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ABSTRACT . lmage Intensities have been processed traditionally withou t

much regard to how they arise . Typically they are used only to segmen t

an image into regions or to find edge-fragments . lmage intensities d o

carry a great deal of useful information about three-dimensional aspect s

of objects and some initial attempts are made here to exploit this . An

understanding of how images are formed and what determines the amount o f

light reflected from a point on an object to the viewer is vital to suc h

a development . The gradient-space, popularized by Huffman and Mackwort h
is a helpful tool in this regard .
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AND NOW FOR SOMETHlNG COMPLETELY DlFFEREN T

A case will be made for the usefulness of image intensities or gra y

levels . Usually one would like to forget about image intensities as soon

as possible, extracting only edge-fragments or regions before going on .

Much of the work in image analysis has used image intensities only to se g -

ment the image, based on differences in average image intensity or som e

higher-order measure . A great deal of information is contained in the

image intensities, however, and there are ways of exploiting this fact .

Our approach is based on the belief that it is important to understand th e

image-forming process if one is to construct models of the world bein g

imaged . lt is not sufficient to try an assortment of statistical, compu-

tational, or signal-processing tricks that come out of a bag of procedure s

that has proved useful in some other domain .

Using an understanding of the visual effects of edge imperfections an d

mutual illumination, we will be able to suggest interpretations of line s

based on image intensity profiles across edges . A "sharp peak" o r

edge-effect will imply that the edge is convex, a "roof" or triangula r

profile will suggest a concave edge, while a step-transition or discon-

tinuity accompanied by neither a sharp peak nor a roof component will mos t

likely be an obscuring edge . This latter hypothesis is strengthened sig -

nificantly if an "inverse peak" or negative edge-effect is also seen .

Next we will show that the image intensities of regions meeting at a join t

corresponding to an object corner allow one to determine fairly accurately
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the orientation of each of the planes meeting at the corner . The three-

dimensional structure of a polyhedral scene can thus be established with -

out the use of size- or support-hypotheses or a finite catalogue of models .

Finally we will turn to curved objects and show that their shape can be

determined from the intensities recorded in the image . The approach to

this problem presented here is supported by geometric arguments and doe s

not depend on methods for solving first-order non-linear partial different-

ial equations . It is instead a synthesis of the previous shape-from-shadin g

method and the gradient-space approach . [4,2] .

The results presented here depend to a large degree on geometric insigh t

gained by using the gradient-space approach popularized by Huffman an d

Mackworth . [1,2,3,9] . Approaching the image analysis problem in the way

proposed in this paper leads to the ability to prove or disprove that cer-

tain features can be extracted from images . It is not claimed, however ,

that it makes any inroads on the scene analysis problem .
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lMAGE FORMATlON :

Our usual visual world consists of opaque bodies immersed in a transparen t

medium . Since we cannot see into opaque objects, their surfaces are im-

portant for recognition and description purposes . This special nature of

our visual world makes it reasonable to attempt to derive a model of wha t

is being seen from an image . The dimensionalities of the two domains match :

On the one hand, we have two-dimensional surfaces plus depth, on the other ,

two image dimensions plus intensity .

lf we are to exploit this observation we have to understand how images ar e

formed . There are two parts to this problem. One deals with the two image

dimensions and relates them to the surface coordinates, and the other deal s

with the determination of what intensity will be recorded in the image a t

each point .

PROJECTlON :

First, let us look at the geometry of projection . For this purpose one

can replace a lens with a pin-hole at its center . Straight lines then con -

nect points on the objects to their images -- these lines pass through th e

pin-hole . If we let (x,y,z) be the coordinates of some point before the

viewer, and (x',y') its image coordinates, the n

x' = (x/z)f and y' = (y/z)f
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Here f is the separation of the image plane from the lens . It is conveni -

ent to superimpose the image plane onto the object space as follows :

Above is the well-known perspective projection . Sometimes it is con-

venient to consider a simpler case where objects are very far away rela-

tive to their size . We can imagine looking at them through a telephot o

lens . The scene then will occupy a small visual angle and the distance t o

points on the object will be almost constant in the projection equation .

x' = (f/zo)x and y' = (f/zo ) y

This corresponds to orthographic projection .
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SURFACE ORlENTATlON :

ln order to determine the light flux reflected in the direction of th e

viewer from a particular surface element of the object, we will have t o

understand the light-source, object-surface, viewer geometry . ln particu-

lar, the surface orientation will play a major role .

There are various ways of specifying the surface orientation for a plane .

We can, for example, give the equation defining the plane, or the directio n

of a vector perpendicular to the surface . lf an equation for the plan e

is ax + by + cz = d, then a suitable surface normal is (a,b,c) . ln fac t

we can rewrite the equation (x,y,z)•(a,b,c) = d . To show that any line

in the surface is indeed perpendicular to the normal so defined, conside r

any pair of points in the surface (xo ,yo ,zo ) and (x 1 ,y1 ,z 1 ) . Connecting

them and taking dot-products we find that (xo-x1,yo-y1,zo-z1)•(a,b,c) = O .

Since we shall be interested in curved surfaces as well, we extend thi s

method for specifying surface orientation by applying it to tangent planes .

That is, the orientation of the surface at a point (x o ,yo ,zo) is define d

to be the orientation of the tangent plane constructed at that point . l f

the equation of the surface is given as z = z(x,y), we can take an infini -

tesimal step (dx, dy, dz) in the surface and find that dz = z_x dx + z_y dy ,
Y

where z_x and z_y are the first partial derivatives of z with respect to x

and y respectively . Clearly, the equation of the tangent plane can be

written as z_x x + z_y y - z = d (where d = z_x x_o + z_y y_o -	 z_o). We can immedi-

ately construct a local normal (z_x, z_y,-1) .
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lt will be convenient to abbreviate the first partial derivatives as p an d

q . The local normal then becomes (p,q,-1) . It is clear that orientatio n

defined in this way has but two degrees of freedom . The quantity (p,q )

will be called the gradient .

IMAGE lNTENSlTY :

Next we turn to the image intensity . This will be equal to the amount o f

light reflected by the corresponding point on the object in the directio n

of the viewer, multiplied by some constant factor that depends on the param -

eters of the image-forming system . To be precise, we have to think of in-

tensity as light flux per unit area and correspondingly also have to con-

sider the reflected light per unit area as seen by the viewer .

Now the amount of light reflected by a surface depends on its micro-struc-

ture and the distribution of the incident light . Constructing a tangent-

plane to the object's surface at the point under consideration, one see s

that light may be arriving from directions distributed over a hemisphere .

One can consider the contributions from each of these directions separatel y

and superimpose the results .



-7 -

The important point is that no matter how complex the distribution of light -

sources, and for most kinds of surfaces, there is a unique value of re-

flectance, and image intensity, for a given orientation of the surface .

We shall spend some time exploring that and develop the gradient-space imag e

in the process .

SlNGLE POlNT SOURCE :

The simplest case is that of a single point-source . lt is easy to see tha t

the geometry of reflection in this case is governed by three angles, th e

incident, the emittance, and the phase angles . The incident angle is th e

angle between the incident ray and the local normal, the emittance angl e

is the angle between the emitted ray and the local normal, and the phas e

angle is the angle between the incident and emitted ray [4] . .

Clearly the cosines of the three angles can be found simply by taking th e

dot-product of the appropriate pair of unit vectors . The reflectivit y

function is a measure of how much of the light incident on a surface ele-
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ment is reflected in a particular direction . Roughly speaking, it is th e

fraction of the incident light reflected per unit surface area, per uni t

solid angle, in the direction of the viewer .

Let the illumination be E (flux/unit area) and the resulting surface lum-

inance in the direction of the viewer be B (flux/steradian/projected area) .

Projected area is simply the equivalent area if the surface was not fore -

shortened, that is, if it was normal to the view-vector . The reflectivity

is simply defined as B/E .

	

lt is usually written phi(i,e,g) .

Note that an infinitesimal surface element, dA, captures a flux E cos(i)dA ,

since its surface normal is inclined i, relative to the incident ray .

Similarly, the intensity l (flux/steradian) equals B cos(e)dA, since the pro-

jected area is foreshortened by the inclination of the surface normal rela -

tive to the emitted ray .

REFLECTlVlTY FUNCTlON :

Mathematical models have been constructed for some surfaces that allo w

an analytical determination of the reflectivity function . Such technique s

have not proved very successful so far .

ln general we may not just have a single point-source illuminating th e

object

	

other objects around it, for example, will contribute to th e

incident light . ln this case, one has to integrate the product of the re-

flectivity function and the incident light per unit solid angle over th e

hemisphere visible from the point under consideration in order to deter-
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mine the total light flux reflected in the direction of the viewer .

TYlNG IT ALL TOGETHER :

So far we have treated geometry and intensity separately . The normal to

the surface relates object geometry to image intensity . The normal i s

defined in terms of the surface geometry, and it also appears i n

the equation for the reflected light intensity since the three angles de-

termining reflectivity depend on it . One could now proceed to develop

partial differential equations based on this observation -- it is mor e

fruitful to introduce another tool first, gradient-space . This will allow

us to gain valuable intuitive insight into how one can exploit the detaile d

understanding of image formation .

GRADlENT SPACE :

Gradient-space can be derived as a projection of dual-space or of th e

Gaussian sphere, but it is easier for our purposes here to relate it direct-

ly to surface orientation [2] . We will concern ourselves with orthographi c

projection only, although some of the methods can be extended to deal wit h

perspective .

The mapping from surface orientation to gradient-space is straight-forward .

lf we construct a normal (p,q,-1) at a point on an object, it maps into th e

point (p,q) in gradient-space . Equivalently, one can imagine the norma l

placed at the origin and determine its intersection with a plane at unit dis -

tance form the origin . If we write the equation for the surface z = z(x,y),
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then a normal to the surface will be (z_x, z_y,-1), where z_x and z_y are the

first partial derivatives of z with respect to x and y respectively .

Clearly, p = z_x and q = z_y.

We need to look at some examples to gain a feel for gradient-space . Evi-

dently a plane maps into a point in gradient-space . A second plane paralle l

to the first maps into the same point . What plane maps into the point a t

the origin in gradient-space? A plane with normal (0,0,-1), that is, a

plane perpendicular to the view-vector (0,0,-1) .

Moving away from the origin in gradient-space, one finds that the distanc e

from the origin corresponds to the inclination of the plane with respect t o

the view-vector -- specifically, the distance from the origin equals th e

tangent of the angle between the surface-normal and the view-vector, tan(e) .

If we rotate the object-space about the view-vector, we induce an equa l

rotation of gradient-space about the origin . This allows us to line u p

points with the axes and so simplify analysis . Using this technique it i s

easy to show that the angular position of a point in gradient-space corres-

ponds to the direction of steepest descent on the original surface .

Let us call the orthogonal projection of the original space, image-space .

Usually this is all that is directly accessible to us . Two planes inter -

sect in a line . Let us call the projection of this line the image-line .

The two planes, of course, also correspond to two points in gradient-space .

The line connecting these two points is called the gradient-line . Thus, a

line maps into a line . The perpendicular distance of the gradient-space
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line from the origin equals the tangent of the inclination of the origina l

line to the image plane .

It can be shown that if the gradient-space were to be superimposed on th e

image-space, an image-line would be perpendicular to the correspondin g

gradient-space line . Mackworth's scheme for scene analysis of line-drawing s

of polyhedra depends on this observation [2] .

TRl-HEDRAL CORNERS :

The points in gradient-space, that correspond to the three planes meeting a t

a tri-hedral corner, have to satisfy certain constraints . The lines connect-

ing these points have to be perpendicular to the corresponding lines i n

image-space .

GA

GC

IMAGE-SPACE

	

GRADIENT-SPAC E

This provides us with three constraints -- not enough to fix the position o f

three points in gradient-space . Three degrees of freedom are still undeter -

mined, namely the position and scale of the triangle . We shall see late r

that measuring the three intensities provides enough information to dis-

ambiguate the orientations of the planes, and thus allows a determination o f

the three-dimensional structure of a polyhedral scene .
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GRADlENT-SPACE lMAGE :

The amount of light reflected by a given surface element depends on it s

orientation and the distribution of light-sources around it, as well as o n

the nature of its surface . For a given type of surface and distributio n

of light-sources, there is a fixed value of reflectance for every orienta-

tion of the surface normal and, hence, for every point in gradient-space .

lmage intensity is a single-valued function of p and q . We can think o f

this as a gradient-space image . This is not a transform of the image see n

by the viewer . lt is, in fact, independent of the scene and a function of

the surface properties and the light-source distribution . Note that we

have assumed that both viewer and light-sources are far from the object s

in the scene .

The use of the gradient-space diagram is analogous to the use of the hodo -

gram or velocity-space diagram . The later provides insight into the motio n

of particles in force fields that is hard to obtain by algebraic reasonin g

alone . Similarly, the gradient-space will allow geometric reasoning abou t

surface orientation and image intensities .
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MAT SURFACES AND POlNT-SOURCE NEAR VlEWER :

Some examples will make this clear . Consider a perfect Lambertian surface .

A perfect diffuser has the property that it looks equally bright from al l

directions and that the amount of light reflected depends only on the cosin e

of the incident angle . In order to postpone the calculation of incident ,

emittance, and phase angles from p and q for now, we will place a singl e

light-source near the viewer . Then the incident angle equals the emittanc e

angle and is simply the angle between the surface normal and the view-vector .

lts cosine is just the dot-product of the corresponding unit vectors .

That is,

cost') =
	 (p,q,-1)•(0,0,-1) = I/3 1 + p2 + q2

R p , q ,- l ) || (0,0,-1 ) I

The same result could have been obtained by remembering that the distanc e

from the origin in gradient space is the tangent of the angle between th e

surface-normal and the view-vector :

3p2 + q2 = tan (e) and cos 2 (e) = 1/[l + tan2 (e)] and e = i here .

lf we plot reflectance as a function of p and q, we get a central maximu m

of one at the origin, and a circularly symmetric function that monotonicall y

falls , to zero as one goes to infinity in gradient space . This is a nice ,

smooth gradient-space image, typical of mat surfaces .

A given image intensity corresponds to a simple locus in gradient-space, a
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circle centered on the origin . A measurement of image intensity tells u s

that the surface gradient has to be one that falls on a certain circle i n

gradient-space .

UNIFORM lLLUMlNATlON :

Note that the case of uniform illumination is quite similar to the situ-

ation where the light-source is near the viewer . For a start, there are

no shadows in either case . Secondly, in both cases the reflectivity can b e

written as a function of the emittance angle alone . ln fact, we can define

an equivalent reflectivity function ,

phi'(e)=1112I~(i,e,g) sin(i ) dA di
o r

for the uniformly illuminated surface . Here A is the azimuth angle defined b y

cos(g) - cos(i)cos(e )
cos (.A) =

sin(i)sin(e )

ln general, the light-source is not likely to be near the viewer, so

we will have to explore the more complicated geometry of incident and emitte d

rays for arbitrary directions of incident light at the object .
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Contours of constant E = cos(e) . Contour intervals are .1 units wide .

This is the gradient-space image for objects with Lambertian surface s

when there is a single light-source near the viewer .
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For many surfaces the reflectance is a smooth function of the incident ,

emittance, and phase angles .

It is convenient to work with the cosines of these angles, I = cos(i) ,

E = cos(e), and G = cos(g) -- since these can be obtained easily from dot -

products of the three unit vectors . Suppose for now that we have a singl e

distant light-source and that its direction is given by a vector (ps,qs,-1) .

The view-vector is (0,0,-1), so :

G = l//l + ps 2 + qs 2 , E = 1/dl + p2 + q 2 , and

I = ( I + P SP + q sq )/ (dl + p 2 + q 2

	

+ ps 2 + qs2 ) = (I + PS P + q s q) EG

Evidently it is simple to calculate I, E, and G for any point in gradient -

space . In fact G is constant given our assumption of orthogonal projectio n

and distant light-source . We have already seen that the contours of constant
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E are circles in gradient-space centered on the origin . Setting I constan t

gives us a second-order polynomial in p and q and suggests that loci o f

constant I may be conic sections . The terminator, the line separatin g

lighted from shadowed regions, is a straight line, obtained by settin g

i = pi/2 . Here I = 0 ; that is, I + ps p + q s q = 0. Similarly, the locu s

of I = 1 is the single point p = p
s

and q = q
s

.

A geometric way of constructing the loci of constant I is to think of th e

cone generated by all directions that have the same incident angle . The

axis of the cone is the direction to the light-source (ps,qs,-1) . The

corresponding points in gradient-space are found by intersecting this con e

with a plane at unit distance from the origin . Varying values of I wil l

produce cones with varying angles . These cones will form a nested sheaf .

The intersection of this nested sheaf with the unit plane will be a neste d

set of conic sections .

lf we measure a particular image intensity, we know that the gradient o f

the corresponding surface element has to fall on a particular one of th e

conic sections . The possible normals are then confined to a cone . ln thi s

case this is simply a circular cone . In the case of more general reflectivi-

ty functions, the locus of possible normals will constitute a more genera l

figure called the Monge cone .
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shadow line

Contours of constant I = cos(i) . Contour intervals are .1 units wide .

The direction to the source is (p s ,q s ) = (0 .7,0 .3) .

This is the gradient-space image for objects with ambertian surface s

when the light-source is not near the viewer .
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SPECULARlTY :

Many surfaces are not completely mat, having some specular reflection fro m

the outermost layers of their surface . This is particularly true of sur-

faces that are smooth on a microscopic scale . For specular reflection w e

have i = e and the incident, emitted, and normal vectors are all in th e

same plane . Alternatively, we can say that i + e = g . In any case, onl y

one surface orientation will be just right for reflection of the light -

source towards the viewer . That is, perfect specular reflection contribute s

an impulse to the gradient-space image at a particular point .

In practice, few surfaces have such perfect specularity . lnstead they

reflect some light in the direction slightly away from the geometricall y

correct direction [8] . lt can be shown that the cosine of the angle betwee n

the direction defined by perfectly specular reflection and any other direc -

tion is (2IE-G) . This will clearly equal one in the correct directio n

and fall off towards zero as one increases the angle to a right-angle .

By taking various functions of (2IE-G) one can construct more or less com-

pact specular contributions . Raising this function to some large power ,

for example, will do .

A good approximation for some glossy white paints can be obtained by com-

bining the usual mat component with a specular component defined in thi s

way . For example, phi(I,E,G) = ½s(n + 1)(2IE - G) n + (1 - s)I will work .

Here s varies between 0 and 1 and determines the fraction of inciden t

light reflected specularly before penetrating the surface, while n deter -

mines the sharpness of the specularity peak in the gradient-space image .
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Contours for phi(I,E,G) = 1/2s(n + 1)(2IE - G) n + (1 - S)

	

This is the gradient -

space image for a surface with both a matt and a specular component of re-

flectivity illuminated by a single point-source .
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FlNDlNG p AND q FROM l, E, ANDG :

In order to explore further the relation between the specification o f

surface orientation in gradient-space and the angles involved, we shal l

solve for p and q, given l, E, and G . We have already shown that it i s

simple to perform the opposite operation . One way of approaching thi s

problem is to try to solve the polynomial equations in p and q derive d

from the equations for l, E, and G . This turns out to be messy, but i t

can be shown that :

p = p' cos(theta) - q
' sin(theta)

q = p' sin(theta) + cos(theta)

, = (I/E -G) and q' =
±(D/E)

31 - G2

	

3l - G2

Where

	

P

A2=
1 + 2IEG = (I2 +E2 + G2 )

cos(theta) = 	 Ps	 and sin(theta) = 	 qs	
2lip + q 2

	

Ip
2+ q 2

s

	

s

	

s

	

s

lt is immediately apparent that for most values of l, E, and G, there are

two solution points in gradient space . Notice that 0 here is the direction

of the light-source in gradient-space ; the line connecting (p s ,q s ) to the

origin makes an angle 0 with the p-axis . So p' and q' are coordinates i n

a new gradient-space obtained after simplifying matters by rotating th e

axes until q s = 0 -- the light source is in the direction of the x'-axis .
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The next thing worth noticing about this set of equations is that if I/E

is constant, then p' is constant (remembering that G is constant anyway) .

So the loci of constant I/E are straight lines . These lines are all para-

llel to the terminator, for which I = O . This turns out to be importan t

since some surfaces have constant reflectance for constant I/E .

Contours of phi(I,E,G) = I/E . Contour intervals are .2 units wide . The

reflectivity function for the material in the maria of the moon is con-

stant for I/E .
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METALLlC SURFACES :

Consider next a metallic surface, a surface with a purely specular reflectance .

Each point in gradient-space corresponds to a particular direction of the surfac e

normal and defines a direction from which incident light has to approac h

the object in order to be reflected towards the viewer . ln fact, in gradient -

space we can produce a complete map of the sphere of possible directions a s

seen from the object . At the origin, for example, we have the direction

towards the viewer . lf we record an intensity in the gradient space corres-

ponding to the intensity arriving at the object from the corresponding direc-

tion we obtain a picture of the world surrounding the object . ln map pro-

jection terms we have a plane projection of a sphere with one pole of th e

sphere as the center of projection . Another way of looking at it is tha t

the image we construct in this fashion is like one we would obtain by look -

ing into a convex mirror -- a metallic paraboloid to be precise .

What can we do with this strange image of the world surrounding the object ?

lf we measure a certain intensity at a given point on the object, we ca n

now say something about the orientation of the surface at that point . We

cannot uniquely determine that orientation, but we do know that it is re -

stricted to a sub-set of all possible orientations . We have one constrain t

on it -- it has to be one of the points in gradient-space where we fin d

this same value of intensity . lf the world surrounding the object is a t

all complex, this sub-set will tend to be very disconnected and complex ,

and not much help in recovering the shape directly . There are exceptions - -

light-sources, for example, tend to be compact and very bright, correspond-
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ing to definite easy-to-locate points in gradient-space . For points wit h

such high reflected light intensity in the image we can often locally de-

termine the surface normal uniquely .

We have now developed methods for constructing gradient-space images fo r

various surfaces and distributions of light-sources . The latter is don e

simply by superimposing the results in gradient-space for each light -

source in turn . We will now turn to a minor flaw in this approach and

attempt a partial analysis of mutual illumination .

Gradient-space image for a metallic object in the center of a large wir e
cube . Equivalently one can think of it as the reflection of the wire cub e
in a paraboloid with a specularly-reflecting surface .
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MUTUAL lLLUMlNATlON :

The gradient-space image is based on the assumption that the viewer an d

all light sources are distant from the object . Only under these assump-

tions can we associate a unique value of image intensity with every surfac e

orientation . lf the scene consists of a single convex object these assump-

tions may be satisfied, but when there are several highly reflective ob-

jects placed near one another, mutual illumination may become important .

That is, the distribution of incident light no longer depends only on direc-

tion only, but is a function of position as well . The general case is ver y

difficult to deal with and we shall study only some idealized situation s

applicable to scenes made up of polyhedra . There are two primary effect s

of mutual illumination : a reduction in contrast between faces, and th e

appearance of shading or gradation of light on images of plane surfaces .

ln the absence of this effect, we would expect plane surfaces to hav e

polygonal images of uniform intensity since all points on them have th e

same orientation .

TWO SEMl-lNFlNlTE PLANES :

First let us consider a highly idealized situation where we have two semi -

infinite planes joined at right angles, and a distant light-source . Le t

the incident rays make an angle a with respect to one of the planes . Further

assume that the surfaces reflect a fraction r of the light falling on them ,

and that the illumination provided by the source is E (light flux/unit area) .
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E1

Picking any point on one of the half-planes, we find that one-half of it s

hemisphere of directions is occupied by the other plane, so one-half o f

the light radiated from this point will hit the other plane, while one-hal f

will be lost . Since both planes are semi-infinite, the geometry of thi s

does not depend on how far from the corner we are . Now, the light inciden t

at any point is made up of two components, that received directly from th e

source and that reflected from the other plane . lt is not hard to see tha t

the intensity on one plane will not vary with distance from the corne r

a point receives reflected light from one-half of its hemisphere of direc -

tions no matter how far from the corner it is . Put another way, there i s

no natural scale factor for a fluctuation in intensity . Let the illumina-

tion of the planes be E l and E2 (light flux/unit area) .

= 1/2 E2 + E cos(alpha )

= 1/2 /E + E sin( )
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Solving for E 1 and E2 , one gets :

E 1 = E[cos(a) + /r sin(a)]/[l - (/r) 2 ]

E2 = E[sin(a) + /r cos(a)P[1 - (/r) 2 ]

Had we ignored the effects of mutual illumination we would have foun d

E 1 = E cos(a) and E 2 = E sin(a) . Clearly the effect increases with i n

creases in reflectance r ; it is not significant for dark surfaces . When

the planes are equally illuminated, for a = w/4, we have :

E 1 = E2 = (E//2)/(l - /r )

When r = 1, this is twice the illumination and hence twice the brightnes s

that we would have obtained in the absence of mutual illumination .

lf the angle between the two planes is varied, one finds that the effec t

gets larger and larger as the angle gets more and more acute . One can

get arbitrary "amplification" by choosing the angle small enough . Con-

versely, for angles larger than it/2, the effect is less pronounced .

In the above derivation we have not made very specific assumptions abou t

the angular distribution of reflected light, just that it does not depen d

on where the incident ray comes from and that it is symmetrical about th e

normal . So a ambertian surface would be included, while a highly specula r

one would not . lndeed, the effect is less pronounced for surfaces with a
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high specular component of reflection, since most of the light is bounced

back at the source upon second reflection .

Another important thing to note is that if the planes are not infinite ,

the above calculations apply approximately at least close to the corner .

For finite planes we expect a variation of intensity as a function o f

distance from the corner, but asymptotically, as one approaches the corner ,

the results derived here will apply .

TWO TRUNCATED PLANES :

lf the planes are of finite extent, the geometry becomes quite complex, but ,

if one allows them to be infinite along their line of intersection an d

truncates them only in the direction perpendicular to this, one can develop

an integral equation . Suppose they both extend a distance L from the corner ,

and are joined at right-angles and that a = pi/4. This produces a particular-

ly simple form of this integral equation -- which nevertheless I have bee n

unable to solve analytically . Numerical methods show that the resultan t

illumination falls off monotonically from the corner, that the value a t

the corner is indeed what we predicted in the previous section, and tha t

near the corner, the fall-off is governed by a term in -(x/L)(1 -	 2r )

For r = 1, for example, this contains the square-root of (x/L) and ther e

is thus a cusp in the function at the corner . (Here x is the distance

along the plane from the edge where the planes meet) .



-29-

Surface luminance plotted versus fractional distance from a right-angl e

corner . The curves are for reflectances of .2, .4, .6, .8, and 1 .0 .

x/L
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(x/L)
1-1/2r

	

1

Surface luminance plotted versus (x/L)(1 Zr)
to illustrate asymptoti c

behavior near the corner . The curves correspond to reflectances of

.2, .4, .6, .8, and 1 .0 .
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THE MAlN RESULTS

THE SEMANTlCS OF EDGE-PROFlLES :

If polyhedral objects were perfect, there was no mutual illumination ,

image sensors were perfect and light sources distant from the scene ,

images of polyhedral objects would be divided into polygonal areas, wit h

intensity uniform inside each polygon . lt is well known that there i s

variation of image' intensity within these polygonal areas in real image s

and that an intensity profile taken across an edge separating two suc h

polygonal regions does not simply have a step-shaped transition in inten-

sity . Herskovitz and Binford determined experimentally that the mos t

common edge transitions are step-, peak-, and roof-shaped [7] . This ha s

so far been considered no more than a nuisance, since it complicates th e

process of finding edges . Here we will discuss the interpretation of thes e

profiles in terms of the three-dimensional aspects of the scene .
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A perfect polyhedron has a discontinuity in surface normal at an edge .

ln practice edges are rounded off somewhat . A cross-section through th e

object's edge shows that the surface normal varies smoothly from one valu e

to the other and takes on values that are linear combinations of the sur-

face normals of the two adjoining planes .

What does this mean in terms of reflected light intensity? lnstead of a

sudden jump of intensity from a value corresponding to the one surface norma l

to the other, the intensity varies smoothly . The important point is that i t

may take on values outside the range of values defined by the two planes .

The best way to see this is to consider the situation in gradient-space .

The two planes define two points in gradient-space and tangent planes o n

the corner correspond to points on the line connecting these two points .

lf the image intensity is higher for a point somewhere on this line, we wil l

see a peak in the intensity profile across the edge .

So, if we find an edge-profile with a peak-shape or a step with a peak super-
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imposed, it is most likely that the line should be labelled convex . The

converse is not true, an edge may be convex and not give rise to a peak ,

if the line connecting the two points in gradient space has intensit y

varying monotonically along its length . The identification is also not

completely certain since under peculiar lighting conditions and with ob-

jects that have acute angles between adjacent faces, a peak may appear a t

an obscuring edge .

Notice that the peak is quite compact, since it only extends as far a s

the rounded-off edge does .

At a corner, where the planes meet, we find that surface imperfec-

tions provide surface normals that are linear combinations of the three nor -

mats corresponding to the three planes . ln gradient space this correspond s

to points in the triangle connecting the three points corresponding to th e

planes . lf this triangle contains a maximum in image intensity we expec t

to see a high-light right on the corner .
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lmage of tri-hedral corner and corresponding gradient-space diagram .
The image intensity profile across the edge between face A and fac e
B will have a peak or highlight . The others will not .
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MUTUAL ILLUMlNATlON :

We have already seen that mutual illumination gives rise to intensity vari-

ations on planar surfaces . The intensity falls off as one moves away from

the corner . Near the corner, this fall-off is approximatel y

linear . Notice that this affects the intensity profile over a large dis-

tance from the edge, quite unlike the sharp peak found due to edge imper -

fections . Clearly, if we find a roof-shaped profile or step with a roof-

shape superimposed we should consider labelling the edge concave .

The identification is not perfectly certain, though, since some imagin g

device defects can produce a similar effect . lmage dissectors, for example ,

suffer from a great deal of scattering and this has the effect that area s

further from a dark background are brighter . So one may see a smoothe d

version of a roof-shape in the middle of a bright scene against a dar k

background . Experimentation with high-quality image input devices suc h

as the PlN-diode mirror-deflection system has confirmed that this is a n

artifact introduced by the image dissector .

Further, when the light-source is close to the scene, significant gradient s

can appear on planar surfaces as pointed out by Herskovitz & Binford [7] .

Lastly, the roof-shaped profiles on the two surface may be due to mutua l

illumination with other surfaces, not each other . Nevertheless, a roof -

shaped profile does usually suggest a concave edge .
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OBSCURATlON :

Step-shaped intensity profiles most often occur where objects obscur e

one another, although they can be found with convex and sometimes con -

cave edges as well . lf the obscuring surface adjoins a self-shadowed

surface, however, edge imperfections will produce a negative peak on th e

profile, since the line connecting the points corresponding to the tw o

surfaces in gradient-space then passes through the terminator . So a nega -

tive peak or a step with a superimposed negative peak strongly suggest s

obscuration .

	

It is unfortunately impossible to tell which side is th e

obscuring plane .
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Generation of a negative peak at an obscuring edge facing awa y
from the light-source .
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DETERMlNlNG THE THREE-DlMENSlONAL STRUCTURE OF POLYHEDRAL SCENES :

The approach invented by Mackworth for understanding line-drawings o f

polyhedra allows one to take into account some of the quantitative aspect s

of the three-dimensional geometry of scenes [2] . lt does not, however ,

allow one to determine fully the orientation of all the planes . The scal e

and position of the gradient-space diagram is undetermined by his technique .

To illustrate, consider a single trihedral corner . Here we know that th e

three points in gradient-space that represent the three planes meeting a t

the corner have to satisfy certain constraints . Specifically, they mus t

lie on three lines perpendicular to the image-lines .

lt takes six parameters to specify the position of three points on a plane ,

so we still have three degrees of freedom after introducing these constraints .

Measuring the three image intensities of the planes supplies another three .

The constraints are due to the fact that the points in gradient-space hav e

to lie on the right contours of image intensity . The triangle can b e

stretched and moved until the points correspond to the correct image inten-

sities as measured for the three planes . Since this process correspond s

to solving three non-linear equations for three unknowns, we can expect a
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finite number of solutions . Often there are but one or two ; some

can be eliminated from prior knowledge of what is to be expected in th e

scene .

When more than three planes meet at a corner, the situation is even mor e

constrained -- the equations are over-determined . Conversely, one canno t

do much with just two planes meeting at an edge, since there are too fe w

equations, and an infinite number of solutions exist, as one might expect .

The possible ambiguity at a tri-hedral corner is not very serious when on e

considers that in a typical scene there will be many "connect" edges, eithe r

convex or concave as determined by Mackworth's program . Usually the over -

all constraints will allow only one interpretation that is consistent .

A practical difficulty is that it is unclear what search strategy will lea d

one efficiently to this interpretation .

Measurements of image intensity are not very precise and surfaces have

properties that vary from point to point and with handling . We cannot

expect this method to be extremely accurate in pinning down surface orienta-

tion . The fact that for a typical scene the equations will be over-deter-

mined allows a least-squares approach which may help to improve matters a

little .

The idea of stretching and shifting can be generalized to smooth surfaces .

We know that the image of a paraboloid is the gradient-space image . l f

we can stretch and shift a real image of some object to fit this patter n

of intensity distribution we can determine its surface shape by applyin g

the inverse stretching and shifting to the paraboloid .
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LUNAR TOPOGRAPHY :

When viewed from a great distance, the material in the maria of the moo n

has a particularly interesting reflectivity function . First, note tha t

the lunar phase is the angle at the moon between the light-source (sun )

and the viewer (earth) . This is obviously the angle we call g, and ex -

plains why we use the term phase angle for g . For constant phase angle ,

detailed measurements using surface elements, whose projected area as see n

from the source is a constant multiple of the projected area as seen by th e

viewer, have shown that all such surface elements have the same reflectance .

But the area appears foreshortened by cos(i) and cos(e) as seen by the sourc e

and the viewer respectively . Hence the reflectivity function is constant fo r

constant cos(i)/cos(e) = I/E (for fixed G) .

Each surface element scatters light uniformly into its hemisphere o f

directions, quite unlike the ambertian surface, which favors direction s

normal to its surface . This is not an isolated incident . The surface s

of other rocky, dusty objects when viewed from great distances appear t o

have similar properties . The surface of the planet Mercury, for example ,

and perhaps Mars, as well as some asteroids and atmosphere-free satellite s

fit this pattern . Surfaces with reflectance a function of I/E thus for m

third species we should add to mat surfaces where the reflectance is a

function of I and glossy surfaces where the reflectance is a function o f

(21E-G) .
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LUNAR REFLECTlVlTY FUNCTlON :

Returning to the lunar surface, we find an early formula due to Lommel -

Seelinger [6] :

phi(I,E,G) =

ro (l/E )

(l/E) + lambda(G)

Here l'0 is a constant and the function X(G) is defined by an empiricall y

determined table . A somewhat more satisfactory fit to the data is provide d

by a formula of Fesenkov's [6] :

ro (I/E) [l + cos2 (a/2) ]
phi(I,E,G) =

(I/E) + Ao [ 1 + tan g (A/2) ]

Where ro and ao are constants and tan(a) = -(I/E-G)/ 1G2 . By the way ,

tan(a) = -p' . This formula is also supported by a theoretical model o f

the surface due to Hapke . Note that given I, E, and G, it is straight -

forward to calculated the expected reflectance . We need - to go in the

reverse direction and solve for I/E given G and the reflectance as measure d

by the image intensity . While it may be hard to invert the above equatio n

analytically, it should be clear that by some iterative, interpolation ,

or hill-climbing scheme, one can solve for I/E . We shall ignore for now

the ambiguities that arise if there is more than one solution .



LUNAR GRADlENT-SPACE lMAGE :

Next, we ask what the gradient-space image looks like for the lunar surfac e

illuminated by a single point-source . The contours of constant intensit y

in gradient-space will be lines of constant l/E . But the contours o f

constant l/E are straight lines! So the gradient-space image can be generated

from a single curve by shifting it along a straight-line

	

the shadow-line ,

for example . The contour lines are perpendicular to the direction define d

by the position of the source (that is, the line from the origin to p
s
,q

s
) .

Now what information does a single measurement of image intensity provide ?

It tells us that the gradient has to be on a particular straight line .

Again, we shall ignore for the moment the possible existence of more than on e

contour for a given intensity . What we would like to know of course is the

orientation of the surface element . We cannot determine completely that locally ,

but we can tell what its component will be in one direction, the directio n

perpendicular to the contour lines . We can tell nothing about it in th e

direction at right-angles to this favored direction .

	

ln fact, knowing 1/E and

G determines p', as previously defined and tells up nothing about q' .
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This favored direction lies in the plane defined by the source, th e

viewer, and the surface element under consideration . If one wishes, one

can simplify matters by rotating the viewer's coordinate system system unti l

the x axis lies in this plane as well . Then q
s
= 0, and the contours of

constant intensity in gradient-space are all vertical lines . Evidently ,

an image intensity measurement determines the slope of the surface in th e

x' direction, without telling us anything about the slope in the y' direction .

q

We are now ready to integrate out the surface by advancing in the directio n

in which we can locally determine the surface slope .
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FlNDlNG ASURFACE PROFlLE BY lNTEGRATlON :

We have:

p, = dz = I/E -G

ds

	

G2

The distance s from some starting point is measured in the object coor-

dinate system and is related to the distance along the projection of thi s

curve in the image by s' = s(f/z o) .

dz

	

f I/,E -G

ds'

	

z 31 - G~0

Integrating, we get :

z(s')
= zo

$5 1/E -G
- ds '

	

o

	

3l - G"Z-

Where l/E is found from G and the image intensity b(x',y') by 'VG :

I/E = 'YG [b(x' ► y' ) ]

Starting anywhere in the image, we can integrate along a particular lin e

and find the relative elevation of the corresponding points on the object .

The curves traced out on the object in this fashion are called characteristics ,

their projection in the image plane are called base characteristics .

	

lt is
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clear that the base characteristics here are parallel straight lines i n

the image, independent of the object's shape .

FlNDlNG THE WHOLESURFACE :

We can explore the whole image by choosing sufficient starting points along a

line at an angle to the favored direction . ln this way we obtain the surfac e

shape over the whole area recorded in the image .

There is nothing to relate the integrals obtained along adjacent characteristic s

in the image, since we cannot determine the gradient in this direction . We have

to know an initial curve, or use assumptions of reasonable smoothness .

Alternatively, we can perform a second surface calculation from an imag e

taken with a different source-surface-observer geometry . In this case ,

we will obtain solutions along lines crossing the surface at a differen t

angle and can so tie the two solutions together . This is not quite a s

useful as one might think at first, since it does not apply to picture s

taken from earth . The plane of the sun, moon, and earth varies little from
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the ecliptic plane . The lines of integration in the image will vary littl e

in inclination . This idea does work for pictures taken close to the moon .

to the moon .

AMBlGUlTY	 lN	 LOCAL GRADlENT :

What if more than one contour in gradient-space corresponds to a given in -

tensity? Then we cannot tell locally which gradient to apply . lf we are

integrating along some curve, however, this is not a problem, since we ma y

assume that there is little change in gradient over small distances an d

pick the one close to the gradient last used . This assumption of smooth-

ness leaves us with one remaining problem : what happens if we approach a

maximum of intensity in gradient-space and then enter areas of lower inten-

sity . Which side of the local maximum do we slide down? This is a n

ambiguity which cannot be resolved locally, and the solution has to b e

terminated at this point . Under certain lighting conditions the image wil l

be divided into regions inside each of which we can find a solution . The

regions will be separated by ambiguity edges, which cannot be crosse d

without making an arbitrary choice .
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LOW SUN-ANGLES :

This problem can be entirely avoided if one deals only with pictures take n

at low sun-angles, since the gradient is then a single valued function o f

image intensity . This is a good idea in any case, since the accuracy o f

the reconstruction will depend on how accurately one can determine th e

gradient, which in . turn depends on the spacing of the contour lines i n

gradient-space . lf they are close together, this accuracy will be high ;

near a maximum, on the other hand, it will be low . lt is easy to convince

oneself that pictures taken at low sun-angle have "better contrast," sho w

the "relief in more detail", and are "easier to interpret" .

There is another reason for interest in images obtained under condition s

of low sun-angle . Near the shadow-line in gradient-space, the contours ,

of constant-intensity are nearly straight lines even if we are not dealin g

with the special reflectivity function for the lunar material! An earl y

solution to the problem of determining the shape of lunar hills made us e

of this fact by integrating along lines perpendicular to the terminator [5] .

DEALlNG WlTH SHADOWS :

Working at low sun-angles introduces another problem of course, sinc e

shadows are likely to appear . Fortunately, they are easy to deal wit h

since we can simply trace the line in the image until we again see a

lighted area . Since we know the direction of the rays from the sourc e

we can easily determine the position of the first lighted point . The

integration is then continued from there . ln fact, no special attention
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has to be paid to this problem, since a surface element oriented for grazin g

incidence of light will already have the correct slope . Thus simply lookin g

up the slope for zero intensity and integrating with this value will do .

Some portion of the surface of course will not be explored because o f

shadows . Most of this area will be covered if one takes one picture jus t

after "sun-rise" and one just before "sun-set" .

GENERALlZATION TO PERSPECTlVE PROJECTION :

All along we have assumed orthographic projection -- looking at the surfac e

from a great distance with a telephoto lens . ln practice, this is an un-

reasonable assumption for pictures taken by artificial satellites nea r

the surface . The first thing that changes in the more general case of per-

spective projection is that the sun-surface-viewer plane is no longer th e

same for all portions of the surface imaged . Since it is this plane whic h

determines the lines along which we integrate, we can expect that th e

lines of integration will no longer be parallel .

	

lnstead they all converge
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on the anti-solar point -- that is, the point in the image which correspond s

to a direction directly opposite to the direction towards the source .

The next change is that z is no longer constant in the projection equation .

So s' = f(s/z) . Hence,

P

	

f dz

	

I /E. -G

ds

	

z ds'

	

/1 - G2

We can no longer simply integrate . But it is easy to solve the above differ-

ential equation for z by separating terms :

	

1 rs'	 l /E -G dsr

	

0
log(z) = J

l/E - G
ds' and so z(s') = z o

f

	

/1 - G2

f

	

1 - G2

	

0

Finally, note that the phase angle g is no longer constant . This has to

be taken into account when calculating 1/E from the measured image intensity .

On the whole, the process is still very simple . The paths of integratio n

are pre-determined straight lines in the image -- radiating from the anti-
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solar point . At each point we measure the image intensity, determine wha t

value of l/E will give rise to this image intensity . Then we calculate

the corresponding slope along the straight line and take a small step .

Repeating for all lines crossing the image we obtain the surface elevatio n

at all points in the image .

The same result could have been obtained by a very painful algebrai c

method [6] .

A NOTE ON ACCURACY :

Since image intensities can only be determined with rather limited precision ,

one must expect the calculation of surface coordinates to suffer from error s

that may accumulate along characteristics . A "sharpening" method that relate s

adjacent characteristics can reduce these errors somewhat 143 . It furthe r

appears that an objects shape is better described by the orientations o f

its surface normals than by distances from the viewer to points on its surface .

In part this may be because distances to the surface undergo a more complicated

transformation when the object is rotated than do surface normal directions .

Note that the calculation of surface normals is not subject to the cumulativ e

errors mentioned .

Finally, it should be pointed out that the precise determination of th e

surface shape is not the main impetus for the devlopment presented here .

The understanding of how image intensities are determined by the object ,

the lighting and the image forming system is of more importance and ma y

lead to interesting heuristic methods .
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GENERAL REFLECTlVlTY FUNCTlONS :

The simple method developed for lunar topography does not apply if th e

contours of constant intensity in gradient-space are not parallel straigh t

lines . We shall still be able to trace along the surface, but the directio n

we take at each point will now depend on the image and will change alon g

the profile . The base characteristics will no longer be pre-determine d

straight lines in the image . At each point on a characteristic curve w e

shall find that the solution can be continued only in a particular direction .

lt will also appear that we will need more information to start a solutio n

and shall have to carry along more information as we proceed . Reasonin g

from the gradient-space diagram can be augmented here by some algebrai c

manipulation .

Let a(p,q) be the intensity corresponding to a surface element with a

gradient (p,q) . Let b(x,y) be the intensity recorded in the image a t

the point (x,y) . Then, for a particular surface element, we must have :

a (p , q ) = b(x,y)

Now suppose we want to proceed in a manner analogous to the metho d

developed earlier by taking a small step (dx,dy) in the image .

	

It is clea r

that we can calculate the corresponding change in z as follows :

= z dx + z dy = p dx + q d y
x

	

y

To do this we need the values of p and q . As we integrate out the curve
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we also have to keep track of the values of the gradient . We can calculate

the increments in p and q by :

dp = px dx + py dy and dq = qx dx + qy d y

At first, we appear to be getting into more difficulty, since no w

we need to know px , py = q x and qy . ln order to determine these unknown s

we will differentiate the basic equation a(p,q) = b(x,y) with respect t o

x and y :

a p px + aq qx = bx and ap py +aq qy = by

While these equations contain the right unknowns, there are only tw o

equations, not enough to solve for three unknowns . Note, however, tha t

we do not really need the individual values! We are only after the linea r

combinations (pxdx + p ydy) and (q xdx + q ydy) .

We have to choose the direction of the small step (dx,dy) properly t o

allow the determination of these quantities . There is only one such direc -

tion . Let (dx,dy) _ (ap , aq )ds, then (dp,dq) _ (b x ,by)ds . This is the

solution we were after . Summarizing, we have five ordinary differentia l

equations :

x=a p , y=a q , z=pa+qa,

	

=bx , andq= bp

	

p

	

y

Here the dot denotes differentiation with respect to s, a parameter tha t

varies along the solution curve .



-53-

lNTERPRETATlON lN TERMS OF THE GRADlENT-SPACE :

As we solve along a particular characteristic curve on the object, w e

simultaneously trace out a base characteristic in the image and a curv e

in gradient-space . At each point in the solution we will know which poin t

in the image and which point in the gradient-space the surface elemen t

under consideration corresponds to . The intensity in the real image an d

in the gradient-space image must, of course, be the same . The paths in the

two spaces are related in a peculiar manner . The step we take in the image

will be perpendicular to the contour in gradient-space and the step we

take in gradient-space will be perpendicular to the intensity contour i n

the real image .
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GENERALlZATlON TO NEAR SOURCE AND NEAR VlEWER :

The last solution method, while correct for arbitrary reflectivity functions ,

still assumes orthographic projection and a distant source . This is a goo d

approximation for many practical cases . ln order to take into account th e

effects of the nearness of the source and the viewer, we have to discar d

the gradient-space diagram, since it is based on the assumption of constan t

phase angle . The problem can still be tackled by algebraic manipulation ,

much as the last solution . lt turns out that one is really trying to solv e

a first order non-linear partial differential equation in two independen t

variables . The well-known solution involves converting this equation int o

five ordinary differential equations, quite like the ones we obtained i n

the last section [4] .
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MATHEMATlCAL DETAlL S

DUAL-SPACE :

One approach to gradient-space is to consider it as a projection of dua l

space [1,2,9] . Dual-space is a three-dimensional entity obtained by mappin g

planes into points and points into planes . A point of course can be speci-

fied as a vector (x,y,z) . A plane also can be defined in terms of a vecto r

(a,b,c) . The plane consists of points which satisfy the equation :

(x,y,z)•(a,b,c) = 1 or ax + by + cz =

lt is clear that a plane in one space can be mapped into a point in th e

other and that, conversely, a point can be mapped into a plane . These

operations are reversible, that is, if we start with a plane, find the

corresponding point in dual-space, we can map this point back into the origina l

plane .

What about lines? Lines can be thought of either as the intersection of two

planes or as connections between two points . Thus, the dual of a line, con-

sidered to be formed by the intersection of two planes, can be construed t o

be the line connecting the two points in dual-space that correspond to thes e

two planes . A line also can be associated with the family of all plane s

passing through it -- its dual will be the line formed by mapping all o f

these planes into points .

What does the corner of a polyhedron correspond to in dual-space? Firs t

of all, a corner is a point, so it must map into a plane . Secondly, it lie s

in each of the planes intersecting to form the corner, so its dual must con-
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tain all of the points corresponding to these planes . The dual of a corne r

is the plane defined by the points corresponding to the planes that inter -

sect to form the corner . The edges of the object meeting at the corner map

into lines connecting these points .

The object-space is not directly accessible to us, since we have only a

projection of it, the image-space . We cannot expect to arrive at the re-

sults in dual space simply and directly -- but it turns out that a ver y

useful projection of dual-space exists .

Given a point (a,b,c) in dual-space, one can define its projection into

gradient-space as (-a/c,-b/c) . This is a perspective projection . How i s

this related to the original object-space? Let a plane in object-space b e

defined as ax + by + cz = 1 . This can also be written :

z = (-a/c)x + (-b/c)y + (1/c )

lt is clear now why (p,q) = (-a/c,-b/c) is called the gradient of the plane .

ln fact, p = z x and q = zy , the first partial derivatives of z with respect

to x and y respectively .

THE GAUSSlAN SPHERE :

Another convenient way to talk about directions is by way of a unit spher e

surrounding the point in question [3,9] . Points on the sphere then defin e

specific directions . This representation is very convenient for some purpose s

since some useful invariants exist on the surface of this sphere which are
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lost in projection . Huffman uses this to advantage in analyzing developabl e

surfaces [3] . For our purposes, however, a planar representation is more con-

venient . Gradient-space is simply a projection of the Gaussian sphere ,

with the center of the sphere acting as the center of projection and th e

projection being constructed onto a plane tangent to the sphere .

ORIGIN OF
GRADIENT-SPACE
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THE GRADlENT-LlNE lS PERPENDlCULAR TO THE IMAGE-LlNE :

Consider two planes defined by the equations :

a l x + b l y + c 1 z = d l and a2x + b2y + c2 z = d 2

These planes have normals (a l ,b l ,c 1 ) and (a 2 ,b2 ,c2) respectively . The

planes intersect in a line . The direction of this line can be found b y

taking the cross-products of the two normals . This follows from the fac t

that the line of intersection certainly has to be in both planes and, hence ,

perpendicular to both normals . The cross-product turns out to b e

(b l c2-b2c l ,a2c 1 -a l c2 ,a l b 2 -a2 b 1 ) .

The image-line is the orthogonal projection of the line of intersection .

lts direction is simply (b 1 c 2-b2c l ,a 2c 1 -a l c2 ) .

The two planes map into the points (-a l /c l ,-b l /c l ) and (-a2/c 2 ,-b2 /c2 ) i n

gradient-space . The line connecting these two points is the gradient-line .

lts direction can be found by subtraction to be (a 2/c2 -a l /c 1 ,b2/c2-b l /c l ) .

ln order to establish that the gradient-line so defined is perpendicula r

to the image-line, we have to show that the dot-products of their respectiv e

directions is zero .

(b l c2-b2c l ,a2c l -a l c2 ) . (a 2 c 1 -a l c2 ,b2 c 1 -b 1 c2 )/(c i c2 ) = 0

The two lines are thus perpendicular . The same result can be developed usin g

only geometric reasoning .
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lNTEGRAL OF cosn (0)OVERA HEMISPHERE :

To provide for the correct scaling of the specular component of reflecte d

light we need the integral of cos n (e) over the hemisphere 0 5 0 s n/2 .

The area of the strip on the surface of the hemisphere is 2TrR2 sin(0)dO .

lntegrating, we get :

n/ 2
Jr
o

2n R 2 s i n (0)co s n (0)d e

n/2
2wR 2fo cosn (0)sin(o)d e

2n-R2 - cos
n+l

(6) 7r/2

n + 1

	

0 = 2irR2/ (n + 1 )

This is l/(n + 1) of the surface area of the hemisphere .
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THE OFF-SPECULARlTY ANGLE :

For surfaces with a specular component of reflectivity one needs to kno w

the angle between the reflected ray and the line of sight [8] . This angl e

can be found by simple application of some results of spherical geometry .

SOURCE

Here A is called the azimuth angle .

We are given i, e, and g, and have to find the angle § .

cos(s) = cos(i) cos(e) + sin(i) sin(e) cos(rr - A )

cos(g) = cos(i) cos(e) + sin(i) sin(e) cos(A )

Clearly, cos(s) = 2cos(i) cos (e) - cos(g) = 2I E

lf 2IE - G = k and c = G/(k + G), then, (p - psc) 2 + (q - q sc)2 = 1 - k2

(k + G) 2 '

So, the contours of constant (2 E - G) are circles . This also follows from

the circle-preserving property of stereographic projection .



-62 -

Contours of (2IE-G) . The contour intervals are .1 units .
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GRADlENT-SPACE lMAGE FOR A METALLlC SURFACE :

For specular reflection we must have two constraints satisfied ; the inciden t

angle has to equal the emittance angle, and the incident ray, the emitte d

ray and the surface normal have to be coplanar .

lf i =e,then 1 = E and so (1 +p
s
p+q

s
q)EG= E

And so,

	

(l +psp+qsq) = 3 1 +ps 2 +q s 2

Next we must have (p,q,-1), (ps,qs,-l), and (0,0,-1) co-planar . That is ,

the dot-product of any one with the cross-product of the other two mus t

equal zero . Expressed another way, we must have the volume of the parallele-

piped defined by the three vectors equal zero . Or, finally :

= 0, that is, p
s
q - q

s
p = O .de t

The same result could be arrived at in a more round-about fashion by requirin g

that i + e = g, and then expanding cos(i + e) = cos(g) . We now have two linea r

equations in p and q :

p sp + q sq = 31 + ps 2 + q s 2 - 1

qsp - p sq = 0
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Solving for p and

-1)

	

ps/ p52 +q 2)= P s

q s/ p..2+q s

	

= cis

G
p = ( 31 + ps2 + qs 2 = cosO3(l

	

- G)/(l

	

+ G)1 + G

G
q = ( 31 + ps

	

+ qs2 -
0

= sine/a-- G)/(l + G )1 + G

This related to the half-angle formula :

tan(/a) = 3 (1 - cosa)/(1 + coca )

STEREOGRAPHlC PROJECTlON :

The gradient-space

of the surround of

seen by the object

metallic object is a stereo-graphic projectio n

That is, the sphere of possible direction a s

is mapped onto a place, with the center of projection a t

image for a

the object .

one pole of the sphere

is conformal ; that is ,

mapped into circles on

and the plane tangent at the other pole . The mapping

angles are preserved . Circles on the sphere are mappe d

the plane. The following illustrations from pages 248 ,

252, and 253 of Hilbert & Cohn-Vossen [9] will illustrate :
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Fro . .244a

Flo . 244b
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A USEFUL DlSCRlMlNANT :

The incident, emittance, and phase angle form a spherical triangle an d

have to satisfy certain constraints -- that is, we cannot arbitrarily choos e

i, e, and g . The sum of any two has to exceed the third . This is analogou s

to a similar result for the sides of planar triangles . lt is easy to see

that only one of the three constraints can fail at any one time [4] . Suppose

it is the following :

i + e < g, then cos(i'+ e) > cos(g )

since cosine is monotonically decreasing in the range 0 to 7r . Expanding ,

one gets :

cos(i)cos(e) - cos(g) > sin(i)sin(e )

The righthand side is positive, so we can square both sides, hence :

(lE - G) 2 > (1 - I2 ) (1 - E2 ) or 1 + 2IEG - (I 2 + E2 + G 2 ) < O .

The symmetry of this expression suggests that we would have obtained the sam e

result if we had picked either of the other two constraints . ln fact, it i s

easy to show that if i, e, and g can form a spherical triangle, the n

1 + 2IEG - (I 2 + E2 + G2)

	

0

and that this expression is less than zero otherwise .



Contours of the discriminant 1 + 2IEG - (I 2 + E 2 + G2 ) . The contou r

intervals are .05 units .
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THE AZlMUTH ANGLE :

local
normal

A useful quantity for some manipulators is the azimuth angle A, betwee n

the projections of the incident and emitted rays onto the object's surface .

Applying a result of spherical trigonometry, we fin d

cos(g) = cos(i)cos(e) + sin(i)sin(e)cos(A )

So,

(A)

	

=
G - I E

cos

3 1 - I 2 E2

Now obviously,

	

cos

	

(A)

	

s

	

1

Expanding,

	

(G

	

-

	

IE) 2 s

	

(1 -

	

1 2 )(1 -

	

E 2 )

And so again,

1 +2 EG - (1 2 +E 2 +G 2) >- 0
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Contours of cos(A) . The contour intervals are .1 units .
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EXPANDlNG THE DlSCRlMlNANT :

We would like to express the discriminant in terms of p, q, p
5

, and q
S

.

We will need the following :

G = 1/11 + p s 2 + q s 2 , and E = 1/ 31 + .p2 + q 2

Let

	

X = (1 + p sp + qsq), then I = XEG

Then,

	

1 + 2IEG - ( I2 + E 2 + G2) = 1 + 2XE 2G 2 - (X 2 E 2G 2 + E 2 + G2 )

_ -E 2G 2 + 2XE 2G2 - X 2E 2G 2 + 1 + E 2G 2 - E 2 - G 2

= -E2G2(l - x)2 +

	

- E2) (l - G2)

= [(1/E 2 - 1) (1/G 2 - 1) - (1 - X) 2]E 2G2

[(p2 + q2 )(ps + qs 2 ) - (psp + qsq)2] E2G 2

(q s p

	

ps
02 E

2G2 (! )

lt is immediately apparent that the discriminant is positive for all points

in gradient-space, as it should be . But what is more exciting is that we

have an equation that is linear in p and q and thus helpful if we are goin g

to try to obtain p and q, given l, E, and G :

- pq=±/1 + 2IEG - (I 2 +E 2 +G 2
s /EG
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FlNDlNG p AND q, GlVEN l, E, ANDG :

We now have two linear equations in p and q, one from the expression for l ,

the other from the expansion of the discriminant :

p s p + q s q = (l/E - G)/G

q s p - ps q = f(A/E)/ G

where

	

= 1 + 2IEG - (1 2 + E 2 + G 2 ) . Solving for p and q we get :

p = (1/E - G)/Gps/(Ps2 + q s 2 ) ± (A/E)/Gqs

(ps2 + qs2 )

q = (1/E - G)/Gqs/(P s2 + qs2) ± (A/E)/GP
s

(Ps2 + q s 2 )

lf we let	
Ps

	

= cos(@), and

	

qs

	

sin(e) ,

	

3

p2+q2

	

3p2+ 2
s

	

s

	

s

	

s

p , = (l/E -G) , and q' = ±
(CIE)	 	

then

31 - G2

	

31 - G2

p = p' cos(O) - q' sin(O )

q =

	

sin (8) + q' cos(O)
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DETERMlNATlON OF ORlENTATlON OF PLANES :

An example will illustrate how image intensity information can augmen t

Mackworth's gradient space scheme for interpreting polyhedral scenes .

We are given a trihedral corner projected into the image as follows :

The corresponding gradient-space diagram with position and scale as ye t

undetermined is on the right . Now we are told that the (normalized) imag e

intensities are .79, .30, and .86 for the regions A, B, and C respectively .

We thus have six constraints on the position of the three points in gradien t

space . Given that (p s ,qs ) = (0 .7,0 .3), and q(I,E,G) = I, we can develop

the following equations :

qB = qC

(qA - q B ) = +15-(P - PB )

(qA - q C ) =
-6- (PA - P

C )
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(1 .7P

	

+ .3qA ) = 31 + pA2 + qA2 0

(1 + •7P B + .3q B ) = 31 + pB2 + q B 2 -3 0

- 86(1 + .7Pc + •3qc) = 31 + pct
+ q c 2 7 8 0

Where we used the fact that G

	

.80 . Squaring the second set of thre e

equations, we obtain second-order polynomials . This simply reflects the

fact that the points are constrained to lie on certain conic sections .

Using an iterative modified Newton-Raphson method, one quickly converge s

to a solution as follows :

( PA , qA) (0, .70 )

( po, q o) (- .61, - .35 )

,q c ) (+ .61, - .35)

The polynomials are actually simple enough that they might be solve d

directly using appropriate symbol manipulation algorithms .

The following questions are left as an exercise for the reader :

1. ls there another solution ?

2. Are there solutions for which the three edges ar e

concave ?

3. Are the points G B , Gc as precisely determined i n

gradient-space as the point G A?
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lllustration of the constraints on the three gradient-spac e

points GA , G,, and G c . This is the solution to the problem of

determining the orientation of the three faces meeting at th e

corner .
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MUTUAL lLLUMlNATlON -- PLANES TRUNCATED lN ONE DlRECTlON :

ln order to get a feel for the mutual illumination problem it helps to study a

simple case first . Consider two planes joined at right angles, infinite in th e

direction of the line of their intersection, and both of length L in the direc-

tion away from their intersection . Let the incident light come from a distan t

source and in a direction 7r/4 with respect to the planes . This last conditio n

and the equal lenth of the sides provide the symmetry necessary to ensure tha t

the intensity distribution on the two planes is equal . Next we will assume

that the surfaces are lambertian, with reflectivity r .
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Now let us calculate the total light flux received by a surface element a

distance x away from the corner . First consider the contribution due to a

surface element on the other plane a distance y from the corner and separate d

by a distance z along the direction of the line of intersection . Let the

luminous emittance vary as L(y) . Then this contribution will be, fo r

lambertian surfaces ,

(r/zr)[cos(i)cos(e)]/1 2 L(y)dydz

	

(flux/unit area )

Here 1 is the distance between the two points, e is the angle of emittanc e

at the emitting surface element and i is the angle of incidence at the re-

ceiving surface element .

cos(e) = x/l, cos(i) = y/1, and 12 = x2 + y2 + z2

So the contribution due to the patch (dy by dz) is then :

L(y)dy(r/ ir) (xy)/1 4 dz

Integrating with respect to z, one obtains :

L(y)dy(r/'r)xy
J

1/(x2 + y2 + z2)2 dz

Now,

	

t

	

1/(a2 + s2)2 ds = (1/a 3 ) (n/2 )

So we get :

	

L(y)dy '/ r xy/(x2 + y2)3/2
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lNTEGRAL EQUATlON :

Finally integrating with respect to y and adding in the direct contribution :

L(x) = E/V-+ / r
xy	

L(y)dy
o (x2 + y2 )3/2

So here we have an implicit equation for L(x) called an integral equation .

Before we try to solve it, notice that the parameters E and L can be eliminated .

For example, if L(x) is a solution for incoming light flux E, then aL(x) wil l

be a solution if the light-flux is changed to aE . That is, everything jus t

gets brighter in proportion, if we increase the incident flux . Without a

loss of generality, we can set E/12- 1 .

Next, let x' = x/L an y' = y/L, then we find

L(x') = 1 + l/2r o

	

2 x'y2 3/ 2
	 L(y ' ) d Y '
(x i

	

+ y' )

So, we can, without loss of generality, also let L = 1 . So we will try to

solve :

L(x)

	

1

	

r ! 1
0 (3T'£ L(y)dy

This is a Fredholm integral equation of the second kind [10] . Such equation s

usually occur as solutions to ordinary differential equations with give n

end conditions . The kernel is,
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(x2 + y2 ) 3/2

The kernel is symmetric, non-separable, and worst of all, not bounded . There

are a number of techniques for solving such equations with symmetric kernels ,

but most work only for bounded kernels, or, if one can calculate the iterate d

kernel .

K (x, y ) =

	

xy
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ITERATlVE SOLUTlON :

One method is iteration [10] . Suppose we start with Lo (x) = O . Substituting

this in the righthand side of the equation we arrive at the next approximation :

L 1 (x) = 1 . Using this we integrate again and find :

L2 (x) = 1 + / r(l -	
x	

Al + x2

The next step leads to :

L (x) = 1 + / r(l

	

0(1 - 	 x	
) - (

	

r) 2 41	 1	 y2	 	 dy
3

	

31 + x2

	

o (x2 + y2)3/2 (1 + y2)1/2

This last term turns out to be some messy difference of elliptic integral s

and so we abandon further iteration . A few things of note emerge, however .

First of all, we have a useful first approximation in L2 (x) or the first fe w

terms in L 3 (x) . This approximation is particularly good for small r, sinc e

the remaining omitted terms are in r2 and higher orders .

Secondly, the leading term will clearly become on further iteration :

1 +e+(0 2 +(0 2 + .1,1

	

1 / (1 - / r )

And so, L(O) = 1/(l - / r), not too surprisingly . Next one can say some -

thing about the convergence of this iterative process -- it will converge fo r

r less than 2, and diverge for r greater than or equal to 2 . Obviously, we

care only about values for r between zero and one, so we expect a solutio n

will always exist .



-81 -

lNTEGRATlON BY PARTS :

Further useful results can be obtained by integrating by parts :

C 1

	

L(x) = 1 + 1½ r [L(0) - L(1) 	
x	

+J L' (Y)
	 x	

dy]
/1 + x2

	

0

	

/x2 + y2-

Clearly L(O) = 1 + 1/ r L(O) and so, once again, we see that L(O) _

1/(1 - 1/ r) . This result depends on the fact that the integral is zero fo r

x = 0, which can be shown by applying L'Hospital's rule to the resultin g

indeterminate form . By a tedious method of little interest here, one can

arrive at another approximation :

	

L(x) = 1 + 1	
1,r	

r [1 - x(i

	

/r) ]

This approximation is particularly good near the origin and can be "tuned "

by multiplying the factor containing x by a number smaller than one . The

farm of this result shows that L(x) will have a cusp at the origin for r

greater than or equal to one .
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NUMERlCALSOLUTlON :

It is becoming increasingly obvious that an analytical solution is no t

around the corner, so it is time to turn to numerical methods . There ar e

again various possible avenues, the most obvious being iteration -- since w e

already know some good first approximations we can speed up the convergence .

The only difficulty is the singularity in the kernel for x = y = O . Dividing

the range of integration evenly produces quite poor results particularly nea r

the origin for large values of r . Dividing the range more finely near the

origin and ignoring the first few values near there is the obvious solution .. .

Choosing as end-points of the intervals the points (i/n) 2 works quite well .

Here n is the total number of segments in the interval from 0 to 1 . The

mid-points of the intervals are used when evaluating the kernel .

The resulting solutions for n = 256 were presented

	

graphically earlier .
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