a number

of approaches to this problem, we will use the shortest (Horn 1968) . I n

essence one has to solve for p(x,y) in a partial differential equation

of the form :

L (p (x, y)) - d (x, y )

This is Poisson ' s equation and it is usually solved inside a bounded

region using Green's function (Garabedien 1964) :

p(x,y)	 = G(E , . ; x,y) * d(E,.) de dn
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The form of Green's function G, depends on the shape of the region

boundary.

	

Now if the retina is infinite all points are treate d

similarly and Green's function depends only on two parameters, ( -

and (eta - y) . . This positional independence implies that the above

integral simply becomes a convolution . It can be shown that Green ' s

function for this case is :

G( E ,►~ ; x,y) = (1/2 pi ) lo g(1/r )

Where 	 r2 = (, - x)Z + ( Y -  

So

	

p(x,y) =	 (1/2 log(1/r) *. d(i,,l ) de dn

Thus the inverse of the Laplacian operators is simply convolution with

(1/2') log (1/r) . To be precise one has :

{a
al-
xy+

 ff (1/2

	

log (1/r) * d( ,1) d d l - d(x,y)

This is the two-dimensional analogue of :
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d

	

X-
dx

	

f (t) dt - f (x )

-oo

2 .1 .3 Why one can use the Convolutional Inverse .

If the retina is considered infinite one can express the inverse as

a simple convolution. If the retina is finite on the other hand one has

to use the more complicated Green ' s function formulation.

Now consider a scene on a uniform background whose image is totall y

contained on the retina . The result of applying the forward transfor m

and thresholding will be zero in the area of the uniform background .

The convolutional inverse will therefore receive no contribution from

outside the retina . As a result one can use the convolutional form o f

the inverse provided the image of the scene is totally contained withi n

the retina .

2 .1 .4 Normalization .

Once again one finds that the reconstructed reflectance is no t

unique .

	

That is, any non-singular solution of L(p(x,y)) - 0 can be

added to the input without affecting the result . On the infinite plane

such solutions have the form p (x, y) - (a*x + b*y + c) . I f the scene

only occupies a finite region of space it can be further shown that the

solution will be unique up to a constant and that one does not have to
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worry about possible slopes . To be specific: the background around th e

scene will be constant in the reconstruction . So one has here exactl y

the same normalization problem as in the one-dimensional case .

Assigning white to the region with highest numerical value in the

reconstructed output appears to be a reasonable method .

2.1 .5 Two-Dimensional Continuous Method : Details .

Let r'(x,y) be the reflectance of the object at the poin t

corresponding to the image point (x,y) . Let s'(x,y) be the sourc e

intensity at that object point . Let p ' (x,y) be their product, . that i s

the intensity at the image point (x,y) . Note that r ' (x,y) and s' (x,y)

are positive.

p'(x,y) - s'(x,y) * r' (x, y )

Let p(x,y) be the logarithm of p'(x,y) and so on .

p(x,y) = s(x,y) + r (x, y )

Now assume that s(x,y) and its first partial derivatives are continuous-

a reasonable assumption to make for the distribution of illumination o n

the object . Let L be the Laplacian operator .
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d (x, y) - L (p (x, y)) - L(s(x,y)) + L(r(x,y) )

Now L(s(x,y)) will be finite everywhere, while L(r(x,y)) will be zer o

except at each edge separating regions, where one will find a doubl e

pulse wall as described . Now discard all finite parts :

t(x,y) = T(L(p(x,y))) = L(r(x,y) )

Let G be the operator corresponding to convolution by (1/2 pi) log( 1/r) .

Note that (G) -l - L .

I (x, y) - G (T (L (p (x, y))) - r (x, y) + c

2 .2 Two-Dimensional Method - Discrete Case .

Once again we turn from a continuous image to one sampled a t

discrete points . First we will have to decide on a tessellation of th e

image plane .

2 .2 .1 Tessellation of the Image Plane .

For regular tessellations the choice is between triangular, squar e

and hexagonal unit cells . In much past work on image processing, square

tessellation: have been used for the obvious reasons . This particular

tessellation of the image has a number of disadvantages . Each cell has
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two kinds of neighbors, four adjoining the sides, four on the corners .

This results in a number of asymmetries . It makes it difficult to find

convenient difference schemes approximating the Laplacian operator wit h

low error term.

Triangular unit cells are even worse in that they have three kinds

of neighbors, compounded these drawbacks . Note also that near-circular

objects pack tightest in a pattern with hexagonal cells . For these

reasons we will use a hexagonal unit cell . It should be kept in mind

however that it is easy to develop equivalent results using differen t

tessellations

.

2.2.2 Discrete Analogue of the Laplacian .

Having decided on the tessellation we need now to find a discrete

analogue of the Laplacian operator . Convolution with a central positiv e

value and a rotationally symmetric negative surround of equal weight i s

one possibility . Aside from a negative scale factor, this will approach

application of the Laplacian in the limit as the cell size tends to

zero .

If one were to use complicated surrounds, the trade-offs between

accuracy and resolution would suggest using a negative surround that

decreases rapidly outward . For the sake of simplicity we will choose

convolution with a central cell of weight 1, surrounded by six cells o f

weight -1/6 . This function is convenient, symmetric and has a smal l

error term. It Is equal to - ( h/4 L + h/64 L2 ) plus sixth and higher



	

FIGURE 4a : A discrete analogue of

	

Figure 4b : Delta function minu s

	

the Laplacian operator .

	

this discrete analogue .
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order derivatives {Richtmeyer 1957} . It should again be pointed out

that similar results can be developed for different functions .

2.2 .3 Inverse of the Discrete Operator .

The forward differencing operator has the form :

dI'

	

Ewv.-isl-s * p kl

Where pij is the logarithm of image intensity, wij are weights, which i n

our case are 1/6, and the sum is taken over the six immediate neighbors .

We now have to determine the inverse operation that recovers pi,j

from dij . One approach is to try and solve the difference equation o f

the form :

_; ' i p k1

	

d t
Jp `

Or in matrix form: W p . d . Note that  is sparse, having  
N N

diagonal and -1/6's scattered around . For a finite retina with n sensor

cells one has to introduce boundary conditions to ensure that one has as

many equations as there are unknowns . One then simply inverts the
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matrix W and gets : p = W

	

d .
N

	

M

This is entirely analogous to the solution in the continuous cas e

fora finite retina. W -1 corresponds to the Green's function . Much a s

Green's function has a large "support", that is, is non-zero over a

large area, so W -1 is not sparse . This implies that a lot o f

computation is needed to perform the inverse operation .

2 .2 .4 Computational Effort and Simplification .

Solving the difference equations for a given image by simple Gauss -

Jordan elimination requires of the order of n3 /2 arithmetic operations .

Another approach is to invert W once and for all for a given retina .

For each image then one needs only about n'2' arithmetic operations . Note

that the other operations, such as forward differencing, require onl y

about 6*n arithmetic operations .

What in effect is happening is that each point in the outpu t

depends on each point in the differenced image . Both have n points, so

n2 operations are involved . Not only does one have to do a lot o f

computation, but must also store up the matrix W -1 of size n~ . This i s

quite prohibitive for even a small retina .

This latter problem can be avoided if one remembers th e

simplification attendant to the use of an infinite retina in th e

continuous case . There we found that the integral with Green ' s function

simplified into a convolution . Similarly, if one assumes an infinite

retina here, one finds that W and its inverse become very regular . The



ON LIGHTNESS 30

rows in W are then all the same and the same is true of W -1 . Each value

in the output then depends in the same way on the neighboring points i n

the differenced image . One need only store up the dependence of on e

point on its neighbors for this simple convolutional operation .

The only remaining difficulty is that W is now infinite and one ca n

no longer invert it numerically - one has to find an analytica l

expression for the inverse. I have not been able to find this inverse

exactly .

	

A good first approximation is log 6 (ro /r) - except for r

	

0 ,

when one uses 1 + log 6(ro ) . Here r is the distance from the origin an d

r0 is arbitrary . The remainder left over when one applies the forwar d

difference scheme to this approximation lies between log 6(1 + r-6) an d

log 6(1 - r-6) . This error term is of the order of r-6 .

In practice one does not have an infinite retina, but as has bee n

explained for the continuous case one can use the convolutional metho d

described above for a finite retina, provided that the image of th e

scene is wholly contained inside the boundaries of the retina .

	

It i s

possible to find an accurate inverse of this kind valid for a limite d

retinal size by numerical . means .

2 .2 .S Two-Dimensional Discrete Method: Details .

Let r'ij be the reflectance at the object point corresponding to th e

image point (i,j) . Let s'i,j 	 be the intensity of the incident light a t

this object point . Let p'i,j be the intensity in the image at poin t

(i, j) .
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p~j

	

- s . . *
r".

Let p ij be the . logarithm of p'ij and so on. Let L* be the operator that

corresponds to convolution with the analogue of the Laplacian. Let G*

be its inverse.

dij = pij -	 w k-ily'Y pkl d = L*(p) )

The weights w ij are 1/S in this case, and the sum is taken over the si x

immediate neighbors .

tij = dij.

	

if

	

e, else 0

vK-illSt ist ( I = G*(t) )

Here the sum extends over the whole retina and vij is the convolutiona l

inverse found numerically as explained above .
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2.2.6 Simplicity of the Inverse .

The forward transform, involving only a simple subtraction o f

immediate neighbors, is clearly a rapid, local operation. The inverse

on the other hand is global, since each point in the output depends on

each point in the differenced image . Computationally this makes th e

inverse slow . The inverse is simple in one sense however : The

difference equations being solved by the inverse have the same form a s

the equations used for the forward transform and are thus local . The

problem is that the output here feeds back into the system and effect s

can propagate across the retina . The apparent global nature of th e

inverse is thus of a rather special kind and, as we will see later ,

gives rise to very simple implementations involving only loca l

connections.

2 .2.7 Iterative Methods of Solution.

There are of course other methods for solving large sets o f

equations .

	

The fact that W is sparse and has large diagonal elements ,

suggests trying something like Gauss-Seidel iteration . Each iteration

takes about 6*n arithmetic operations . For effects to propagate across

the retina one requires at least I(4*n2 - 1)/3 iterations. This i s

because a hexagonal retina of width m has (3*m 2 + 1)/4 cells . The above

suggests that one might be able to get away with less than n2 arithmeti c

operations . In practice it is found that effects propagate very slowly
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and many more iterations are needed to stabilize the solution . One does

not have to store W, since it is easily generated as one goes along .

Iterative schemes correspond to adding a time-derivative to th e

Poisson equation and so turning it into a heat-equation. As one

continues to iterate the steady-state solution is approached . Thi s

intuitive model gives some insight into how the process will converge .

2 .2.8 Convergence of Iterative and Feed-back Schemes .

It is not immediately clear that iterative schemes of solving th e

difference equations will converge. If they do, they will converge to

the correct solution . Let delta be the delta function, that is, one at the

origin, zero elsewhere. It can be shown that if the forward

convolutional operator is w, the convergence of iterative scheme s

depends on the behaviour of the error term, CS- w) n , as n becomes

large .

	

Raising a convolutional operator to an integer power i s

intended to signify convolution with itself .

In our case, w is one at the origin, with six values of -1/6 around

it . So (delta - w) will be zero at the origin with six values of 1/6 around

it . Now while (delta- w)n will always have a total area of one, it does

spread out and its value tends to zero at every point as n tends t o

infinity .

	

So this iterative scheme converges : similar results could be

derived for other negative surrounds .
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2.2 .9 Setting the Threshold .

In the discrete case a finite threshold must be selected . As

before, let g ' be the smallest step in the logarithm of reflectance i n

the scene, h the sensor spacing and u the radius of the point-sprea d

function of the optical system . Then we define the effective minimum

step as :

' * min(1, h/2u )

There are some minor differences in what follows depending on whether

one considers the sensor outputs to be intensity samples at cell-center s

or averages over the cell area. The smallest output due to an edge wil l

be about g/6 . This is produced when the edge is oriented to cover jus t

one cell of the neighborhood of six . Let $ be the maximum of the

intensity gradient - that is the Laplacian of intensity in this case .

Choose the threshold e as follows :

s < g/6

e > beta * h2
.

e > 3 7/6 sigma
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2 .2 .10 Some Notes on This Method .

Notice that an illumination gradient that varies as some power o f

distance across the image becomes a linear slope after taking logarithm s

and thus produces no component after the differencing operations . Such

simple gradients are suppressed even without the thresholding operation .

, In practice the parameters used in choosing the threshold may no t

be known or may be variable . In this case one can look at a histogram

of the differenced image. It will contain values both positive and

negative corresponding to edges and also a large number of value s

clustered around zero due to illumination gradients, noise and so on .

The threshold can be conveniently chosen to contain this central blob .

Noise and illumination gradients have an effect similar to that i n

the one-dimensional case . With finite cell spacing one cannot precisel y

separate the two components of the image intensity and at each edge the

information will be corrupted slightly by noise and illuminatio n

gradient .

	

As the density of edges per cell area goes up the effect o f

this becomes more apparent . In highly textured scenes the illuminatio n

gradient is hard to eliminate .

Once again one has to decide on a normalization scheme . The best

method probably is to let the highest numerical value in th e

reconstructed output correspond to white .



ON LIGHTNESS 36

2.2.11 Dynamic Range Reduction .

Applying the retinex operation to an image considerable reduces th e

range of values . This is because the output, being related t o

reflectance, will only have a range of one to two orders of magnitude ,

while the input will also have illumination gradients . This will make

such processing useful for picture recording and transmission (Horn

1968) .

2 .2 .12 A Frequency Domain Interpretation .

It may be of interest to look at this method from yet another point

of view . What one does is to accentuate the high-frequency components ,

threshold and then attenuate the high-frequency components. To see

this, consider first the forward operation. The Fourier transform o f

the convolutional operator corresponding to differentiation is i omega.

Similarly the two-dimensional Fourier transform of the convolutiona l

operator corresponding to the Laplacian is - rho2. Here p is the radius

in a polar coordinate system of the two-dimensional frequency space . I n

either case one is multiplying the Fourier transform by some function

that increases with frequency . Now consider the reverse operation . The

ourier transform of the convolutional operation corresponding t o

integration is 1/i w . Similarly the ourier transform of (1/2 pi) log e

(1/r) is -1/p 2 . So in the inverse step one undoes exactly the emphasi s

given to high frequency components in the forward operation .
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In both the one-dimensional and the two-dimensional case one loses

the zero frequency component . This is why the result has to be

normalized .

2.3 Physical Models .

There are numerous continuous physical models to illustrate the

inverse transformation . Anything that satisfies Poisson' s equation wil l

do . Such physical models help one visualize what the inverse of a give n

function might be. Examples in two dimensions are: perfect fluid-flow ,

steady diffusion, steady heat-flow, deformation. of an elastic membrane ,

electro-statics and current flow in a resistive sheet . In the las t

model for example, the input is the distribution of current flowing int o

the resistive sheet normal to its surface, the output is th e

distribution of electrical potential over the surface .

In addition to helping one visualize solutions, thes e continuous

models also suggest discrete models . These can be arrived at simply by

cutting up the two-dimensional space in a pattern corresponding to th e

interconnection of neighboring cells. That is, the remaining parts for m

a pattern dual to that of the sensor cell pattern. We will discuss onl y

one such discrete model .
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2.3 .1 A Discrete Physical Model .

Consider the resistive sheet described, cut up in the dual patter n

of the hexagonal unit cell pattern . What will be left is an

interconnection of resistors in a triangular pattern . The inputs t o

this system will be currents injected at the nodes, the potential at th e

nodes being the output . This then provides a very simple analog

implementation of the tedious inverse computation .

It is perhaps at first surprising to see that each cell is not

connected to every other in a direct fashion . One would expect thi s

from the form of the computational inverse . Each cell in the outpu t

does of course have a connection via the other cells to each of the

inputs .

	

Paths are shared however in a way that makes the result bot h

simple and planar . ,

Consider for the moment just one node . The potential at the node

is the average of the potential of the six nodes connected to it plu s

the current injected times R/6, where R is the resistance of eac h

resistor .

	

The economy of connection is due to the fact that th e

outputs of this system are fed back into it . It also illustrates tha t

this model locally solves exactly the same difference equation as tha t

used in the forward transform, only now in reverse .

This immediately suggests an important property of this model : By

simply changing the interconnections one can make an inverse for other

forward transforms . Simplest of all are other image plane tessellations,

both regular and irregular. One simply connects the resistors in the



FIGURE 5 :

	

Resistive model of the inverse computation .

The inputs are the currents injected at the nodes .

The outputs are the potentials at the nodes .
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same pattern as are the cells in the input .

More complicated weighted surrounds can be handled by using

resistors with resistances inversely proportional to the weights . The

network of resistors will then no longer be planar .

2 .3 .2 A Feed-back Scheme for the Inverse .

Both the comment about outputs feeding back into the resistive

model and the earlier notes about iterative schemes suggest yet another

interesting model for the inverse using linear summing devices .

Operational amplifiers can serve this purpose. One simply connects the

summing element so that they solve the difference equation implied by

the forward transform. Once again it is clear that such a scheme can be

generalized to arbitrary tessellations and weighted negative surround s

simply by changing the interconnections and attenuations on each input .

Some questions of stability arise with esoteric interconnections . For

the simple ones stability is assured .

A little thought will show that the resistive model describe d

earlier is in fact a more economical implementation of just this schem e

with the difference that there the inputs are currents, while here the y

are potentials .



FIGURE 6 :

	

The use of summing elements and feed-back in th e

implementation of both the forward and th e

inverse transform .
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2 .4 Limitations of the Simple Scheme Presented .

The method presented here will not correctly calculate reflectanc e

if used unmodified on general scenes. It may however calculat e

lightness fairly well . As the method stands now for example, a shar p

shadow edge will not be distinguished from a real edge in the scene an d

the two regions so formed will produce different outputs, while thei r

reflectances are the same . It may be that this is reasonabl e

nevertheless, since we perceive a difference in apparent lightness .

Smooth gradations of reflectance on a surface due either to shadin g

or variations in surface reflectance will be eliminated by th e

thresholding operations except as far as they affect the intensity a t

the borders of the region . This may imply that we need additiona l

channels in our visual system to complement the ones carrying the

retinexed information since we do utilize shading as a depth-cue .

The simple normalization scheme described will also be sensitive t o

specular reflections, fluorescent paints and light-sources in the fiel d

of view . Large depth-discontinuities present another problem . One

cannot assume that the illumination is equal on both sides of th e

obscuring edge . In this case the illuminating component does not var y

smoothly over the retina, having instead some sharp edges .



FIGURE 7 :

	

Illustration of the parallel layers of operations

which produce the two-dimensional retinex operation .

Only two of the operations involve local interaction s

between neighboring cells .
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2.5 Computer Simulation of the Discrete Method.

A computer program was used to simulate the retinex proces s

described on a small retina with both artificial and real Images seen

through an image dissector camera . The hexagonal unit cell is used i n

this program and the retina itself is also hexagonal . The retina

contains 1027 cells in a pattern 36 cells across . This is a compromise

dictated by the need to limit the number of arithmetic operations in th e

inverse transform. In this case one needs about a million and thi s

takes about a minute of central processor time on our PDP-10 .

Both the artificial and the real Mondrians consist of regions

bounded by curved outlines to emphasize that this method does no t

require straight-line edges or boundary extraction and description .

Various distributions of incident illumination can be selected for th e

artificial scenes . In each case the processing satisfactorily remove s

the gradient .

For the real scenes it is hard to produce really large illumination

gradients by positioning the light-sources . The reconstruction doe s

eliminate the gradient well, but often minor flaws will appear in the

output due to noise in the input and a number of problems with this kin d

of input device such as a very considerable scatter . It 1,s not easy t o

predict what effects such imaging device defects will have . .

The output is displayed on a DEC 340 display which has a mere eigh t

grey-levels. It would be interesting to experiment with larger retina s

and better image input- and output-devices .
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2 .5 .1 Form of Inverse used in the Computer Simulation .

The convolutional form of the inverse was used for speed and lo w

storage requirement . This necessitated solving the difference equation s

once, given a pulse as input . The symmetry of the hexagonal patter n

allows one to identify symmetrically placed cells and only 324 unknown s

needed to be found for a convolutional inverse sufficient for the size

of retina described . As mentioned before, this function is closel y

approximated by log6(r0/r) for large r . This can be used to establis h

boundary conditions .



FIGURE 8 : The method applied to a n

artificial image .

FIGURE 9 : The method applied to a

real imag e

FIGURE 10 : The method applied t o

Craik's figure .

FIGURE 11 : Apparent lightness predicte d

for incomplete figure .

The subfigures in the above have the following interpretation :

A Input - logarithm of image intensity pij

B Differenced image dij

C Thresholded differenc e tij

D Output - computed lightness l i j

E Illumination distribution

	

(pij-lij ) sij
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3. Implications and Conclusions .

3 .1 Parallel Image Processing Hardware .

The methods described here for forward transforming, thresholding

and inverse transforming immediately tempt one to think in terms o f

electronic components arranged in parallel layers. Enough has been sai d

about different models to make it clear how one might connect suc h

components .

	

Large scale integrated circuit technology may be useful ,

provided the signals are either converted from analog to digital form or

better still, good linear circuits are available in this form .

Construction of such devices would be premature until furthe r

experimentation is performed to decide on optimal tessellations, optima l

negative surrounds, thresholding operations and normalization schemes .

These decisions are best guided by computer simulation .

3 .2 Cognitive Psychology.

One of the artificial scenes was created to illustrate Craik' s

illusion (Brindley 1960, Cornsweet 1970} . Here a sharp edge is bordered

by second-order gradients . As one might expect the smooth gradients ar e

lost in the thresholding and reconstruction produces two regions each of

uniform brightness . The difference in brightness between the regions i s

equal to the original intensity step at the edge .

The fact that the process presented here falls prey to this
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illusion is of course no proof that humans use the same mechanism . I t

is interesting that this technique allows one to predict for example the

appearance of pictures containing incompletely closed curves wit h

second-order gradients on either side .

3 .3 Neuro-physiology .

The method described here for obtaining lightness from image

intensity suggests functions for a number of structures in the primat e

retina .

	

The horizontal cells appear to be involved in the forward

transformation, while some of the amacrines may be involved in the

inverse transformation . For details see the paper by David Marr {Marr

1974}, in which he uses this hypothesis to explain an astonishing numbe r

of facts about the retina .

3.4 Conclusion,

A simple layered, parallel technique for computing lightness from

image intensity has been presented . The method does not involve a n

ability to describe or understand the scene, relying instead on th e

spatial differences in the distribution of reflectance and illumination .

The forward step involves accentuating the edges between regions . The

output of this step is then thresholded to remove illumination gradient s

and noise . The inverse step merely undoes the accentuation of th e

edges .
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Physical models have been given which can perform this computatio n

efficiently in parallel layers of simple networks . The method has been

simulated and applied to a number of images . The method grew out of an

attempt to extend Land' s method to two dimensions and fills the need fo r

a lightness judging process in his retinex theory of color perception.

The possibility of processing an image in such a parallel, simpl e

fashion without higher-level understanding of the scene reinforces m y

belief that such low-level processing is of importance in dealing with a

number of features of images . Amongst these are shading, stere o

disparity, focus, edge detection, scene segmentation and motio n

parallax .

	

Some of this kind of processing may actually happen in th e

primate retina and visual cortex . The implications for image analysi s

are that it may well be that a number of such pre-processing operations

should be performed automatically for the whole image to accentuate o r

extract certain attributes before one brings to bear the more powerful ,

but tedious and slow sequential goal-directed methods .
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