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ABSTRACT. 

Methods for  calculating the distribution of absorption densit ies i n  a 

cross section through an object from density integrals along rays in the 

plane of the cross section are  well-known, b u t  are restr ic ted to  particular 

geometries of data collection. So-called convolutional-backprojection- 

summation methods, used now for  parallel ray data, have recently been ex- 

tended to  special cases of the fan-beam reconstruction problem by the addi - 
t ion of pre- and post-multiplication steps. I n  t h i s  paper, I present a 

technique for deriving reconstruction a1 gori thms for  arbi t rary ray-sampl ing 

schemes: the resulting algorithms entai l  the use of a general l inear  opera- 

to r ,  b u t  require l i t t l e  more computation than the convolutional methods, 

which represent special cases. 

The key to  the derivation i s  the observation that the contribution of 
A@"+. 

a particular ray sum to a particular point in the reconstruction essent ial ly  

depends on the negative inverse square of the perpendicular distance from 

the point t o  the ray and that  th i s  contribution has to  be weighted by the 

ray-sampling density. The remaining task i s  the e f f i c i en t  arrangement of 

th i s  computation, so that  the contribution of each ray sum t o  each point 

i n  the reconstruction does not have to  be calculated expl ici t ly .  

The exposition of the new method i s  informal in order to  f a c i l i t a t e  

the application of th i s  technique to  various scanning geometries. The 

frequency domain i s  not used, since i t  i s  inappropriate f o r  the space- 

variant operators encountered in the genera1 case. The technique i s  i1- 

lustrated by the derivation of an algorithm for  parallel-ray sampling with 

uneven spacin9 between rays and uneven spacing between projection angles. 



r- BACKGROUND AND MOTIVATION. 

Recent in te res t  in computerized axial tomography as a means of deter- 

mining absorption densit ies in a cross section through an object has led 

to  a variety of basic algorithms [ I ,  2 ,  3 ,  4 ,  5 ,  6 ,  7, 8, 9, 10, 111. Part 

of th i s  in te res t  stems from the diagnostic benefits derived by the medical 

community from scanners u t i l iz ing  X-ray sources which provide cross sections 

of the head, body and, soon, the heart. Reconstruction from the mass of 

data generated by many ray samplings was not feasible before the advent of 

small, f a s t  computers, and the choice of reconstruction method depends to  a 

large degree on the speed with which such a computer can perform the calcu- 

lations.  As a resu l t  the so-called convolut ional -backpro ject ion-summat ion 

algorithm has emerged as the method of choice and i s  largely displacing 

competing methods using two-dimensional Fourier transforms or i t e ra t ive  
P"q 

solution techniques used to  solve large se t s  of sparse equations. These 

other methods - do s t i l l  find application in specialized areas where speed 

i s  not the main cr i ter ion of success. A further advantage of the methods 

based on convolution i s  that  each collection of density integrals ,  also 

called a projection, can be treated in a separate computation [ 6 ,  111. 

Reconstruction methods developed so f a r ,  however, have mostly been 

suited t o  the parallel-ray projection method of data collection, commonly 

employed in ear ly,  slow computerized axial tomographic scanners [93. Here 

density integrals or ray sums are sampled evenly along a 1 ine perpendicular 

to  the rays (see figure 1 ) ;  such a collection of data i s  called a projection, 

and projections are  formed for  a s e t  of projection angles evenly spaced 

over ei ther  180" or 360". Reviews of a variety of reconstruction algorithms 

ir"9 for th i s  ray-sampling scheme may be found in several references [12, 13, 141. 



Since X-rays cannot be focused or deflected as vis ible  l i gh t  rays can, 
c- 

the pencil beams used for  parallel-ray sampling are  obtained by t ight  

collimation of radiation emitted from an X-ray source radiating into a large 

solid angle. Most of the output of the source i s  therefore wasted. Since 

a certain number of X-ray photons musf be absorbed i n  order to get a suf f i -  

ciently accurate estimate of the density integral along the ray, a great 

deal of time elapses before a11 ray sums have been observed. In the mean- 

time, the object may have moved. For these and other reasons, modern 

scanners use fans of rays s t r iking a mu1 t i p l i c i t y  of detectors (see figure 

2 ) .  A whole projection may now be measured in the time i t  would have taken 

to measure a single ray sum with the older system [15, 161. 

One d i f f icu l ty  w i t h  the so-called fan beam approach i s  that  ray sums are 

no longer evenly spaced in terms of ray direction and distance of rays from 

f""\ the center of the region being scanned. As a r e su l t ,  conventional reconstruc- 

tion techniques do not apply without modification. Resorting the ray sums 

and interpolating to approximate parallel-ray data has not proved very e f -  

fect ive,  because accuracy i s  compromised by the interpolation step [ l5 ,  16, 

17, 181. 

Convolutional reconstruction methods have been modified, however, to  

deal with two very special cases of t h i s  ray-sum collection scheme [19, 20,  

211. The f i r s t  method applies to  the s i tuat ion where the fan i s  sampled 

evenly along a l ine a t  r ight  angles to  the l ine  connecting the source to  

the center of the region being scanned. Such data collection can be achieved 

only with a detector array that  co-rotates with the source of radiation. 

This puts a demand for  exceptional s t ab i l i t y  on the central detectors in 

the array, since points near the center of the region being scanned are 



n 
"seen" only by a few detectors during the complete scan [221. 

The second method applies to the situation where the detector array 

l i e s  on a c i r c l e  about the center of the region being scanned with radius 

equal to the radius of the c i r c l e  on which the source moves. This geometry 

lends i t s e l f  to  the use of a fixed detector array w i t h  consequent simplifi-  

cation of the scanner mechanics. Since they l i e  on the same c i r c l e ,  there 

i s  a spatial  conf l ic t  between the source and the detectors. If  they are 

placed on c i rc les  with differing r ad i i ,  the special case solution no longer 

applies. The l a t t e r  geometry i s  i n  f ac t  common amongst proposed f a s t  scanners. 

Clearly a method i s  needed for  deriving algorithms similar to these 

modified convol u t i  onal methods for  data col 1 ected by arbi t rary sampl ing of 

the ray-sum space. Unfortunately, as i t  turns out,  convolutional-backpro- 

jection-sumation techniques apply only to a few special geometries. Even 

p"". the two fan-beam reconstruction methods mentioned above augment the convolu- 

tional step of the algorithm with a premultiplication of each ray sum by a 

factor depending on the position of the corresponding ray in the fan. Further- 

more, both involve the use of a postmultiplication during the summation step 

with a factor  which depends on the position of the point being reconstructed 

relat ive to the fan currently being treated. 

While the main impetus for  th i s  work comes from the computerized X-ray 

transverse axial tomography application, similar methods are of importance 

in such other f ie lds  as radio astronomy [ Z ,  31 and electron microscopy [4 ,  51. 



PREVIEW. 

The algorithms developed here use genera1 l inear  operators. Operations 

using general l inear  operations can be thought of as spa t ia l ly  varying con- 

vol utions , where the "kernel" or "point-spread-function" i s  a1 1 owed t o  de- 

pend on the position a t  which the operator i s  applied. The derivation de- 

pends on the following observations, which will be elucidated in the next 

few sections: 

*The contribution made by a particular density 

integral or ray sum to a particular point in the 

reconstruction i s  a function of the perpendicular 

distance from the point t o  the ray. 

*This contribution i s  essent ial ly  proportional to  the 

negative inverse of the square of the distance, ex- 

cept fo r  rays passing very near to  the point in 

question. 

*The contribution of a particular ray sum has t o  be 

divided by the local ray-sampling density, t o  account 

for  uneven sampling of the ray-sum space. 

*The ray-sampling density i s  simply the inverse of the 

Jacobian of the transformation from a convenient uni- 

form scanning coordinated system t o  the coordinates 

used in para1 le l  ray reconstructi on. 



jk. Using a general l i nea r  operator,  i t  i s  possible 

t o  arrange the computation e f f i c i en t l y  f o r  most 

scanning geometries of i n t e r e s t .  That i s ,  each 

generalized projection gives r i s e  t o  a separate 

computation and i t  is  not necessary t o  determine 

the contribution o f  each ray sum to  each pic ture  

cel 1 exp l i c i t l y .  

jk. For a fewspecial cases ,  the  general l i nea r  operator 

i s  s p a t i a l l y  invar iant  and t h u s  i s  simply a con- 

volution. Para l le l - ray  sampling is  the best known 

example of t h i s .  



P 
SOME PRELIMINARY DEFINITIONS. 

The notation used here i s  similar to  that  used by Lakshminarayanan 

[19, 61. The s e t  of rays sampled i s  a f i n i t e  subset of the two-parameter 

family of s t ra ight  l ines  in the plane. Various ways can be envisioned for  

designating particular rays. We may, for  example, specify the incl ination 

e of a ray ( re la t ive  to  the upright axis in figure 3 ) ,  as we1 7 as the per- 

pendicular distance a from the center of the region being scanned. For some 

scanning geometries, other parameters will be more sui table ,  b u t  for  para- 

l le l - ray  systems th i s  method i s  convenient, because, for  th i s  case, the 

projections correspond to evenly spaced values of e ,  while rays within a 

projection correspond to evenly spaced values of a .  

Let p ( a , e )  be the density integral or ray sum along the ray (a ,e ) .  In 

practice we will be given only a f i n i t e  se t  of these density integrals ,  
pC"l.-l. 

corresponding to  discrete values of a and e which depend on the scanning 

geometry. If we choose to  use polar coordinates ( r , + )  to  designate points 

i n  the region scanned, and l e t  f ( r , + )  be the absorbing density a t  the point 

( r , $ ) ,  then our task will be to  reconstruct values of f ( r , $ ) ,  given a se t  

o f  values of p(a,e). 

One important quantity we will need i s  the perpendicular distance, t ,  

from a given point t o  a ray. Using figure 3 again, we get ,  

If  we l e t  a '  be the value of R corresponding to  t = 0 ,  the case of a ray 

passing direct ly  through the point, then a '  = r cos(e - $1, and so 



n RADON ' S FORMULA ---- REVISITED. 

The ea r l i e s t  known solution to  the reconstruction problem i s  given by 

Radon i n  his paper of 1917 [ I ] .  His resul t  will not be rederived here, since 

advanced mathematical concepts are needed and because he has given such a 

clear  account of the proof. To apply his formula, we have t o  assume that 

f ( r , $ )  i s  bounded, continuous and zero outside the region scanned. Then 

p ( a , e )  will also be zero outside a certain range for  R. Further, p(a,e) 

will be continuous. Now assume that the par t ia l  derivative of p(a,e) w i t h  

respect to  a i s  continuous, too. Radon's inversion formula then i s  [ 2 1 ,  15, I ] ,  

The above resul t  does not s t r i c t l y  apply i f  some of the conditions --  

particularly the one regarding the continuity of the par t ia l  derivative of 

p(a,e) -- are violated. He may expect certain a r t i f a c t s  or reconstruction 

errors i n  and near regions where the assumptions f a i l  t o  apply. The mag- 

nitude of the resulting errors depends on the de ta i l s  of the numerical 

approximations made to  the above equations. 

The inner integral i s  singular, since t = 0, when a = i '  (equation 2 ) .  

This singular integral may be interpreted as 

Integrating b o t h  terns by parts ,  we get 



Since p(a,e) i s  assumed to be continuous with respect to a ,  we can rewrite 

th i s  

where 

Combining the above resul ts  , 

fo r  It1 < E 

for  / t l  > E 

* Clearly each density integral or  ray sum p ( a , e )  

contributes to each point in the reconstruction 

according to  i t s  distance from that  point. 

* In f a c t ,  a l l  b u t  those rays passing very close to  

the point, contribute with weight proportional to  

the negative inverse of the square of the distance 

from the point. 

* The weight of the contributions of rays passing 

near the point i s  such that  the sum of a l l  weights 



i s  zero. That i s ,  

The above t h ree  observa t ions  a r e  impo r tan t  i n  t h e  d e r i v a t i o n  o f  t h e  new 

a lgo r i t hms .  The o n l y  o t h e r  problem t h a t  w i l l  have t o  be t a c k l e d  concerns 

t h e  c a l c u l a t i o n  o f  ray-sampl ing dens i t y .  Then t h e  techniques developed here 

can be a p p l i e d  t o  p a r t i c u l a r  scanning geometr ies.  



REVIEW OF THE CONVOLUTIONAL-BACKPROJECTION-SUMMATION METHOD. 

Let the inner integral (equation 6 )  discussed in the previous section 

be called g(a , ' , e ) .  Clearly i t  can be thought of as a convolution of the 

original projection data p( r ,e )  w i t h  the f i l t e r  function F E ( t ) y  since 

t = R '  - R and F ( t )  are symmetric: 
E 

We can then use the outer integral (equation 8)  to  calculate the densit ies 

from t h i s  convolved or f i 1 tered data: 

P". 
In practice we know only a f i n i t e  number of ray sums and consequently have 

to  approximate both of the above integrals by f i n i t e  sums. If  we choose to  

observe M projections evenly spaced i n  angle from e = 0 to  e = 2a ,  we may 

approximate the outer integral (equation 11) by 

where 6 0  = (2n)/M i s  the angular increment between successive projections. 

Note that g . ( a l )  i s  the convolved projection data of the jth projection evalu- 
3 

ated a t  a '  = r cos(e - +) .  For reasons of computational efficiency, we cal-  

culate the convolved data a t  only a small number of places -- typically the 

same ones fo r  which projection data i s  available. This allows the use of a 

rp4 single convolution per projection, independent of the location of the points 



i n  the reconstruction. The value of g . ( a 1 ) ,  needed in the above summation, 
J 

must however then be estimated by interpolation from the values a t  those 

p1 aces where the convolution was actual 1 y computed. 

This convolution will be discussed next. If we l e t  W be the wid th  or 

diameter of the region being scanned, and N the number of evenly spaced rays 

across th i s  width (sampled by the detectors) we can approximate the inner 

integral (equation 10) by 

where 6a  = W/(N - 1)  i s  the uniform interval between successive rays in a 

projection and p i j  i s  the ray sum for  the i t h  ray in the jth projection (see 

figure 4 ) .  Now the ilth ray passes a t  a distance & '  = i ' 6 a  - 11/2 from the 

&- origin,  so this  i s  the value of a '  associated w i t h  g i , j .  From this relation- 

ship one can determine which values of g . , .  should be used i n  the interpola- 
1 J 

tion for  estimating $ ( a ' ) .  One uses g i  , j  and g ( i ,  + l ) j  where 
J 

We next turn our attention to  the discrete approximation to FE( t )  

(equation 7), 

The value of Fo i s  chosen simply so that  the sum of a l l  f i l t e r  coefficients 
P, 

i s  zero, i n  view of a similar condition on FE( t )  (equation 9 ) .  



The weights, wk, give some flexibility in the numerical approximation to the 
84" 

singul ar integral (equation 10). Some common choices are: 

1. Ramachandran & Lakshminarayanan (1971 ) 

w = 2 for k odd, and wk = 0 for k even k 

2. Shepp & Logan (1974) 

Wk = 4k2/(4k2 - 1 ) 

3. Horn (1976) 

Wk = 1 

The third set of weights corresponds to the trapezoidal rule for numerical 

integration or quadrature. Linear combinations of the above weights may a1 so 

be used. For example, a combination of (113) of the first set and (213) 

of the third set produces weights which are alternately (213) and (413). 
#"- 

This corresponds to Simpson's well-known rule for numerical quadrature. 

The second set of weights on the other hand corresponds to a numerical in- 

tegration formula which takes into account the singular nature of the in- 

tegral being approximated, as will be shown later. 

By summing the series indicated (equation ?5b), one finds that 

(6a)2Fo = $/2, 4 and n*/3 for the three sets of weights suggested. 



CHOICE OF WEIGHTS. 

This ana lys is  d i f f e r s  from the  standard d e r i v a t i o n  o f  the  weights wk.  

These c o e f f i c i e n t s  a re  commonly obta ined by inverse  Four ie r  t rans format ion  

from a  f i l t e r  response designed i n  the  frequency domain. The i r  d i f f e rences  

are  u s u a l l y  discussed i n  a  somewhat -- ad hoc fash ion  i n  terms o f  t he  need t o  

low-pass f i l t e r  t h e  p r o j e c t i o n  data i n  order  t o  avo id  a l i a s i n g  o r  under- 

sampling. C lear ly ,  t h i s  i s  wrong, s ince  t o  avoid the  e f f e c t s  o f  under-samp- 

1  ing, low-pass f i  1  t e r i n g  has t o  be performed before  sampling. A f t e r  sampling 

we throw o u t  the good w i t h  the  bad, s ince they a re  no longer d i s t i ngu i shab le .  

(For tunate ly ,  the  f i n i t e  s i z e  o f  the detectors and t o  some ex ten t  t he  f i n i t e  

s i z e  of t he  source of r a d i a t i o n ,  account f o r  some low-pass f i l t e r i n g  o f  the 

p r o j e c t i o n  data before sampling and thus he lp  t o  l i m i t  the  magnitude o f  the  

r e s u l t i n g  a r t i f a c t s ) .  

The d e r i v a t i o n  o f  these weights as c o e f f i c i e n t s  i n  formulae f o r  numeri- 

c a l  quadrature ins tead seems more i n s i g h t f u l .  The connect ion between these 

two po in t s  o f  view i s  made by Hamming [23, 241 i n  h i s  d iscussion o f  the  

frequency response o f  i n t e g r a t i  on formul ae. 

D i f f e r e n t  choices o f  weights lead t o  d i f f e r e n t  approximation behavior. 

As one might  expect, there  i s  a  t r a d e - o f f  between no ise  and r e s o l u t i o n .  Ran- 

dom a d d i t i v e  noise i n  the  dens i t y  i n t e g r a l s  leads t o  noise i n  t he  f i n a l  r e -  

cons t ruc t ion .  The a m p l i f i c a t i o n  f a c t o r  depends on n o t  only t h e  d e t a i l s  o f  

scanning geometry (number o f  p ro jec t i ons  and number o f  rays per  p r o j e c t i o n ) ,  

b u t  a l so  the  weights chosen. The f i r s t  f i l t e r  above (equat ion l 6 ) ,  f o r  ex- 

ample, has f i n e  r e s o l u t i o n  a t  t he  cos t  o f  s e n s i t i v i t y  t o  noise and sharp 

contrasts,  makes f u l l  use o f  the  sampled p r o j e c t i o n  and does n o t  a t tenuate  

P"-. higher  frequencies. The t h i r d  f i l t e r ,  on the  o the r  hand (equat ion 18) l i e s  



a t  the other extreme and tends to  blur sharp edges, while suppressing noise; 

i t  removes some of the higher frequency components of the sampled projection 

data. The second f i l t e r  (equation 17)  l i e s  between the two extremes. In 

for  the possibi l i ty  of using different weights one should allow practice, 

to  su i t  d 

trade-off 

i f ferent  applications, i n  order to  be able to  exploit fu l ly  the 

between noise amp1 i f  i cation and resolution. 

Overshoot i n  regions where p ( a , s )  does - n o t  have a continuous derivative 

with respect to  a i s  a common problem w i t h  f i l t e r s  that  produce high resolu- 

tion resul ts .  They are most sensit ive to violations o f  the assumptions un-  

derlying Radon's inversion formula. 

Finally, note that  the two summations (equations 12  and 13) allow us to  

evaluate the estimated density a t  arbi t rary points ( r , $ ) .  I n  practice, one 

uses a fixed grid of picture c e l l s ,  in the form of some regular tesselation 

p " " \ . ~ r P 4  

of the plane. This l imits  the amount of computation and ref lec ts  the f ac t  

ion i s  limited, in any case, by the sampling width ( s a )  along 

ion, and that  no new information i s  gained by performing re- 

on a grid much f iner  than th is .  

that resolut 

each project 

construction 



P RAY-SAMPLING DENSITY. 

With the parallel-ray scheme described, sampling i s  uniform in a and e .  

That i s ,  successive rays in a particular projection correspond t o  evenly 

spaced values of a ,  while successive projections correspond to  evenly spaced 

values of e .  Thus R and e a re  natural coordinates for  the rays. Other co- 

ordinates are preferred when we are dealing with fan beams or more general 

scanning schemes. Essentially, whatever the scanning scheme, we must find 

coordinates 5 and n natural to the particular geometry, such that  we have 

uniform sampling i n  6 and Q. The collection of ray sums p ( a , e )  for  a fixed 

value of will be referred to  as a generalized projection. I t  i s  simple now 

to rewrite the reconstruction formula ( equation 8) as follows: 

where, 

a t 3 3  a 0 2 2  J = - - - - -  
a w n  a w n  

i s  the Jacobian of the transformation from (5,n) space to  ( a , e )  space. I t  

can be conveniently visualized as the factor by which a small area in ( 5 , ~ )  

space i s  expanded when mapped into ( a , e )  space (see figure 5 ) .  

Since we have uniform sampling in (5,n) space, the sampling density 

in ( a ,@)  space equals the uniform density divided by J .  To see th i s  more 

clear ly,  l e t  two rays ( a , % )  and ( a '  , e l )  be considered "near" each other i f  

- R '  I < 6R/2 and l e  - e l  1 < 6e/2 .  Clearly then the number of rays "near" 

a given ray i s  proportional to  (1/J)  sa 6 0 .  



JA. Consequently, we can s t a t e  that  the ray-sampling 

density i s  inversely proportional to  J .  

JIG. Further, i t  i s  c lear  that  the contribution of a 

particular ray sum to  a particular point must be 

weighted by J ,  that  i s ,  the inverse of the ray- 

sampling density. 

Intui t ively,  t h i s  seems reasonable since we do not want to emphasize 

contributions from regions of ( a , @ )  space which happen to  be sampled more 

densely than others. I t  should be noted that  we can no longer expect a l l  

regions of the reconstruction to  be equally well determined or resolved, 

since rays important to  the reconstruction of one may be sampled more 

coarsely than the others. Fortunately, for  practical fan-beam systems, 

hp". the equivalent change in point-spread function over the region being recon- 

structed tends to  be f a i r l y  small and thus not visually noticeable. 

We may write (equation 19) : 

where 

In the general case, t = a - R '  will be a function o f  both ( r , + )  and ( 5 , n ) .  

As a resu l t ,  the inner integral may have to  be evaluated separately for  every 

point ( r , @ )  in the reconstruction, for  every projection. That i s ,  g i s  a 

function of three variables, unless we further r e s t r i c t  the possible scanning 



schemes. Fortunately, in most in te res t ing  cases a var iable  x ( r , 4 )  can be 
A- 

introduced which i s  natural t o  the  scanning scheme such t ha t  g becomes a 

function of x and q only. (This may require s p l i t t i n g  the  var iable  t i n to  

a product of a term which depends on 5 and one which does not -- the  l a t t e r  

term can be moved out of the inner in tegra l .  

I f  g can be writ ten in terms of x and q only, a g rea t  computational 

ef f ic iency a r i s e s ,  because the inner in tegral  has t o  be evaluated only f o r  

every x ( r , $ )  f o r  a given project ion,  not separately fo r  every pic ture  c e l l  

( )  An example l a t e r  on wil l  make t h i s  c l e a r .  Frequently, a good choice 

f o r  x ( r , $ )  i s  5 '  defined by the equation t ( 5 ' )  = a ' .  



GENERAL L I N E A R  OPERATORS. 

If we can find a new parameter x ( r , @ )  as described above, then the i n -  

ner integral (equation 22)  becomes 

If  we consider 2 as a parameter for  the moment we can write th i s  in a form 

that  i s  more easi ly  recognized: 

This i s  a genera1 l inear  operation with kernel K ( x , ~ )  = F ( t )  J .  This 
o E 

operation i s  very similar t o  a convolution aside from the f ac t  that  in a 

convolution the kernel would be invariant. The above integral may also be 

referred to  as a superposition integral and the general 1 inear operator may 

also be called a l inear  space-variant operator. Integrals of similar form 

occur in the solution of partial  different ial  equations, in which case the 

kernel i s  called a Green's function. In a number of special cases, such as 

uniform, para1 lel-ray scanning, the kernel i s  space-invariant ( that  i s ,  i s  

a function of x - 5 only) and the operation simply becomes a convolution. 

Note, by the way, that  the sampling-density fac tor ,  J ,  presents no 

special problems, representing merely a pre-multiplication of the ray sums. 

In f ac t ,  under f a i r l y  general conditions, J i s  a function of < only and so 

each ray sum i s  simply mu1 tip1 ied by a factor depending on i t s  position within 

i t s  general i zed projection. 



PARALLEL-RAY SCANNING WITH VARIABLE RAY- A N D  PROJECTION-ANGLE SPACING. 

As an i l lus t ra t ion  of the u t i l i t y  of the new method for  finding recon- 

struction algorithms, we develop an algorithm suited to  parallel-ray scanning 

where both the spacing between successive rays in a projection and the in- 

terval between successive projection angles are non-uniform. 

Let the rays be evenly spaced in 6 ,  while projections are evenly spaced 

in . Then we write a as a function of 5 ,  and we write e  as a function of 

I-, . Clearly, ~ ( 5 )  and e (,) should be monotonically increasing, continuous 

and differentiable.  This also assures us tha t  the inverse functions will 

ex is t .  That i s ,  given a we can find 6,  and given e we can find n. The 

Jacobian (equation 20), here simplifies t o :  

I t  i s  clear given these assumptions that  J 

two factors may be s p l i t  between the inner 

will be positive and that  i t s  

and outer integrals.  Now choose 

c', such that  a ( < ' )  = a ' ,  that  i s  (equations 1 and 2 ) ,  

a ( ( ' )  = r cos [ e ( ~ )  - $1 

Then, t = ~ ( 5  ) - I(<') and consequently we f i n d  that  the inner integral 

i s  a function of 5' and ? only. Final 1y (from equations 21 and 22) ,  

where 



Here then we have an inner integral which corresponds to  a general l inear  

operation. I t  becomes a convolution only i f  k happens to  be a -- l inear func- 

tion of 5 ,  that  i s ,  when the spacing of the rays i n  a given projection i s  

uniform. 

For discrete sampling of the ray sums we approximate the above in- 

tegral s by sums : 

Here again, pi i s  the i th  ray sum in the jth projection. I f  0 . i s  the j t h 
J 

projection angle and r i  i s  the distance of the i th  ray from the center of the 

region being scanned, then 66 i s  the angular interval associated with a 
j 

particular projection, while s t i  i s  the projection interval associated with 

a particular ray, where 

A1 so, 

F i t i t + ,  = C F i l i  6 k i  
i f i '  

That i s ,  F i i  i s  chosen so that 



Here we happen to calculate g i  for a s e t  of values of ' which corresponds 
F"; 

to the se t  of values of for  rays whose ray sum i s  known. One could equally 

well have decided to  perform the calculation fo r  a d i f fe rent ,  perhaps evenly 

spaced s e t  of  values of a ' .  In e i ther  case, the values g .  ( a '  ) have to be 
J 

found from the known g i l j  by interpolation as indicated before. 

Note that  the inner sum (equation 30) i s  not a convolution, b u t  a  genera1 

l inear  sum. Fortunately, i t  requires l i t t l e  more calculation than a simple 

convolutian. I t  i s  also clear how the above simplifies i f  e i ther  the ray 

spacing or the projection-angle spacing becomes uniform. 

I t  should be pointed out that there i s  a minor practical problem due 

to the slow convergence of the ser ies  (equation 32b) for  F i t  i ,  When rays 

are spaced evenly, t h i s  sum can be found analytically (equation l s b ) ,  while 

i t  i s  l ikely that  numerical techniques are required here. If R i s  asymptotically 

fi l inearly related to  5 ,  then the error  term of the sum evaluated w i t h  n terms 

i s  proportional to  l /n .  This i l l u s t r a t e s  the problem as well as suggests 

a solution. If we l e t  sn be the sum of F i , i 6 a i  from i = i t - n  to  i  = i l + n ,  

then a good estimate of the sum from i = t o  i  = +a i s  given by 



TAKING I N T O  ACCC iUNT THE S 
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INGULAR NATURE OF TI NNER I -- NTEGRAL . 

So f a r ,  when we approximate the inner integral (equation 28) by the 

sum (equation 30) ,  we pay 1 i t t l e  heed to the singular nature of the kernel 

Fc(a - a ' ) .  I t  i s  reasonable to  suppose tha t  better approximations may be 

found by considering methods which deal w i t h  the singularity.  In th i s  re- 

gard we note f i r s t  that the values of the density integral p ( ~ , n )  are  known 

only a t  discrete points, and tha t  i t  i s  reasonable to assume that  t h i s  com- 

ponent of the integrand varies relat ively slowly over small distances along 

a projection ( in  f a c t ,  the partial  derivative of this  function was assumed 

t o  be continuous). The term (-1/ t2)  on the other hand i s  known everywhere 

b u t  varies rapidly near the p o i n t  t = 0. We can make use of these observa- 

tions a f t e r  sp l i t t i ng  the inner integral into many integrals ,  each over the 

width of one detector. 

Let the i th  detector intercept rays lying in the beam between ei and 

ai+l  (see figure 6 ) .  I t  measures the density integral p i j  in the jth projec- 

tion. Further, l e t  

and 

[Note that  here the center of the i th  detector l i e s  a t  ( r i  + a i + l ) / 2 ] .  

The inner integral (equation 28) can then be written as: 



Now note that  t = ( a  - 2 . ' )  and 
P-? 

If  we use th i s  resul t  and replace p(a,e) w i t h  p i j ,  when ci 5 a < e i t ,  , then 

the inner integral (equation 3 6 )  becomes 

The reader may verify that  th i s  in f ac t  reduces t o  Shepp and Logan's method 

(equation 17) when rays are  evenly spaced [that i s ,  when ei = ( i  - 1/2)6a - W/2, 
6a  = W/(N - I ) ] .  More complicated integration formulae may be developed i f  

pCz 

one f i t s  low-order polynomials to  the values of p i j  instead of assuming that 

the density integrals are constant over the width of one detector. Techniques 

for  doing this may be found in standard texts on numerical analysis [23]. 

Here, however, we will be sat isf ied with the simple form developed above 

(equation 38) which i s  better than the method developed ea r l i e r  

(equation 30) since there i s  no  d i f f icu l ty  in finding the weights by which 

the ray sums are t o  be multiplied. 

The method can be further simplified by using the other form (equation 

37) of the integral of ( - l / t 2 ) :  



Spli t t ing both sums and rearranging terms leads to  the surprisingly simple 

resu l t ,  

The reader may want to compare th i s  with the original form of the inner in- 

tegral (equation 4 ) ,  from which th i s  resul t  can also be obtained direct ly .  

This numerical approximation o f  the inner integral i s  particularly advanta- 

geous from a computational point of view since i t  i s  no longer necessary to  

keep a two-dimensional array of pre-calculated weights. This assumes that  

one can afford to calculate (ti - e l ) ,  and that  the ray sums are replaced 

by the differences of ray sums as required above (equation 40 ) .  This l a t t e r  

calculation i s  needed only once per projection. 

.m The form of the resu l t  also implies that  reconstruction may be possible 

when the ray spacing varies discontinuously, tha t  i s ,  when a ( < )  does n o t  

have a continuous derivative with respect to  6. This i n  turn suggests the 

possibi l i ty  of using evenly spaced detectors; combining the measurements of 

neighboring detectors in portions o f  the projection where high resolution 

i s  not required. 



.n MOTIVATION FOR STUDYING VARIABLE RESOLUTION METHODS. 

In a number of s i tuat ions,  one i s  intested i n  reconstructing as object 

buried inside some larger en t i ty  of less in te res t .  If one were simply to  

r e s t r i c t  the scanned region to  the object of in t e re s t ,  correct reconstructions 

would not be obtained, since the absorbing density i s  then non-zero outside 

the region being scanned. This violates assumptions underlying Radon's 

formula. Up to  now, the only al ternat ive was to  scan the whole region oc- 

cupied by absorbing material and reconstruct i t  with uniform resolution. 

( A t  best, there i s  some saving i n  the backprojection s tep,  since one need 

not calculate the density of picture ce l l s  outside the region of in t e res t ) .  

The new variable resolution method to be i l lus t ra ted  here has the ad- 

vantage that  the computation of the f i l t e red  projection i s  speeded up  con- 

siderably since fewer ray sums have t o  be measured. Of equal importance may 
p"i 

be the fac t  that  less  radiation i s  needed to obtain th i s  smaller s e t  of 

measurements. 



DEMONSTRATION O F  THE VARIABLE RESOLUTION METHOD. 

In order t o  i l l u s t r a t e  some of the  fea tures  of the new method, a computer 

algorithm based on the r e su l t s  derived here (equations 40 and 29)  has been 

developed. This algorithm has been applied t o  ray sums calculated from a 

mathematically defined object  o r  phantom composed of e l l i p t i c a l  pa r t s  (see  

f igure  7 ) .  A comparison w i  11 be made of the  r e su l t s  obtained i n  three 

cases : 

( a )  . N  = 200 evenly spaced rays ,  2 mm apar t .  

( b )  N = 100 evenly spaced rays,  2 mm apar t  a t  the cen te r ,  

8 mm a t  the edge. 

( c )  N = 100 evenly spaced rays ,  4 mm apar t .  

In order t ha t  the  comparison be f a i r ,  a11 other parameters were held constant. 

The region scanned had a diameter W = 400 m,  and M = 150 projection angles 

were employed i n  each case. For case B ,  the following transformation from 

uniform scanning coordinates t o  actual  scanning coordinates was used: 

where - 7  5 5 2 + I .  In a l l  cases the  ray sums were averages obtained by i n -  

tegra t ing from the l e f t  edge of a beam s t r i k ing  a detector  t o  the r i gh t  edge 

of this beam so as t o  simulate the  suppression of high frequency components 

obtained i n  pract ice  as a r e s u l t  of the  f i n i t e  w i d t h  of the  detectors .  

Each projection i s  f i r s t  processed t o  produce the di f ferences  required 

i n  the summation (equation 40). The f i l t e r e d  sums a r e  then determined fo r  

posit ions corresponding t o  the individual detectors .  In order t o  f a c i l i t a t e  



back-projection, these values are (1 inearly) interpolated to  a much f ine r ,  

evenly spaced se t  of positions. Backprojection proceeds much as i t  does 

for  convolutional algorithms by processing each picture cel l  in turn. For 

every picture c e l l ,  the appropriate point in the interpolated f i l te red  data 

i s  found by considering the projection angle (as i l lus t ra ted  in figure 4 ) .  

The value found there i s  then added into the sum accumulated for  th i s  pic- 

ture  cell  so f a r .  The whole process i s  repeated for  a l l  projection angles. 

The picture ce l l s  were spaced 1.5 mm and lay inside a c i r c l e  o f  diameter 

330 mm for the reconstructions shown in figures 8 and 9. For the reconstruc- 

tions shown in figures 10 and 11, the spacing was .75 mm inside a c i r c l e  of 

150 mrn diameter. 

The time required f o r  backprojection was essent ial ly  the same for  the 

three cases, while the time for  the general l inear operation in cases B and 

C was about one quarter that  required for  case A ,  as expected. 
i". 



ANALYSIS OF RECONSTRUCTION RESULTS. 

The low resolution near the edge of the region of reconstruction (where 

the rays are spaced 8 rnm apart)  of method B can best be seen i n  figure 8. 

Not much i s  vis ible  in th i s  figure of the central components however. Figure 

9 more clearly shows the low overall resolution of method C .  ( I t  i s  important 

not to  be misled by the apparent high resolution of high contrast features 

due only to the reduced density scale of th i s  mode of presentation). The 

good resolution of method B in the central regions i s  i l lus t ra ted  by figure 

10, as well as by the density profiles in figure 11. The density profiles 

are along the l ines indicated in figure 12. I t  appears that  while the 

variable resolution method, B y  requires only a b o u t  as much computation as 

the low resolution method, C, i t  has about as much central resolution as 

the h i g h  resolution method, A .  

The reader will have noticed the reconstruction a r t i f ac t s  particularly 

apparent in the high contrast presentations (figures 9 and 10).  The phantom 

was purposefully constructed to  include high contrast features outside a 

central region w i t h  a variety of low contrast features,  since a r t i f ac t s  

radiating outwards from the former often degrade the presentation of the 

l a t t e r .  

As indicated e a r l i e r ,  these a r t i f ac t s  are due to  the projection da ta ' s  

fa i lure  t o  obey the assumptions underlying Radon's formula. That i s ,  the 

partial  derivative of p(8,e) with respect to  a i s  not everywhere continuous. 

I t  i s  easy to see that  the discontinuities occur a t  the edges of the e l l i p t i ca l  

componentsofthe phantom and that  l ine- l ike a r t i f a c t s  oriented tangentially 

to  the high-contrast components radiate across the reconstructed density 

P"51 
distribution. The exact mgni tude of these a r t i f ac t s  depends on the particular 



alignment of a projected edge relat ive t o  the edges of the detectors. I t  i s  

easy to  see,  too, that  the magnitude of these effects  varies inversely with 

the number of projection angles, since the contribution of each projection 

varies i n  th i s  way. Further, i t  can be shown that  the magnitude of th is  ef-  

f ec t  also decreases w i t h  the number of rays in a projection, The a r t i f a c t s  

are  vis ible  i n  the examples presented here because both the number of pro- 

jection angles (150) and the number of rays per projection (100 or  200) are 

relat ively small and because of the strong contrast between some of the large 

features in the phantom. 

The important point i s  that  these a r t i f a c t s ,  while vis ible ,  do not 

mask the low contrast detail  in the center, and that  the magnitude of the 

a r t i f a c t s  in the central region are not s ignif icant ly larger i n  the recon- 

struction obtained using method 0 ,  than they are i n  those obtained using 

sl method A .  The new method would be of less  in te res t  i f  t h i s  were not the 

case. 



pra SUMMARY AND CONCLUSIONS. 

A technique has been developed for  finding reconstruction methods for  

arbitrary ray-sampling schemes. The algorithms use a genera1 l inear  opera- 

to r ,  the kernel of which depends on the particular scanning geometry. I t  

i s  suggested here that  the kernel coefficients can be f ru i t fu l ly  considered 

as weights i n  a method for  numerical quadrature of an integral ,  In a few 

special cases, the kernel i s  a function of the difference of coordinates 

only, and the general l inear  operation becomes simply a convolution, In 

th i s  case, the algorithm essent ial ly  reduces to  the familiar convolution- 

backprojection-summation method. 

As an i l lus t ra t ion  of the more genera1 case, an algorithm was derived 

which applies to  parallel-ray data when the spacing of rays in a projection 

i s  uneven and the projections are spaced unevenly in angle. The new method 
f'? 

requires l i t t l e  more computation than does the convo1utional method. 

Importantly, the Fourier transform i s  not used in  the derivation. In- 

deed, i t  does not apply to  the l inear  space-variant systems tha t  occur in 

the general case, and also in particular cases of practical importance. 

A future paper will explore the application of th i s  general method to a 

variety of fan-beam scanning geometries sui table  for  modern tomographic 

machines. 
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FIGURE CAPTIONS. 

Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

Figure 8. 

Parallel-ray scanning geometry. Many projections are measured, 

each with rays arriving in a particular direction, 

Fan-beam scanning geometry. Many projections are measured, each 

with the source in a particular position. 

Designation of particular rays and calculation of distance be- 

tween a ray and a point in the region being scanned. 

Detailed geometry of a parallel ray projection. 

Transformation from uniform scanning coordinates to coordinates 

used in Radon's inversion formula. The Jacobian is the ratio of 

the area of the quadrilateral A'B'C'D' to that of ABCD. 

Positions of detectors along projection as defined in derivation 

of numerical approximation to singular integral. 

Outlines of the elliptical components of the phantom used in the 

demonstration of the variable resolution method. The numbers in- 

dicate the absorbing densities of the components. 

Reconstructions obtained in the following three cases: 

(A) 200 evenly spaced rays 

(5) 700 unevenly spaced rays 

(C) 100 evenly spaced rays 

In this figure black corresponds to a density of -.06, while white 

corresponds to a density of 1.22. 



Figure 9, The same reconstructions as i n  previous figure displayed with higher 

contrast .  Here black corresponds t o  a density of .94, while white 

corresponds to  a density of 1.06. 

Figure 10. Higher resolution display of central regions of the reconstructions 

shown in previous figures.  

Figure 71. Horizontal density profiles through the middle of the central 

c i rcular  component of each of the three reconstructions. While 

method B requires only about as much computation as method C, i t  

gives r i s e  to  resolution about as good as method A .  

Figure 12.  Lines along which density profiles of previous figure were taken. 
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