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Introductio n

The curve which passes through two specified points with specified orientation while minimizing

f kappa 2 ds,

where K is the curvature and s the arc-distance, has a number of interesting applications .

In a thin beam, curvature at a point is proportional to the bending moment [pg . 80, 1] . The total elastic energy
stored in a thin beam is therefore proportional to the integral of the square of the cur vature [pg . 163, 1] . The
shape taken on by a thin beam is the one which minimizes its internal strain energy . This is why we call th e
curve sought here the minimum energy curve. A thin metal or wooden strip used by a drafts(wo)man to
smoothly connect a number of points is called a spline [pg . 156, 2] . Such splines are used in creating lofted
surfaces from plane parallel cross-sections of ship hulls and aircraft fuselages [pg . 228, 2] . The shape of a
spline constrained to pass through two specified points with specified orientation is what we are after here .

In computer graphics and computer aided design there is a search for curves which are particularly "smooth "
[pg. 156, 2 ; pg. 49, 3 ; pg. 119, 4 ; pg. 309, 5 ; pg. 43, 6] . One measure of smoothness is the inverse of the
integral given above . Typically, cubic polynomial approximations are used instead of the optimal curve
[pg. 162, 2 ; pg . 66, 3 ; pg . 129, 4 : pg . 315 . 5] . (Unfortunately, these approximations arc called splines too) .

It has been suggested that the human visual system uses a curve of low energy when completing a contour .
Ullman [pg. 1, 7] proposes that a subjective contour consists of two circular arcs tangent at their point of
contact . Out of the one-parameter family of solutions of this form he picks the one which minimizes the
integral of the square of curvature [pg . 2, 7] . He notes that the curve so constructed may have near-minimal
energy . (This does not mean that it necessarily lies close to the curve of minimum energy, as we shall see. )
Brady et al used cubic polynomial approximations instead [8] .

Previe w

We will first consider a special case . Here the curve must pass through the points (-1,0) and (+1,0) in the
xy-plane with vertical orientation at both points . We first determine the optimum curve as the limit of a serie s
of approximations . This approach helps suggest algorithms for computing approximations to the ideal curve .
Later we solve the variational problem directly . We then discuss how this curve can be translated, rotated ,
and scaled to produce a four parameter family of curves which contains the general solution.

A Semicircle

One curve which connects the two points (- 1,0) and (+ 1,0), and has the desired orientation at these points, is
a semicircle of radius one with the center at the origin (see Figure 1). The curvature equals one at all point s
and so the relevant integral for the section in the right hand quadrant become s

1;- f
7T/2

1ds=nr/2 .
0

The arc length happens to have the same value,

fr/2
ds = 77/2,



while the maximum height of the curve above the x-axis is

H=1.

Can we do better, that is, fund a curve with a smaller value of g?

Two Circular Arcs

We try a combination of two circular arcs for the portion of the curve in the first quadrant, as shown i n
Figure 2 . (The other half of the curve is obtained by reflection about the y-axis .) Let the first arc have radiu s
R and angular extend 0, while the remaining portion has radius r and angular extend (pi/2-theta) . Note that th e
parameters r, R, and 0 are not independent, since one can obtain from the diagram

(R - r) cos O = (R- 1) .

The arc length of the right-hand portion of the curve become s

Y=8R+(pi/2-0)r,

while the energy is

	

= R + (pi/	 ~) .

Minimizing g , subject to the given constraint, using the method of Lagrangian multipliers, leads to the set o f
equations

Rz + (pi	 -8) (1-sec 0) = 0,

R - 1 + pi/28)(R - 	 r) tan 8 = 0 ,
r2

(R- r) cos 0 - (R-1) = 0 .

The second of these can be simplified into

r = R pi/2 -0) tan 0 ,

which, when applied to the first equation, yield s

0 (pi/2 -0) (1 + sec theta) = 1 .

Solving this numerically we obtain

	

0 = 0.412868765 .. .

We can also show that

	

R =

	

1[(1-cos 0) + (pi/2 -theta) sin theta)'

so that

	

R = 1 .8227161 . . .

and

	

r = 0.92452847 . . .
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Finally, since here

	

= r + (R r) sin 0

we see that

	

DG = L2849161 . . .

and

	

= 1 .4789649 . . . = 0.94153834*(pi/2) ,

while

	

I = 1.8230795 . . . .; 1 .1606084*(pi/2) .

The energy in this curve is only 94 .15% of that in the semicircle, so we can do better .

The Best Ellips e

The two-arc solution suggests that the optimum curve is elongated and has radius of curvature smaller than
one at its peak, and larger than one near the x-axis . Is it an ellipse? The equation of the ellipse [pg . 411, 13 ;
pg. 72,14] shown in Figure 3 is

(x/a)2 + (y/b)2 = 1,

or in parametric form,

	

x = a cos t, y = b sin t .

The eccentricity e is defined by the equation

e 2 = 1 - (a/b) 2 .

The arc length can be found as follows [pg . 26, 9] ,

	

= f ds= f0pi
/ 2

-V/

	

+y.2 dt

.

	

slywhere

	

x = dx and -dt

	

y - dt

Now,

	

X2 + 5'2 = a 2 sin 2 t + b2 cos 2 t,

or,

	

x2 + 5,2 = b 2 [1 - e 2 sin2 t] .

So

	

I= b f: /2 I/ 1-e2 sin2 t dt = b E(e) ,

where E(e) is the complete elliptic integral Of the second kin& [pg. 16, 9 ; pg. 833, 10 ; pg. 904, 11 ; pg . 589, 12].
(The elliptic integrals got their name from the fact that they furst appeared in the mensuration of the ellipse . )
Finally, for a= 1,

Y=E(e)/-/1-e2 .

1 . Note that E denotes two things in this paper . When it has one argument, as here, it signifies the complete
elliptic integral of the second kind .
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The curvature can be found as follows [pg . 553, 13 ; pg. 22, 14] :

K _	 }'x-z -	 ab	

[X2 + 5,2]3/2 - [a 2 Sind + b2 eos 2 1]3/ 2

Now

	

= f K2 d s = f 7 ' 2
K 2 Lk' + 5,2 ]1i2d1

0

a2 ~pi/2

	

1
So

	

= 63 Jo

	

 e2 sin21]ei2 dr .

The defunite integral can be shown [using pg . 165, 11] to be equal to

[2 (e'2 + 1) E(e) - e'2 K(e)] / (3 e'4) ,

where

	

e 2 + e' 2 = 1 ,

and K(e) is the complete elliptic integral of the first kind [pg . 16, 9 ; pg . 834, 10 ; pg. 904, 11 ; pg. 589, 12]. So
finally when a= 1,

= [2 (2 -e 2) E(e) - (1 -e2 ) K(e)] / [3 -V 1- e2 ] .

When we set e=0 we obtain g= 7/2, as we should, since the curve in this case is just a semicircle .

In order to find the best possible ellipse we need to differentiate the expression above with respect to e. Here
we need the following derivatives [pg . 21, 9 ; pg . 907, 11] :

dE(k) - E(k) - K(k)
dk -

	

k

	

'

dK(k) - E(k) - k '2K(k)
dk

	

kk' 2

where

	

k 2 + k'2 = 1 .

The eccentricity of the optimum ellipse satisfie s

E(e) [4e4 - 5e2 + 3] = K(e) [2e 4 - 5e2 + 3] .

Solving this equation numerically leads to

e = 0 .6530018 . . .

withG = b/a = 1 / -y" 1- e 2 = 1 .3203823 . . .

1 .4674751 . . .

	

0 .93422368 * (pi/2),



-6 -

Y= 1 .8311202 . . .

	

1 .657273 * pi/2) .

The maximum and minimum radii of curvature ar e

rmax = b2 /a = 1.7434096 . . . and  in = a 2 /b = 0.75735636 . . .

This curve has an energy which is only 93.42% of that of the semicircle . We have found a curve which has a
smaller value of than our two-arc solution .

Can we do better still ?

Multi-arc Approximatio n

Consider a smooth curve constructed out of n circular arcs (see Figure 4) . Let the radius of curvature of the
piece turning through the angle from a i to ai+1 be r i . We note that the total arc length, Y', and the integral

of the square of the curvature, ', are given b y

	

n-1

	

n- 1

Y' = E (a i+1 - a) r i = rn-1 an + E (r i-1 - ri) a i '

	

i=0

	

i=1

	

E ( a i+1 -ai) = an _ E 1

	

l ot

	

i=0

	

ri

	

rn
1

	

i=1
Cri

	

ri-l .J

where a o = 0 and a n = pi/2 . We also have to compute the width, W ', and height, M

n-1

	

n- 1

W' =

	

r . (cos a i - cos a i+1 ) = rp cos a o -

	

(ri-1 - ri) cos a i ,

n-1

	

n- 1
' _

	

r i (sin ai+1 - sin ai) = rn_1 sin a n + E (ri-1 - r i ) Sina i .
i=o

	

i= 1

'l'o solve our original problem we need to scale whatever curve we obtain so that its overall width equals 2
instead of 2W ' . The scaled values are as follows :

=

	

' /W ' ,

='W',

Y = Y'/W' .

Note that the integral of the square of the curvature is decreased when we make the curve larger withou t
changing its shape .



Optimum Multi-arc Approximation

Our task now is clear : We have to minimize g ' w ' by suitable choices of the parameters r i (for i=0,1 . . . n -1 )
and a (for i=1,2 . . . n -I) . Actually, we can pick one of the radii arbitrarily, ro for example, since the whole
curve will simply be scaled accordingly . The minimization looks difficult at first when one considers th e
complexity of the product ' 14'' and its derivatives . It appears necessary to resort to numerical techniques to
solve for the 2(n -1) parameters .

Fortunately this is not the case, for if

aX(S'`w')=0,

then, by the rule for the differentiation of a product,

- x /ax =
'W ' /

for arbitrary x (i . e. ri and a ; ) . Since the right-hand side is independent of x, it must equal a (positive )
constant, c2 say . Thus we find that

aw' ag '

	

2_
aa i / - = c for i = 1,2 . . . n-1 ,

aw' ag '

	

2
-ar, /ar, .=c fori=0,1 . . .n-1 .

We need the following derivatives now ,

ag '

	

r1_ 1 l
as

	

Lr.

	

r~_ 1 l
for i = l,2 . . . n-l ,

ate'
'- =

	

(ai+1-a')fori=0,1 .. .n-1 ,
a r

	

r?

a 'w '

-

_

aa~ = (ri-1 - r;) sin a 1 for i = 1,2 . . . n-1 ,

air
ar .

- _ (cos a i - cos a i+1 ) for i = 0,1 . . . n -1 .

Using these derivatives in the equations above we obtain

r, r11 sin a ; = c2 for i = 1,2 . . . n -1 ,

-

	

cos a i+1 - cos a .
= c2 for i = 0,1 .. . n -1 .ai+1 - a i



It is easy to verify that in the case that n= 2, we obtain the same equations as before, provided we introduc e

the additional constraint `4f ' =1 or

r 0 -(r0 -r1 )cosa 1 =l .

Note that, if c is known, a simple procedure will give us all of the parameters . Let ro =1, say, then the secon d

equation can be used to find a 1 . ('This non-linear equation has to be solved numerically .) The first equatio n

then allows one to solve for r1 . Knowing r 1 , the second equation allows one to find a 2 , and so on . If the

value of c is correct, the process will terminate with a n =pi/2 . The correct solution can be found b y

searching for the . appropriate value of c . This is very much simpler than a direct search on the 2(n -1 )

parameters .

Some Helpful Relationships

A number of interesting observations can be made now about the multi-arc solution . First of all, the "energy "

SE ' in an individual arc is directly proportional to the projection SW ' of this arc on the x-axis, since

'
8g

, and

	

 ' = r 1 (cos a 1 - cos a ;+1 ) •

So we have

	

Sg ' /S'W' = 1/c2 ,

and we already know, of course, that

	

g '/W' = 1/c2 .

Next, notice that the projection, SDG ', of the (i+l)-th arc on the y-axis equals

SSG ' = r~ (sin a i+1 - sin a) = c 2 [-I- - -LI
ri+1

	

ir - 1

The height at the tip of the i-th arc then is

c2  . +  .



r ]
for i = 1,2 . . . n -l ,

i

	

1-1

	

0

since

	

DG 1 ' = r0 sin a 1 = c2 /r1 .

Also

	

' = c2 L r

	

-11
J + rn -1 '

n-1

	

0

Three, Four and Five Arc s

The optimum solution for three arcs gives



1 .399926 . . .

	

= 1 .456879 . ..

	

0 .9274780*( /2 )

	

= 1 .929128 ., .

	

1 .228121 *(/2),

and shows us that the ellipse is not optimal after all . For four arcs we fin d

= 1 .462089 . . .

	

6 = 1 .448212 . . .

	

0 .9219604*(pi/2)

= 1 .987501 . . . ~ 1 .265282*(pi/2) ,

and for five arcs we get

3G = 1 .500993 . . .

ES - 1 .443930 . . . : 0.9192345*(pi/2)

	

f _ 2 .024437 . . .

	

1 .288796*(1r/2).

These solutions are shown in Figure 5 . We see that 6 is dropping more and more slowly, while f is growing ,
as is 16 .

For five arcs, the parameters for the unscaled curve o = 1), are as follows

r1 = 0.500258 . . .
r2 = 0.334497 .. .
r3 = 0.253163 .. .
r 4 = 0.207337 .. .
r = 0.189705 .. .

a 1 = 0,078707 . . .
a 2 = 0 .237276 . . .
a 3 = 0.483045 . . .
a 4 = 0.847067. . .
a 5 = 1 .57079 . . .

Perhaps we can guess the true minimum energy curve from the numerical data obtained so far. The
parameters seem to roughly fit into a pattern lik e

1

	

i (i+ 1)r . _ - (i+1) and a 1 = 2 n (n+l) .

In this case

	

(a 1+1 - a ) = " n (n
i+1

+1) '

so the arc lengths are

	

8I ' = rl (a 1+1 - a 1 ) = n +1)

That is, the arcs all have the same length, and curvature increases linearly along the curve .
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Now we could sum the series for arc length and energy (easy) and for height and width (hard) . Then we
would discover that 9 = 9 ' W' decreases with n, and we could find its limit as the number Of arcs tends t o

	

infinity . Instead, we proceed directly to the curve obtained in the limiting process .

The Cornu Spira l

The curve which has curvature varying linearly with arc-length is called the Cornu Spiral (or Euler's Spiral )
[pg . 190, 2; pg. 190, 14]. It can be defined using the two Fresnel integrals [pg . 820, 10 ; pg .930, 11 ; pg . 300 ,
12] .

C(S) = J S cos (7112 )
di,

0

S(s) = f s sin (2 t2 ) A

If we let

	

x = C(s) and y = S(s) ,

we obtain a curve starting at the origin and curling upwards in the first quadrant . We note that

x = cos (2S2 ) and y = sin (2s2 ) ,

JC = - pissin(~S2 ) and } = pi s Cos (2!s2 ) .

This verifies that s is the arc-length along this curve, sinc e

xz + y2 = 1 ,

and that the curvature varies linearly with arc length, sinc e

YX-Xy=pi S.

The part of the spiral of interest to us here extends to the right up to the point where the curve become s
vertical, that is, x= 0 . This is the point where s=1 an d

.x = C(1) = 0 .7798934 . . . and y = S(1) = 0.4382591 . . .

The energy in this portion of the spiral is just

S ' = f K 2ds = f
0

1 (piS) 2ds = 7x 2 /3 .
0

We now build a smooth curve connecting the two points (-1,0) and (+1,0) by scaling, rotating, and shiftin g
this tendril as shown in Figure 6 . In the right hand quadrant we use

SO

	

= SS
X, = 1 - S(1) and y S,(1) .

(The rest of the curve is obtained by reflection about the y-axis.)



We then find that

X = C(1)/S(1) = 1 .779525 . . .

9 = (pi2/3 ) S(1) = 1 .441814 . . . 0.9178877*(pi/2),

I = 1/S(1) = 2.281755 . . . . 1.452610*(pi/2) .

The curve constructed out of a portion of the Cornu Spiral only has 91 .78% of the energy of the semicircl e
and is thus the best curve so far .

But, can we do better still ?

Six Arcs and More

Unfortunately, the Cornu Spiral is not optimal either, as one sees by considering the best six-arc solution for
which

g = 1 .441508 . . . -_ 0.9176931*(pi/2) .

For eight arcs,

	

98 - 0.916097*(pi/2) ,

for sixteen arcs,

	

916 	 0.914532*(pi/2),

for thirty-two arcs,

	

932 Z 0 .914285*(pi/2),

and for sixty-four

	

964 - 0 .913953*(pi/2) .

These solutions are shown in Figure 7 .

It seems that the total energy is approaching some limit, near 91 .39% of that in the semicircle . Some of these
results are summarized in Tables I and II .

TABLE I

n	 91(pi/2) Y/(pi/2) R rmin

1

	

1.0 1 .0 1 .0 1 .0

2

	

.9415383 1 .160608 1 .284916 .9245284
3

	

.9274780 1.228121 1 .399925 .8950140
4

	

.9219604 1 .265282 1.462089 .879493 2
5

	

.9192345 1 .288796 1 .500993 .870012 9
6

	

.9176896 1 .305012 1 .527622 .8636634
7

	

.9167300 1 .316870 1 .546987 .859135 3
8

	

.9160932 1 .325918 1 .561701 .8557555
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TABLE I I

   mi n

16 .9144692 1 .358673 1 .614492 .844235 3
32 .9140406 1 .375704 1 .641625 .8389106
64 .9139305 1 .384403 1 .655392 .836516
128 .9139025 1 .388789 1 .662308 .83546 1
256 .9138955 1 .390998 1 .665786 .834998
512 .9138938 1 .392110 1 .667534 .8347 3
1024 .9138934 1 .392671 1 .668417 .83467
2048 .9138932 1 .392984 1 .668908 .83463

We can get better and better approximations to the optimum curve, provided we also carry out computation s
with more and more significant figures . Note, by the way, that while varies little once n is reasonably large ,
.f and 16 continue to show appreciable changes . This is a reflection of the fact that some distortions of th e
optimum curve produce only small changes in the total energy .

Some Observations About the Optimum Curv e

The multi-arc approximation tends to the optimum curve in the limit as n tends to infinity . So we can learn
some properties of the optimum curve from what we have so far . First of all ,

from 	 ri ri_1 sin a i = c2

we get

	

c 2 K 2 = cos 4' ,

where K is the curvature and 4' is the angle which the curve makes with the x-axis. The constant c only affects
the size of the curve, not its shape . We cannot determine it at this point .

cos a .

	

cos a .
From

	

- r;	 ,+1-	 , = c2

ai+1 - a i

sin[(a
i + 1 - a)/2]

	

_we get

	

r; (a i

	

a i)%2 sin [(a i+1 + ai)/2] -
+1

e

which in the limit again leads to

	

c 2 K 2 = cos I .

We also obtain

	

d~ = 1/c2 ,

from

	

Ste, = 1/c2 .

Now

	

>; = f K 2 ds = f K 2 -v 1 + (dy/dx) 2 ,
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So

	

K 2 -V1-1(dv/d) 2 =1/c2

Further, since,

	

d = tan 4' ,

we again obtain,

	

C2 K 2

	

cos 4' .

Each of these approaches leads us to the same simple differential equation for the curve .

Finally, from

	

m, = c 2 [ r . + r

	

j1] ,

	





we get in the limit

	

- K = y/2c2 .

That is, the curvature varies Iinearly along the axis of symmetry of the optimal curve . Substituting for K we
also derive

cos 4) = (y/2c) 2 .

Note that since the optimal curve bends downwards, its second derivative is negative . This is why, by the
usual sign conventions, curvature too is negative . Thus we will use the equation

-  = y COS 4

between 4'= +pi/2 at the left end and = -pi/2 at the right end of the curve .

Differential Equation for the Curve

The curvature is the rate of turning as one goes along the curve, that is ,

K = A ,

so

	

- cd = I/ cos 4' ,

and consequently,

	

s = - c f
J cos

The substitution cos 4/ = t leads to a denominator of the form

,/ (1- }(1+i) ,

while the substitution cos 4' = 2 leads to a denominator of the form

/  .

In each case we are dealing with the integral of a rational function of and the square root of a cubic o r
quartic polynomial in . ` l'his means that the answer can be expressed as an elliptic integral [pg . 16, 9 ; pg . 833 ,
10 ; pg . 904, 11 ; pg. 589, 12] .



-14 -

We can actually just look up the result directly [using pg . 154, 11 ; also sec Appendix] and find the solutio n

s=,

	

cF(cos' 1 Vcos4',1/f) ,

where F is the incomplete elliptic integral of the first kind . l The constant of integration has been chosen s o

that 4=0 corresponds to s=0 . The result came out positive because the integration goes from 4i=0 to

negative values of 4' . For the half of the optimal curve in the negative quadrant, a minus sign must b e

attached. Some readers may notice the similarity of the solution found above, to the equation for a pendulu m

[pg. 28, 9], swinging from -pi/2 to +pi/2 (where 4, is the angle from the vertical, while s corresponds to th e

time) .

We now have the equation of the curve sought after in Whewell form [pg . 4, 14], namely arc length as a

function of tangential angle . We can immediately also rewrite it in Cesaro form [pg .4, 14], namely as a
relation between arc length and curvature :

s = V [ c F(cos-1(- c K), 1/12) .

Both of the forms given above are intrinsic equations for the curve [pg . 40, 2] .

We can easily compute the length of the curve from an initial point at the top, where 4, = 0, to the point on the
x-axis, where 4' = - ¶/2, since

F(pi/2, 1/12) = K(1/f)

where K is the complete elliptic integral of the first kind. Now [pg . 909, 11] ,

	

K(1/12) = K(sin (pi/4)) = 12
.f

1

	

dt	 = I'(1/4} 2

	

e

	

(4 IT) '

where F is the gamma function [pg . 821, 10 ; pg . 933, 11 ; pg. 255, 12] . There is an infinite product [pg . 938, 11 ]

for F(1/4) 4

F(1/4)4 = 16pi2

	

(4k-1)2[(4k+1)2-1]
k=1 (4k+1)2[(4k-1)2-1]

which gives us the numerical value

1'(1/4) = 3 .6256099082 . . .

The arc length is finally,

	

_ c 1(1/4
~_2

	

2pi

1 . Note that some authors [pg . 833, 10] list the arguments of the incomplete elliptic functions in the revers e
order of that shown here .
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Cartesian Form of the Solution

For many purposes it is more convenient to express the solution as a relationship between the x and y
coordinates.

We note that

	

dx
= cos 4' and

	

= sin 41 ,
ds

	

ds

and remember that

	

- c d _ -I cos .

By the chain-rule for differentiation

	

dx = dx / d' = - c1/ cos 4' ,d ds ds

and

	

A - / A = - c sin 4' / ,/cos 4' .c AP ds ds

The latter equation is easy to integrate using the substitution z = cos 4' .

y=c f -=2c~,

so that

	

(y/2c) = V cos 4' ,

where the constant of integration was chosen so that y=0 when 41 _ - IT/2 . The reader may also recall that i n
the previous section this result was found directly as the limit of height of the multi-arc approximation .

The integral for x is a little harder,

	

x = c f ,/ cos 41 chi, .

This can be expressed as the difference of two incomplete elliptic integrals [using pg . 156, 11 ; also se e
Appendix],"

x = 1/2 c [ 2 E(cos" scos i1, 1/12) - F (cos" I V cos I,1/ 2) ] ,

where the constant of integration was chosen so that x=0 when 41=0 . 2 Finally then,

x = -12 c[ 2 E (cos" 1 (y/2c), 1/-) - F(cos"1(y/2c), 1/-1-1) ] .

An alternate way to obtain the same result is to note that x and y are related by the differential equatio n

- -- 1-(y12c) 4
dx - -

	

(y/2c) 2

	

'

1. Note that E denotes two things in this paper. When the letter appears with two argument it signifies th e
incomplete elliptic integral of the second kind .
2. Note again that some authors [pg . 833, 10] list the arguments of the incomplete elliptic functions in th e

reverse order of that shown here .



- 16 -

I/ 1-cost
since

	

-
dx

tan 1p =
cos h

In any case, fury = 0,

.x= /c[2E(1/f)- K(1/[7)] ,

where K and E are the complete elliptic integrals of the first and second kind respectively .

Using L,egendre's identity [pg . 25, 9 ; pg . 836, 10 ; pg . 9011 ; pg . 591.12]

E(k)K(k') + E(k') K(k) - K(k)K(k') = it/2 ,

where

	

k 2 + k' 2 = 1 ,

we get [pg . 25, 9]

	

2 E(1/ 2) = [

	

+ K2(1/12) ] / K(1/ 2) ,

so that

	

[ 2 E(1/1-1) - K(1/12) ] _ (v/2) / K(1/V-2) .

2So the width of the curve is

	

`W = c (2'x)3/ 2 ,
F(1/4)

and, if we want `V = 1, we must have

P(1/4) 2c =	 = 0 .8346268416 . . .(203/ 2

The height of the curve then comes to

1G = 2c = 1 .669253683 . . .

(compare to the two-arc approximation) . The minimum radius of curvature, the inverse of the maximu m
curvature, is

r

	

=	 1	 = c = 0 .8346268416. . .
min

	

(N/2c2)

Thus a circle tangent to the curve at the top is also tangent to the x-axis .

The arc length comes to

	

= I ]~(1/42a

(2pi)

or

	

= 2 .188439615 . . .

	

1 .393203929*(pi/2) .

Finally, from

	

dz = 1/c2 ,

we get

	

S = 1/c2 ,

and so

	

= (27034 = 1.435540022 . . .

	

0.9138931623*(pi/2) .F(1/4)

Note that g = v . The curve of least energy is shown in Figure 8 .



Extension of the Curve

So far we have considered a finite segment of the optimum curve, extending from a point of zero curvatur e
(where 41= -pi/2) through a point of maximum curvature (where psi=0) to a second point of zero curvature
(where psi' = + pi/2).Can the curve be extended beyond these points ?

It is clear that 4z must remain in the range [-pi/2, +pi/2] so that the square root of its cosine remains real .
To continue the curve then, the sign of the curvature must change ; we must choose the other sign for th e
square-root . The new segment we obtain has the same shape, of course, as the segment we have foun d
already, just inverted .

The segment we have used so far is just a piece of the infinite periodic wave shown in Figure 9 . In Figure 1 0
we see several curves which correspond to stationary values of the integral and pass through the specifie d
points with the desired orientation . The one on the left is the one which corresponds to a global minimum o f
the energy . The curves containing n half-cycles have an energy n 2 as large as the one containing a singl e
half-cycle .

The curve of least energy passing through two given points with specified orientation is just a portion of th e
general curve, suitably translated, rotated, and scaled . This is illustrated in Figure 11 . The rotated, translated
and scaled curves form a four parameter family .

Variational Approach

We are trying to find the curve for which

	

= f ic e ds

is minimal . This integral can also be written in the form

= f K 2 [1 +
(y')2]1/2 dx,

or, since

	

K = [1 + , )2]3/2 '

(	
(, 1) 2

as

	

- J [1 + (y')215/i dx .

This is of the form

	

1' 5 (x, y, y', y") dx,

and the calculus of variation [pg . 119, 15 ; pg . 190, 16 ; pg . 198, 17] teaches us that for a stationary value of th e
integral,

2

ry - dx 5y, + -2-5Y
," = 0,

where 5 y , 5y ,, and 5y„ are the partial derivatives of 5 with respect toy, y', and y ' respectively :





6..fy =0

5 Y' ( Y")2Y ' _ - [1 + (y )2]7/2 ,

2 y"
gy" -

[i + (y' ) 2 ]5/2

Since gy = 0, .



dx[ U Y ' dxUY"] = 0 ,

and integrating, we get

	

-fy ' + dxgy = A ,

where A is an arbitrary constant. In the above we have closely followed the approach taken by Mehlu m
[pgs . 157&189, 2 ; pg . 43, 6] .

d	 	 2y" 	 lOy(y" ) 2
Also

	

dxgY" _ [1 + (y')2]512 - [1 + (y ) 2 ] ~/ 2

	 2y	 5 Y '(y	
") 2

so we get

	

[1 + (y)215/2 - [1 + (y') 2 ]7/2 = A .

dy"_ dam
Now

	

dy' - dxdx

	

~ y

so

	

y = y

In addition

	

d 1DJ/" ) 2 = Ydy

	

dy

	 1	 5y'	
and

	

dy [1 +
(

,)2]5/2 = - [ 1 + (,, ) 2 1 7/2 '

Using these results in the equation above,

d	 (Y") 2	
dy [l + 0215/2 - A ,

	 (v")2	and, integrating, we get

	

[1 + (y,)2j5/2 = Ay' + B ,

where B is a second arbitrary constant .

Returning for a moment to the integral of the square of curvature, we see that



f K2d = f [Ay' + B]dx= f/I d)' + fBdx

A (y1 - yo) + B (x 1 - xo )

for a curve which starts at (x o , y o ) and ends at (x 1 , y 1 ) .

Now

	

[ 1 -+- )2]512 = K 2

	

I + (y ' )
2

,

so

	

K 2 I/ 1+(y)2=Ay+B.

Also,

	

_

	

dx
d x d s ' d s - /x '

,

SO

	

K 2 I/ 1 + (y/x) 2 = A (52/x) + B,

or

	

K 2 =A}'+Bi

since

	

:x.2 + 5)2 =1 .

Now if

	

tan 4/ = d ,

then

	

z = cos 4' and y = sin 4, .

Remembering that

	

K = d'
we finally see that

	

= ± J A sin 4, + B cos 4' .

Letting

	

A = 1/c 2 cos and B = - 1./c2 sin q

we get

	

c d = ± ,/ sin (4) - q,) .

The scale of the curve is dependent on the parameter c, while the rotation in the xy-plane is dependent on the
parameter cp .

Altogether we have a four parameter family of curves, since we can also choose an initial point and a directio n
for the curve. Conversely, we can find a single curve out of this family which passes through any two points
with orientation specified at both points .

By the way, if we let the line from the initial point (x o ,yo) to the final point (x 1 ,y1 ) have length r an d

direction 8, then

fsc 2ds = (r/c2) sin (8 - q)).
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Summary

We have found the simple equation

:Eck = I/COS(1P - T)

and solved it to find the equation of the curve of least energy in Whewell for m

s=

	

c(cos -1 1/cosOP-89),1/17) .

We also developed a differential equation for the curve in Cartesian coordinates aligned with the axis o f

symmetry,

A

	

V 1 - (y/2c)4

dx -

	

(y/2c) 2

The solution of this equation, for given initial conditions, led to

x = Vic( 2 E (cos - 1 (y/2c), 1/ln) - F(cos-1(y/2c), 1/12) .

We considered the curve of least energy connecting the point (-1,0) to the point (+1,0) with vertical initia l

and final orientations . This curve has minimum radius of curvatur e

F(1/4) 2
C

__

(2pi)3"
'

rises to a height

	

= 2c,

1 F(1/4)4
has arc length

	

Y = 2 (2pi) 2 ,

and energy

	

S =
(2?r) 3

x(1/4)4 ,

or about 91 .39% of that of the simple semicircle approximation .

We have also given a method for finding approximations, consisting of circular arcs, to the curve of leas t

energy .

Note that the curve found here is extensible [7] in the sense that if the least energy curve with orientation a a t

A and orientation ,6 at B passes through the point C with orientation y, then the segments from A to C and
from C to B are themselves least energy curves . (This is not true of the two-arc approximation [8]) . As a
result, such a curve can be computed by a simple, locally connected network .

We have not shown how to find the particular member of the four parameter family of curves which passe s
through a specified pair of points with specified orientation . Presumably determining the axis of symmetry
of the curve would be a helpful first step in this direction . In practical applications the multi-arc
approximation method may be suitable in dealing with this problem . We have not discussed how one migh t
compute the curve of least energy passing through three or more points . Here there is no constraint on the
direction, but the curvature must be continuous . Nor have we touched upon the extension to curves an d
surfaces in three dimensions, a topic which Mehlum addresses [pg. 62, 6] .
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Appendix

In this appendix we determine two integrals needed in the body of the paper .

To evaluate the integral

	

11 = dpsi

o

	

,/cos '

we substitute

	

i 2 = cos psi,

and obtain

	

11 = _ 2

	

cos

	

d
1

	

/ 1_ a

Next, substituting

	

(2 = 1 - 2 ,

,/ 1 - cos t!)

	

dt
we get

	

1 =

	



	

1

	

0

	

.1/f 1-t2 1/1 1_12 /2 '

and since

	

sin-1I 1 - cos ti) = cos- l V cos 0 ,

we finally get

	

f	 d~	 -

	

F(cos"1 V cos p, 1/~) .o ,/ cos ti) -

To evaluate the integral

	

12 = f ' v cos (IC
0

we again substitute

	

i2 = cos 0,

2
ti)

and obtain

	

12 = - 2  cos	
d

	

1

	

I/
1- i 4

Now	 	 4'2	 =	 1+i2-1	 = -V 1+i2_

	

1

	

1/ 1 - t4

	

Y

	

+ 4
.2 -/ 1 - t 2

	

1 - i 2

	

1 _ i4

The integral thus can be split into two parts, the second of which we have already evaluated .
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/

	

1'o evaluate

	

1211=-2f-V cos V	 +

	

at

V l-
~

	

we substitute

	

as before

	

t 2 = 1 - 2

	

-l fo l,/ 1 - cost

	

1 - t2 /2

	

and obtain

	

1 2 - 1 1 = 2

	

2
dt ,

and so

	

1 2 - I1 = 2 1-2 E (cos -1 .V cos 4), 1/ -) ,

since

	

sin
-

V 1 - cos 4) = cos -1 -1 cos 4J .

Finally then,

f'

	

cos 1P dh =

	

[ 2 E (cos -1 ,1 cos 4),1/ V-2) - F (cos" 1 V cos 1P,1/ In) ] .
0

The corresponding definite integrals from 4, = 0 to 4) _ it/2 can be expressed in terms of complete ellipti c
integrals of the first and second kind [pg . 91, 9] .
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Figure 1 : A semicircle connects the points (-1,0) and (+1,0) and has vertical orientation at these points . The
arc in the first quadrant has length  and energy pi/2 .



Figure 2 : Two circular arcs can be spliced together so that they are tangent at their point of contact . The
resulting smooth curse is longer but has less energy than the semicircle .



Figure 3 : An ellipse with major axis, b, oriented vertically and minor axis, a, oriented horizontally . The
eccentricity for which the energy is minimal can be found by differentiation .



Figure 4 : A curve constructed out of n circular arcs . Each arc contributes to the total arc length and the tota l
energy.



Figure 5 : Optimum multi-arc solutions (A) 3 arcs, (B) 4 arcs, (C) 5 arcs, and (D) 6 arcs .
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Figure 6 : A curve constructed from part of the Cornu Spiral . Here the curvature varies linearly with ar c
length along the curve.



Figure 7 : Optimum multi-arc solutions : (A) 8 arcs, (13) 16 arcs, (C) 32 arcs, and (D) 64 arcs .



+ 1

Figure 8 : The curve of least energy. Here the curvature varies linearly with distance along the axis o f
symmetry . A circle tangent at the top is also tangent to the x-axis .



Figure 9 : The infinite periodic solution . This curve also describes the motion of a pendulum oscillatin g
between -pi/ 2 and +pi/2.



Figure 10 : Curv es corresponding to stationary values of the integral of the square of the curvature : (A) 1/2
cycle, (B) 3/2 cycles, (C) 5/2 cycles, and (D) 7/2 cycles.



Figure 11 : Optimum curve passing through two given points with given orientation . It is a member of a four
parameter family of curves obtained by translating, rotating, and scaling the particular curv e
passing through the points (-1, 0) and (+1, 0) with vertical orientation .
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