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1 . Introduction

Optical flow is the distribution of apparent velocities of movement of brightness patterns in an image .

Optical flow can arise from relative motion of objects and the viewer (Gibson 1950, 1966) . Consequently,

optical flow can give important information about the spatial arrangement of the objects viewed and th e

rate of change of this arrangement (Gibson 1977) . Discontinuities in the optical flow can help in segment-

ing images into regions that correspond to different objects (Nakayama & Loomis 1974) . Attempts hav e

been made to perform such segmentation using differences between successive image frames (Jain et al.

1977, Jain et al. 1979, Jain & Nagel 1979, Limb & Murphy 1975, Nagel 1977) . Some recent papers have

considered the problem of recovering the motions of objects relative to the viewer from the optical flo w

(Hadani et al. 1980, Koenderink & van Doom 1975 & 1976, Longuet-Higgins & Prazdny 1979, Prazdn y

1979 & 1980). In some cases information about the shape of an object may also be recovered (Koenderin k

& van Doom 1975 & 1976, Clocksin 1978) .

These papers begin by assuming that the optical flow has already been determined . Although some

reference has been made to schemes for computing the 11 . w from successive views of a scene (Fennema

& Thompson 1979, Hadani et al. 1980), the specifics of a scheme fbr determining the flow from the image

have not been described . Related work has been done in an attempt to formulate a model for the shor t

range motion detection processes in human vision (Batali & Ullman 1980, Marr & Ullman 1979) .

The optical flow cannot he computed at a point in the image independently of neighboring points

without introducing additional constraints, because the velocity field at each image point has two com-

ponents while the change in image brightness at a point in the image plane due to motion yields only on e

constraint . Consider for example a patch of a pattern where brightness varies as a function of one imag e

coordinate but not the other . Movement of the pattern in one direction alters the brightness at a particula r

point, but motion in the other direction yields no change . Thus components of movement in the latte r

direction cannot be computed locally . Additional constraints must be introduced to fully determine the

flow .

2. Relationship to Object Motio n

The relationship between the optical flow in the image plane and the velocities of objects in the thre e
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dimensional world is not necessarily obvious . We perceive motion when a changing picture is projected

onto a stationary screen, for example . Conversely, a moving object may give rise to a constant brightnes s

pattern . Consider for example, a uniform sphere which exhibits shading because its surface elements are

oriented in many different directions . Yet, when it is rotated, the optical flow is zero at all points in the

image, since the shading does not move with the surface . Also, specular reflections move with a velocity

characteristic of the virtual image, not the surface in which light is reflected .

3 . The Restricted Problem Domai n

For convenience, we tackle a particularly simple world where the apparent velocity of brightness

patterns can be directly identified with the movement of surfaces in the scene . To avoid variations i n

brightness clue to shading effects we initially assume that the surface is flat . We further assume tha t

the incident illumination is uniform across the surface . The brightness at a point in the image is the n

proportional to the reflectance of the surface at the corresponding point on the object . Also, we assume

initially that reflectance varies smoothly and has no spatial discontinuities . This latter condition assures us

that the image brightness is differentiable .

In this simple situation, the motion of the brightness patterns in the image is directly determined b y

the motions of corresponding points on the surface of the object . Computing the velocities of points on

the object is a matter of simple geometry once the optical flow is known .

4. Constraint s

We will derive an equation that relates the change in image brightness at a point to the motion of th e

brightness pattern . I_ct the image brightness at the point (x, y) in the image plane at time t be denoted b y

E(x, y, t) . Now consider what happens when the pattern moves . The brightness of a particular point in

the pattern is constant, so that

dE = O .
d t
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Using the chain rule for differentiation we see that ,

OE dx OE dy aE
axdt + aydt + at -0

.

(See Appendix A for a more detailed derivation .) If we le t

u

	

and v
dt

	

= dt

then it is easy to see that we have a single linear equation in the two unknowns u and v ,

Exu + Eyv + Et = 0,

where we have also introduced the additional abbreviations Ex , Ey , and Et for the partial derivative s

of image brightness with respect to x, y and t, respectively . The constraint on the local flow velocit y

expressed by this equation is illustrated in Figure 1 . Writing the equation in still another way ,

(Ex, Ey) • (u, v) = -Et .

Thus the component of the optical flow in the direction of the brightness gradient (Ex, Ey ) equals

Et

~_
Ey

We cannot, however determine the component of movement in the direction of the iso-brightness con -

tours, at right angles to the brightness gradient. As a consequence, the flow velocity (v, v) cannot be

computed locally without introducing additional constraints .

5 . The Smoothness Constrain t

If every point oldie brightness pattern can move independently, there is little hope of recovering th e

velocities. More commonly we view opaque objects of finite size undergoing rigid motion or deformation .
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V

Figure 1 . The basic rate of change of image brightness equation constrains th e
optical flow velocity. The velocity (u, v) has to lie along a certain line perpendicula r
to the brightness gradient vector (Ex,Ey ) in velocity space .
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In this case neighboring points on the objects have similar velocities and the velocity field of the bright-

ness patterns in the image varies smoothly almost everywhere . Discontinuities in flow can be expected

where one object occludes another .

One way to express the additional constraint is to limit the difference between the flow velocity a t

a point and the average velocity over a small neighborhood containing the point. Equivalently we can

minimize the sum of the squares of the Laplacians of the x- and y-components of the flow . The Laplacian s

of u and v are defined as

2v2v _ a u + c92u
and v2v = a2v -}- -

v
ax 2 8y2

	

(9x 2 ay2

In simple situations, both Laplacians are zero . If the viewer translates parallel to a flat object, rotates about

a line perpendicular to the surface or travels orthogonally to the surface (assuming perspective projection) ,

then the second partial derivatives of both u and v vanish . Note that our approach is in contrast with

that of Fennema & Thompson (1979), who propose an algorithm that indirectly incorporates additiona l

assumptions such as surface smoothness or object rigidity .

6. Quantization and Nois e

Images may be sampled at intervals on a fixed grid of points. While tesselations other than th e

obvious one have certain advantages (Mersereau 1979, Gray 197L), for convenience we will assume tha t

the image is sampled on a square grid at regular intervals . Let the measured brightness be Ei,j,k at the

intersection of the i-th row and j-th column in the k-th image frame . Ideally, each measurement should

he an average over the area of a picture cell and over the length of the time internal . In the experiments

cited here we have taken samples at discrete points in space and time, instead .

In addition to being quantized in space and time, the measu rements will in practice be quantized in

brightness as well . Further, noise will be apparent in measurements obtained in any real system .
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7. Estimating the Partial Derivatives

We must estimate the derivatives of brightness from the discrete set of image brightness measure-

ments available . It is important that the estimates of Ex , Ey , and Et be consistent . That is, they should

all refer to the same point in the image at the same time . While there are many formulas for approximat e

differentiation (Conte & de Boor 1965, Hamming 1962) we will use a set which gives us an estimate of Ex ,

Ey , Et at a point in the center of a cube formed by eight measurements. The relationship in space an d

time between these measurements is shown in Figure 2 . Each of the estimates is the average of four firs t

differences taken over adjacent measurements in the cube .

1
Ex = 1/4{Ei,j 11,k - Ei ,j . k + Ei+ l ,j+1,k - E +1 j, k

+ Ei,j+1,k+1 - Ei ,j, k+ 1 + Ei I-1,j {-1,k+1 - Ei+ l , j , k+1 }

Ey , {Ei+1,j,k - Et ,j , k + Ei+l,j+1,k - Ei,j-F-1, k

+ Ei+1,j,k+1 -Ei,j,k+ 1 +Ei+1,j+1,k+1 -Ei,j .1-l,k+l}
1

Et , {Et,j,k+l

	

j , k + Ei+1,j,k-F1 - Ei+1,j, k
H- Ei,j+1,k+1 - Ei ,j+ l , k + Ei+1,j+1,k+1 - E.i 1 , j+ l , k } .

Here the unit of length is the grid spacing interval in each image frame and the unit of time is the imag e

frame sampling period .

8 . Estimating the Laplacian of the Flow Velocities

We also must approximate the Laplacians of v and v . One convenient approximation takes th e

following form

v2u

	

!L ( iiz,J,k -- ui,j,k) and V2v ti /c ( 1 i,j,k - v{ , j ,k ) ,

where the local averages u and v are defined as follows

1
ui ,j , k -6{21,l:-,J,R; +

	

+ utd- I 7, k + ui , j- l , k }

+ 1 2

1
{ uL-1,j- I,k + Il i-1,1+1,k + ui--I,j--l,k + ui+ l ,j- l , k}

j,k ' 6
{ 41i-l, j, k

	

7li,j'+-l,k + vi+ l ,j , k + Vi,j- l , k }

+ 12 { vi-l,j I,k + vi- l , j+ 1 , k + Vi+ l , j+ l ,k + vi+1,j_1,k} .
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+ 1

Figure 2 . The three partial derivatives of image brightness at the center of the cub e
are each estimated from the average of first differences along four parallel edge s
of the cube. Here the column index j corresponds to the x direction in the image ,
the row index i to the y direction, while k lies in the time direction .

Horn c& Schunck

	

A . I. Memo 572



Page 8

	

Determining Optical Flow

The proportionality factor kappa equals 3 if the average is computed as shown and assuming again that th e

unit of length equals the grid spacing interval . Figure 3 illustrates the assignment of weights to neighbor-

ing points .

9. Minimization

The problem then is to minimize the sum of the errors in the equation for the rate of change of imag e

brightness,

s;b =Exu+Eyv+Et ,

and the estimate of the departure from smoothness in the velocity flow,

gc _ (2L-u)2+(47-v)2 .

What should be the relative weight of these two factors? In practice the image brightness measurement s

will be corrupted by quantization error and noise so that we cannot expect gb to be identically zero . This

quantity will tend to have an error magnitude that is proportional to the noise in the measurement. This

fact guides us in choosing a suitable weighting factor, denoted by a 2 , as will be seen later.

Let the total error to be minimized be

g2 = a2g c + ~6 .

The minimization is to be accomplished by finding suitable values for the optical flow velocity (v, v) . We

differentiate 1; 2 to obtain

aS2
= - 2a2(u - u) + 2(Exu + Eyv + Et)Ex

as2
_ - 2a2 (v - v) + 2(Exu + Eyv + Et )Ey .

Setting these two derivatives equal to zero leads to two equations in u and v ,

(a2 + Ex)u +ExEyv = (a2u - ExEt )

ExEyu + (a2 + Ey)v = (a2v -EA).
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Figure 3. The Laplacian is estimated by subtracting the value at a point from a
weighted average of the values at neighboring points . Shown here are suitable
weights by which values can be multiplied .
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The determinant of the coefficient matrix equals a 2 (a2 + E2 + E2) . Solving for v and v we find tha t

(a2 + E 2~ + E
21 )v = + (a2 + E J)u - ExEyv -EcEt

(a 2 + Ex + E 22v )v = -EAU + (a2 + EDv - EyEt .

10 . Difference of Flow at a Point from Local Average

These equations can be written in the alternate form

(a2 + Ex + Ey)(u - u) = - Ex [Q u + Eyv + Et ]

(a2 + es + E 2~)(v - v)

	

Ey [Exu + Eyv + Et ] .

This shows that the value of the flow velocity (v, v) which minimizes the error 1; 2 lies in the direction

towards the constraint line along a line that intersects the constraint line at right angles . This relationship

is illustrated geometrically in Figure 4 . The distance from the local average is proportional to the erro r

in the basic formula for rate of change of brightness when u, v arc substituted for u and v. Finally we

can see that a 2 plays a significant role only for areas where the brightness gradient is small, preventin g

haphazard adjustments to the estimated flow velocity occasioned by noise in the estimated derivatives .

This parameter should be roughly equal to the expected noise in the estimate of Ex Ey .

11. Constrained Minimizatio n

When we allow a 2 to tend to zero we obtain the solution to a constrained minimization problem .

Applying the method of Lagrange multipliers (Russell 1976, Yourgau & Mandelstam 1968) to th e

problem of minimizing

	

while maintaining Cy = 0 leads t o

(E + ED(u - u) = - EX [E,,u + Eyv -F Et ]

(Ei -F Ey)(v - vbar) _ - Ey[Exu + Eyv+Et] .

We will not use these equations since we do expect errors in the estimation of the gradient (Ex , Ey) .
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U-

Figure 4 . The value of the flow velocity which minimizes the error lies on a lin e
drawn from the local average of the flow velocity perpendicular to the constrain t

line .
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12. Iterative Solutio n

We now have a pair of equations for each point in the image . It would be very costly to solve thes e

equations simultaneously by one of the standard methods, such as Gauss-Jordan elimination (Hammin g

1962, Hildebrand 1952) . The corresponding matrix is sparse and very large since the number of rows an d

columns equals twice the number of picture cells in the image . Iterative methods, such as the Gauss-Seide l

method (Hamming 1962, Hildebrand 1956), suggest themselves . We can compute a new set of velocit y

estimates (un+1 , vn+1 ) from the estimated derivatives and the average of the previous velocity estimate s

(un- vn) by
0+1 =un -EX [E,u" + EJvn + .Et]/(a2 + Ex +Ey)
v"+l =vn - EY [EXun +

EJv"ti
+ Et]/(a2 + E2 + E,2j) .

It is interesting that the new estimates at a particular point do not depend directly on the previous

estimates at the same point.

13 . Filling In Uniform Regions

In parts of the image where the brightness gradient is zero, the velocity estimates will simply b e

averages of the neighboring velocity estimates. There is no local information to constrain the apparen t

velocity of motion of the brightness pattern in these areas . Eventually the values around such a region wil l

propagate inwards . If the velocities on the border of the region are all the same, then points in the regio n

will be assigned that value too after a sufficient number of iterations . Velocity information is thus filled i n

from the boundary of a region of constant brightness .

14 . Number of Iterations

If the values on the border are not all the same, the values filled in will correspond to the solutio n

of the Laplace equation for the given boundary condition (Ames 1977, Milne L953, Richtmyer & Morto n

1957). The progress of this filling in phenomena is similar to the propagation effects in the solution of th e

heat equation, where the time rate of change of temperature is proportional to the Laplacian . This gives

us a means of understanding the iterative method in physical terms and of' estimating the number of step s
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required. The number of iterations should be larger than the cross-section of the biggest region that mus t

be filled in . If the size of such regions is not known in advance one may use the cross-section of the whole

image as a conservative estimate .

15 . Tightness of Constraint

When brightness in a region is a linear function of the image coordinates we can only obtain the

component of optical flow in the direction of the gradient . The component at right angles is filled in from

the boundary of the region as described before. In general the solution is most accurately determined

in regions where the brightness gradient is not too small and varies in direction from point to point .

Information which constrains both components of the optical flow velocity is then available in a relativel y

small neighborhood of each point . Too violent fluctuations in brightness on the other hand are no t

desirable since the estimates of derivatives will be corrupted due to undersampling and aliasing .

16 . Choice of Iterative Schem e

As a practical matter one has a choice of how the iterations are to be interlaced with the time steps .

On the one hand, one could iterate until the solution has stabilized before advancing to the next imag e

frame . On the other hand, given a good initial guess one may need only one iteration per time-step . A

good initial guess for the optical flow velocities is usually available from the previous time-step .

The advantages of the latter approach include an ability to deal with more images per unit time an d

better estimates of optical flow velocities in certain regions . Areas in which the brightness gradient is smal l

lead to uncertain, noisy estimates obtained partly by filling in from the surroundings . These estimates are

improved by considering further images . The noise in measurements of' the images will be independent

and tend to cancel out. Perhaps more importantly, different parts of the pattern will drift by a given poin t

in the image

A practical implementation would most likely employ one iteration per time step for these reasons .

We illustrate both approaches in the experiments .
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17. Experiments

The iterative scheme has been implemented and applied to image sequences corresponding to a

number of simple flow patterns . The results shown here are on a relatively small image of 32 by 32

picture cells . The brightness measurements were intentionally corrupted by approximately 1% noise an d

then quantized into 256 levels to simulate a real imaging situation . The underlying surface reflectance

pattern was a linear combination of spatially orthogonal sinusoids . Their wavelength was chosen to giv e

reasonably strong brightness gradients without leading to undersampling problems . Discontinuities were

avoided to ensure that the required derivatives exist everywhere .

Shown in Figure 5 for example are four frames of a sequence of images depicting a sphere rotatin g

about an axis inclined towards the viewer . A smoothly varying reflectance pattern is painted on the surface

of the sphere . The sphere is illuminated uniformly from all directions so that there is no shading .

18. Result s

The first flow to be investigated was a simple linear translation of the entire brightness pattern . The

resulting computed flow is shown as a needle diagram in Figure 6 for 1, 4, 16, and 64 iterations . The

estimated flow velocities are depicted as short lines, showing the apparent displacement during one tim e

step . In this example a single time step was taken so that the computations are based on just two images .

Initially the estimates of flow velocity are zero . Consequently the first iteration shows vectors in th e

direction of the brightness gradient . Later, the estimates approach the correct values in all parts of th e

image. Few changes occur after 32 iterations when the velocity vectors have errors of about . 10%. The

estimates tend to be too small, rather than too large, perhaps because of a tendency to underestimate the

derivatives . The worst errors occur. as one might expect, where the brightness gradient is small .

In the second experiment one iteration was used per time step on the same linear translation imag e

sequence . The resulting computed flow is shown in Figure 7 for 1, 4, 16, and 64 time steps . The estimates

approach the correct values more rapidly and do not have a tendency to be too small, as in the previou s

experiment. Few changes occur after 16 iterations when the velocity vectors have errors of about 7% . The

worst errors occur, as one might expect, where the noise in recent measurements of brightness was worst.
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A B

D
Figure 5. Four frames out of a sequence of images of a sphere rotating about a n
axis inclined towards the viewer. The sphere is covered with a pattern whic h
varies smoothly from place to place. The sphere is portrayed against a fixed, lightl y
textured background . Image sequences like these are processed by the optical flow
algorithm .

C

Horn & Schunck

	

A. I. Memo 572



Page 16 Determining Optical Flow

Figure 6. Flow pattern computed for simple translation of a brightness pattern . The
estimates after 1, 4, 16, and 64 iterations are shown . The velocity is 0 .5 picture
cells in the x direction and 1 .0 picture cells in the y direction per time interval .
Two images are used as input, depicting the situation at two times separated b y
one time interval .
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Figure 7 . Flow pattern computed for simple translation of a brightness pattern . Th e

estimates after 1, 4, 16, and 64 time steps are shown . Here one iteration is use d

per time step . Convergence is more rapid and the velocities are estimated mor e

accurately .
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While individual estimates of velocity may not be very accurate, the average over the whole image was

within 1% of the correct value .

Next, the method was applied to simple rotation and simple contraction of the brightness pattern .

The results after 32 time steps arc shown in Figure 8 . Note that the magnitude of the velocity is propor-

tional to the distance from the origin of the flow in both these cases .

In all of the examples so far the Laplacian of both flow velocity components is zero everywhere . We

also studied more difficult cases where this was not the case . In particular, if we let the magnitude of th e

velocity vary as the inverse of the distance from the origin we generate flow around a line vortex and tw o

dimensional flow into a sink . The computed flow patterns are shown in Figure 9 . Here the computation

involved many iterations based on a single time step . The worst errors occur near the singularity at th e

origin of the flow pattern, where velocities are found which are much larger than one picture cell per tim e

step .

Finally we considered rigid body motions . Shown in Figure 10 are the flows computed for a cylinde r

rotating about its axis and for a rotating sphere . In both cases the Laplacian of the flow is not zero and i n

fact the Laplacian of one of the velocity components becomes infinite on the occluding bound . Since the

velocities themselves remain finite, reasonable solutions are still obtained . The correct flow patterns are

shown in Figure 11 . Comparing the computed and exact values shows that the worst errors occur on th e

occluding boundary. These boundaries constitute a one dimensional subset of the plane and so one ca n

expect that the relative number of points at which the estimated flow is seriously in error will decrease as

the resolution of the image is made finer .

In Appendix 13 it is shown that there is direct relationship between the Laplacian of the flow velocity

components and the Laplacian of' the surface height . This can be used to sec how our smoothness con-

straint will fair for different objects . For example, a rotating polyhedron will give rise to a flow which has

zero Laplacian except on the image lines which are the projections of the edges of the body .

19. Summary

A method was developed for computing optical flow from a sequence of images . It is based on the

observation that the flow velocity has two components and that the basic equation for the rate of chang e
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Figure 8 . Flow patterns computed for simple rotation and simple contraction of a
brightness pattern . In the first case, the pattern is rotated about 2 .8 degrees pe r
time step, while it is contracted about 5% per time step in the second case . Th e
estimates after 32 time steps are shown .
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Figure 9 . Flow patterns computed for flow around . a line vortex and two dimensiona l
flow into a sink . In each case the estimates after 32 iterations are shown .
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Figure 10 . Flow patterns computed for a cylinder rotating about its axis and for a

rotating sphere . The axis of the cylinder is inclined 30 degrees towards the viewe r

and that of the sphere 45 degrees . Both are rotating at about 5 degrees per tim e

step . The estimates shown are obtained after 32 time steps .
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Figure 11 . Exact flow patterns for the cylinder and the sphere .
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of image brightness provides only one constraint . Smoothness of' the flow was introduced as a secon d

constraint . An iterative method for solving the resulting equation was then developed . A simple im-

plementation provided visual confirmation of convergence of the solution in the form of needle diagrams .

Examples of several different types of' optical flow patterns were studied . These included cases where the

Laplacian of the flow was zero and cases where it became infinite at singular points or along boundin g

curves .

20 . Acknowledgemen t

One of the authors (Horn) would like to thank Professor H .-H. Nagel for his hospitality . The basic

equations were conceived during a visit to the University of Hamburg, stimulated by Professor Nagel' s

long-standing interest in motion vision . The other author (Schunck) would like to thank W . E. L . Grimson

and E . Hildreth for many interesting discussions and much knowledgable criticism .

Horn & Schunck

	

A. I. Memo 572



Page 24

	

Determining Optical Flow

Appendix A. Rate of Change of Image Brightness

Consider a patch of the brightness pattern that is displaced a distance delta x in the x-direction and Sy in

the y-direction in time St . The brightness of the patch is assumed to remain constant so tha t

E(x, y, t) = E(x + dx, y + Sdy, t -- Sdt) .

Expanding the right hand side about the point (x, y, t) we get ,

E( x , y , t ) = E(x , y , t ) + Sx
a

x + 6yaa + Staff +

Where e contains second and higher order terms in dx, Sy, and St . After subtracting E(x, y, t) from both

sides and dividing through by St we have

x aE Sy aE aE
St ax + St ay + at + 0(6t) = 0 ,

where O(dt) is a term of order St, and we assume that dx and Sy vary as St. In the limit as St -► 0 this

becomes
OEdx aEdy aE
0xxd+aydt+ -o.

A. I. Memo 572

	

Horn & Schunck



Determining Optical Flow

	

Page 25

Appendix B . Smoothness of Flow for Rigid Body Motion s

Let a rigid body rotate about an axis (wx, wy, wz ), where the magnitude of the vector equals the

angular velocity of the motion . If this axis passes through the origin, then the velocity of a point (x, y, z)

equals the cross product of (wx, wy, wz ), and (x, y, z) . There is a direct relationship between the image

coordinates and the x and y coordinates here if we assume that the image is generated by orthographic

projection. The x and y components of the velocity can be written ,

u =WyZ -=Wzx

v =Wax - Wiz .

Consequently,
v2v =+ wxv2zv2v = - wxv2z .

This illustrates that the smoothness of the optical flow is related directly to the smoothness of the rotatin g

body and that the Laplacian of the flow velocity will become infinite on the occluding bound, since th e

partial derivatives of z with respect to x and y become infinite there .
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