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ABSTRACT The use of rotationally symmetric operators in vision is reviewed and conditions for rota- 

tional symmetry are derived for linear and quadratic forms in the first and second partial directional deriva- 

tives of a hnction f ( x ,  y). Surface interpolation is considered to be the process of computing the most 

,p4. conservative solution consistent with boundary conditions. The "most conservative" solution is modelled using 

the calculus of variations to find the minimum hnction that satisfies a given performance index. To guarantee 

the existence of a minimum function, Grimson has recently suggested that the performance index should be 

a semi-norm. It is shown that all quadratic forms in the second partial derivatives of the surface satisfy this 

criterion. The 'seminorms that are, in addition, rotationally symmetric form a vector space whose basis is the 

square Laplacian and the quadratic variation. Whereas both seminorms give rise to the same Euler condition 

in the interior, the quadratic variation offers the tighter constraint at the boundary and is to be preferred for 

surface interpolation. 
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1. Introduction 

Two separate themes from the Computer Vision literature come together in this paper: the use of rota- 

tionally symmetric operators, and the idea that several modules of visual perception require that the "most 

comervative" solution that meets a given set of boundary conditions be computed. The two themes are 

combined in an investigation of which operator to use in the interpolation of smooth surfaces from one- 

dimensional boundary constraints. Such constraints arise naturally in a variety of visual problems. 

In the next section we review the role of rotationally symmetric operators in Computer Vision, and we 

derive conditions which linear and quadratic forms in the first and second directional derivatives must satisfy 

in order to be rotationally symmetric. We then discuss the idea that vision is a conservative process, citing 

examples from both figure perception and scene analysis. The "most conservative" solution is modelled using 

the calculus of variations to find the minimum function that satisfies a given performance index. A major 

problem associated with the use of the calculus of variations is guaranteeing the existence of an minimum 

function (see for example Courant and Hilbert 1953, p.173). A theorem of Grirnson(l981, theorem 2) proves 

that a sufficient condition for the existence of a minimum is that the performance index should be a seminorm 

on the space of functions. The condition is not necessary. For example, Horn(1981) has determined the curve 

that minimizes tlle integral square curvature subject to tangency conditions at the end points; the performance 

index is not a seminorm. 

Grimson(l981) notes that many intuitively plausible performance indices based on mean and Gaussian 

curvature are not scminorms, but that the square Laplacian f z ,  + 2 f,, f,, + fi, and the quadratic variation 

f2r + 2 f &, + f ty are. We show here that any quodralic form in f,,, f,,, and f,, is a seminorm. 

To further constrain the choice of performance index in the infinite set of quadratic forms, we require 

in addition that the quadratic form should be rotationally symmetric. We prove that there are csscntially two 

different choices: t11e sqirarc Laplacia11 and the quadratic variation. All the remaining possibilitics are linear 

combinations, that is, fonn a vector space with these two as a basis. 

F- 
To choose bctwccn the square 1,aplacian and the quadratic variation, we consider their respcctive Euler 



conditions and natural boundary conditions (Courant and Hilbert, 1953). The Euler conditions are ideiitkaL 

but the natural boundary conditions, which are derived from the statics of a deformed thin plate, favor the 

quadratic variation since they offer tighter constraint in this case, 

2. Rotationally symmetric operators in vision 

A major concern of Computer Vision is the isolation of constraints that combine with the information 

provided in the image to yield an interpretation. Early work on polyhedra (Clowes 1971, Huffman 1971, 

Mackworth 1973, Waltz 1972, Sugihara 1978, 1981, Kanade 1981) focussed upon the discovery of constraints 

deriving from the image forming process, constraints that relate image fragments, like junctions and lines, to 

their scene counterparts, vertices and edges. As Computer Vision turned its attention away from plane-faced 

objects to the natural world, other constraints were required. Often the constraints expressed some facet of the 

intuitive notion of "smoothness" and did so in a way that supported useful computations (Strat 1979, Brooks 

1979, Ikeuchi and Worn 1981, Woodham 1978, Horn and Schunck 1981). Recently, smoothness and image 

forming have been combined using differential geometry (Grimson 1981, Witkin 1981, Binford 1981). 

One constraint that is usually implicit, but is occasionally made explicit, expresses the idea that perceptual 

processes are often approximately isotropic. It seems that humans usually do not show strong directional 

preferences when detecting edges, motion, or reflectance boundaries. We seem to be equally adept at per- 

ceiving the layout and orientation of a visible surface regardless of its orientation relative to the view vector. 

UIlman(1976) argues for an explicit isotropy constraint in his work on subjective contours (see also Knuth 

1979). 

Processes that are isotropic are naturally computed by rotationally symmetric operators, since the values 

tlxy return are unaffected by the coordinate system claosen for the image. Conversely, rotationally symmetric 

operators compute isotropic information. As we shall sce. many operators that have been proposed for vision 

are nct rotationally symmceric but directionally selective. Some authors have, however, propowd rotationally 
-- 

symmetric operators, particularly for early visual processing. 



Precise definitions of rotational symmetry for functions, operators (or functionals), and, by specialization, 

matrices are given in the following section. In the rest of this section we assume that the definitions are already 

understood. 

Some kinds of blurring in an image forming system can be approximated by convolution with a 

Gaussian. The rotationally sprnetr ic  Gaussian can be defined by: 

Pratt(1978) presents several techniques, such as convolution with the generalized inverse of the blur 

fiinction, for restoring the image. (see for example, his figures 14.2.1,14.3.2). 

The Laplacian A = f,, + f,, is well known to be rotationally symmetrict and its use has becn proposed 

several times in Computer Vision and Image Processing. If an image is blurred in a way that can be ap- 

proximately modelled by passing the image through a system with a Gaussian point spread hnction, then it 

can bc sharpened by subtracting a multiple of its Laplacian (Rosenfeld and Kak 1976, p.184, Prewitt 1970, p. 

107). Pratt(1978, figure 17.4.5) illustrates the use of the Laplacian for enhancing the edges in an image. 

Weska, Dyer and Rosenfcld(l976) note that convolving a step edge with a Laplacian operator gives rise to 

a pulse pair: a negative pulse at the transition from the lower plateau to the edge, and a positive pulse at the 

transition from the edge to the upper plateau (see also Horn 1974, Marr and Hildreth 1980). They suggested 

that the image intensities at the locations of the positive and negative pulses could be used to set thresholds to 

use in segmenting the image into regions. 

Scvcral authors have noted the relative insensitivity of human perception to small intensity gradients . 

(Hcrskovits and Binford 1970, Marr 1976, M a n  and Hildreth 1980, McCann et. al. 1974). They have noted 

that the cffcct can bc explained by assuming that the visjon system uses operators approximating second 

derivatives. 'This so-called lateral inhibition effect sccrns to be performed by center surround operators in 

the retina (see for example riichtcr and Ullrnan 1980). The Laplacian is a rotationally sylnnxtric second 

A proor of Ulis 15 given In Scction 3 below. 



differential operator, and an attractive candidate to perform lateral inhibition. 

The use of the Laplacian for edge detection was proposed by Horn(1974) in a study of the determination 

of lightness. Following Land and McCann(l971), Horn restricted attention to images of planes colored with 

patches of uniform reflectance or color. Within a patch, grey level variations are due to small variations 

in illumination, and they are smooth compared to the abrupt changes between patches. The conventional 

approach to detecting significant changes in intensity had been to note that the gradient of the image is 

small within a region, but is infinite across a reflectance boundary between regions, For a particular image 

tesselation and quantization of grey levels, the gradient is always finite. It is usually much larger, however, at 

a reflectance boundary than it is within a region. Worn(1974) rejected using the gradient since "the first partial 

delivaeives are directional and thus unsuitable since they will for example completely eliminate evidence of 

edges running in a direction parallel to their direction of differentiation." The Laplacian is the lowest order 

linear combination of derivatives that is rotationally symmetric. A reflectance boundary can be delected by the - 
paired positive and negative peaks on either side of the boundary, and localized by noting the position where 

the Laplacia11 crosses zero between the peakst, 

Marr and Hilbreth(l980) have proposed that edges are detected in the human visual system by an 

operator that approximates AG, where A is the Laplacian, and G is a rotationally symmetric Gaussian. We 

shall show in the next section that the application of a rotationally symmetric operator, such as the Laplacian, 

to a rotationally symmetric function, such as the Gaussian, is itself rotationally symmetric. It follows that the 

Marr-Hildreth operator is rotationally symmetric. Marr and Hildreth note that intensity changes occur at a 

ngmber of scales and are often superimposed. They suggest that an image should be smoothcd by a number 

of bandpass filters to isolate the changes at a particular range of scales. The Gaussian is chosen as the filter to 

oprimi~e localization of changes in both the spatial and frequency domains. 

We notcd above that the Gaussian and the Laplacian have figured prominently in early vis~ral processing. 

J'hc Gnussian has mostly been uscd to approximate the point sprcad filnction corrcqmding to ihc blurring of 

----- - 
k c  l h f o ~ d ( l c ) R l )  for more on the d15tinctton between tlc~?ciion and io ta l !ml~nn of an  intensit) change 



a point source. Marr and Hildreth deliber~lely introduce Gaussian blurring. They further note that AG can be 

approximated by a difference of Gaussians, GI - G2. Nishihara and Larson(l981) note that the difference of 

Gaussians is to be preferred on grounds of effciency. Macleod(1972) proposes an edge detection operator that 

is the differcnce of two Gaussians. However, no analysis of its performance is given, and no indication is given 

that the operator approximated a low-pass filtered second derivative. 

Regarding the use of the Laplacian, Marr and Hildreth do not seem to make isotropy an explicit con- 

straint on edge detection. Instead, Hildreth(l980,page 13) notes that "a number of practical considerations, 

which will be illuminated in the discussion of the implementation, suggested that the . . . operators not be 

directional". Suppose instead that directional operators are used. The simplest algorithm for edge detection 

has two stages. First, the image is convolved with the directional operators in "sufficiently many" directions. 

Second, the outputs are combined to determine the orientation and extent of intensity changes. Regarding 

the firs stage, both Marr and Hildreth(l980, page 193) and Hildreth(l980, page 40) claim that the cost of 

convolving the image with a "sufficient" number of operators is excessive. They show that a single rotationally 

symrnctric operator (the Laplacian) gives precisely the same results if a condition called "linear variation" 

holds. Regarding the second stage, Hildreth(l980, page 36) obscrves that edgcs in' a direction close to that of 

the mask are elongated in the direction of the mask. She also notes that operators at several orientations give 

significant responses to any given edge, and that combining the responses is non-trivial. 

There are two essentially different issues here that need to be clearly separated. Intensity changes first 

have to be detected and then locali7ed as a set of "feature points" marking the position of the change in the 

image, and characteristics of thc corresponding edge. Thc detection of feature points is inherently isotropic, 

as Hom(1974) noted. The feature points have then to be combined to produce descriplions of edge segments. 

Edge scgmcnts arc clearly directional, indeed a central problem concerns the determination of the direction of 

an edge in an image. Thc computation of rich descriptions of cdge segments is, as Hildrcth notes, not at all 

casy. Marr's(1976) original Primal Skctch work was almost cntirely conscrncd with it. Binford(1981) discusses 
"P= \ 

thc application of dircctionnl [ll)criitors to compute the dircctiondity of an cdge. 



The Gaussian and Laplacian are not the only rotationally symmetric operators that have been proposed 

in computer vision. Prewitt(l970, p. 107) observes that "derivatives of all orders can be used to form isotropic 

nonlinear differential operators, provided that derivatives of odd order appear only in even functions. The 

simplest of these . . . is the squared gradient", namely B . V, where V is the column vector 

Earlier in the same article, Prewitt(l970, p. 85) suggests thzt "the Hankel transformation enters naturally 

in the analysis of systems with isotropic point spread hnctions and greatly facilitates restoration." The sugges- 

tion does not appear to have been investigated in computer vision. 

We noted earlier that an important aspect of modelling perception is the isolation of constraints which 

capture some facet of smoothness. Horn and Schunck(l981) consider the determination of optical flow fields - 
and note that "if every point of the brightness pattern can move independently, there is little hope of recover- 

ing the velocities". One way to express the additional constraint of smoothness is to minimize the integral of 

the performance index 

where u and v are the z and y components of the optical flow, and subscripts denote partial differentiation. 

We shall show in the next section that this operator is rotationally symmetric. In many simple situations the 

smoothness constraint is significantly wrong only at occluding boundarics. 

Wc conclude this review of the use of rotationally symmetric operators in vision with Grirnson's(l981) 

work o n  surface interpolation. As it will be the focus of Scction 5, our remarks will be brief. The Marr-Poggio 

Lhcory of human stereo vision yields the disparity (scaled depth) at matched edge pcints that are computed 

by thc Marr-Hildrcth approach described above. The disparity map is as sparse as thc sct of matched edge 

points, whcreas human pcrccption is of smooth surfaces passing through thc given disparity points. Grimson 



(1981) interpolates a smooth surface from the given set of edge points by a local parallel algorithm that applies 

a rotationally symmetric operator to minimize the quadratic variation introduced above. 

3. Conditions for rotational symmetry 

A function f:!R2 H R is rotationally symmetric if its polar form is only dependent on radial distance 

r = (x2 + y2)i and not on direction 4 = tan-' %. Clearly, a function is rotationally symmetric if and only 

if it can be represented as a hnction of (s2 + y 2 ) 4 .  An alternative definition can be given that is often more 

convenient for functions, and that can be generalized to operators. A function is rotationally symmetric if and 

only if it yields the same value under an arbitrary rotation of coordinates. 

An anticlockwise rotation from one set of image coordinates (s, y)  to another (X, Y) is effected by a 

rotation matrix: 

[;I=["" ".'"dl[] 
--sin+ cos q5 Y 

For convenience, we shall denote cog 4 by c and sin 4 by s. To simplify notation, we shall not make 

explicit the dependence of the rotation mauix R on the angle 4. A function f is rotationally symmetric if and 

only if the untransformed version f(s, y) is equal to the transformed version f(X, Y). We shall occasionally 

find it useful to borrow the mathematical shorthand that equates a function f(X, Y) with a hnction of a single 

vector argument f(Rjz, y]T). 

Example I. 'I3c function f i ( x ,  y )  = (z2 + y2) is rotationally symmetric: 

Exan~plc 2. 'TIK function f i ( x ,  y) = z;y is rlor rotationally symmetric: 



y2 - s2 
= zy COB 24 + 

2 
sin 24, 

and so h ( X ,  Y) = h(x, y) only when 4 = 0 or = E .  

We can extend the definition of rotational symmetry to operators 

An operator 0 is rotationally symmetric if O ( f )  is a rotationally symmetric hnction, for all hnctions 

f:R2 !-+ R. 

Exanzple 3. The hnction produced by the operator 0 1 ,  defined by 

O 1 ( f ) ( z ,  y) = ef(x~v) 

is rotationally symmetric if and only i f f  is. In general then, the operator O 1  is not rotationally symmetric. 

However, the Gaussian is a rotationally symmetric operator as it combines examples 1 and 3. 

Most of the operators of interest in computer vision are combinations of the first and second directional 

derivatives 8, &, &, &, 6, and a3. We need to determine the effect of a coordinate rotation on the% 

directional derivatives. By the chain rule, 

8 B X B  B Y B  - - - -- 
& & a x + ~ ~  

B 8 

Similarly, 



It follows that 

where T denotes matrix transpose. Since R is a rotation matrix, its transpose equals its inverse, so 

Operators in general, and differential operators in particular, depend upon the choice of coordinate 

frame. To make the dependence of the differential operator on the choice of coordinate frame explicit, we 

introduce the notation 

With this notation, equation (1) becomes 

V(X ,Y )  = RV(z,,), 

where V(,,,) is the column vector 

Proposition 1. Linear combinations of & and & are not rotationally symmetric. 

Proof. Any linear form in the first directional derivatives has the form 

'I'hc conditjon for rotational symmetry is 



By equation (2), 

and so the linear differential operator is rotationally symmetric if and only if 

[A PI = [A  PI& 

so that [A p] is an eigenvector of R. The eigenvalues of R are c + is and c - is. So there are no real 

eigenvectors unless 4 is a multiple of 7r. Since the condition is not satisfied for all 4, no linear combination is - 
rotationally symmetric. 

The same style of analysis can be applied to other combinations of first derivatives such as the operator 

It is easy to show that 02(X,Y) is not equal to 02(,,,), for example when 4 = f .  

In section 2, we referred to an operator proposed by Prewitt(l970), namely 

that is, the kector dot product 

V~,V)V(Z>Y~t 

More gcncrally, wc often considcr quadratic differcntinl cxprcssions sach as 



Such an expression is cal1ed.a quadraticfonn if the matrix is symmetric, that is p = v. By equation 1, 

V ( X , Y )  = RV(z,,), 

so that 

if and only if 

where R is an arbitrary rotation matrix, and 

Since the transpose RT of a rotation matrix R is the inverse of R, a quadratic form is rotationally 

symmetric if and only if the corresponding matrix M commutes with all rotation matrices. We will refer to 

matrices M having this property as being rotationally symmetric. 

Lemma 1. A 2 by 2 matrix is rotationally symmetric if and only if it has the form 

P-4 Proof. We rcquire RM = MR for all rotation matriccs R, that is 



Expanding, and equating terms, this holds if and only if 

Alternatively, only the operations of scaling by a constant k and multiplication by a rotation matrix R' 

commute with all rotation matrices in two dimensions So M = kR' for some scale factor k and some rotation 

matrix Rt.p 

Proposition 2. Up to scaling, the only rotationally symmetric quadratic form in and & is V(,,) . V(,,,). 
Proof. A quadratic form in & and has the form 

To be rotationally symmetric, as well as symmetric (so that it is a quadratic form), Lemma 1 implies that 

h = (  

p = 0. 

It follows that the matrix in equation (3) is A12.1 

The operator f :  + f ,  is commonly used as a measure of the contrast across an intensity change. Notice 

that othcr popular mcasurcs of thc contrast. such as (f, + 5,)2, (f, - f,j2, or 1 1  f i l l  + 11 f u l l  are not rotationally 

symmetric, and therefore respond differcntly to edges in different directions (sec Rosenfeld and Kak 1976, 

~ 2 7 9 ) .  

We now considcr linear and quadratic forms in 6, ,&. &, and 6. It is convenient to riot assume 

-AZ_ = __ "12 for the developments that follow. 
OlY9('~y O@z 

'i'hc first task is to find a matrix R' so that 



The (i, j) element of the matrix R will be denoted by rij. Applying the chain rule as before, but this 

time to relate the second derivatives in (X, Y) to those in ( x ,  y), we find that the four by four matrix R' can be 

written in the form 

Definition 1. (ben Israel and Greville 1974, page 41)Let A = [aij] and 3 = [bij] he m by n and n by n 

matrices respectjvely. The rnn by mn matrix A @ B, called the Kron~ckerproduct of A and B, is defined by 

multiplying each element a( i ,  j) of A by the matrix B, to form the block matrix 

With this notation, 

so that 
,- 

Recall the dcfinilion of the matnv R from equation (0) 



Note that the elements of A  QP B are naturally indexed by 4-tuples: 

We state without proof a number of simple properties of the Qg operation. They are essentially 

straightforward consequences of the properties of ordinary multiplication, and are stated without proof. 

Proposition 3 
( i )  ( A  8 B ) ~  = @ B~ 

( i i )  ( A  @ B)-' = A-' @ B-' 

q ( i i i )  ( A @ B ) @ C = A @ ( B @ C )  

For the remainder of the paper, we restrict attention to the application of @ to R and its transpose. 

Proposition 4. The rotationally symmetric linear combinations of 6, &. &. and 6 are linear 

combinations of the Laplacian A = & + &, and the smoothness measure & - &. 
Proof. Let the linear combination be 

Fol lo~ ing the proof of Proposition 1, the condition for rotational symmetry is 

[ A  P v EIRT CWT = [A  P v El, 



for all rotation matrices R and the corresponding rotation angle 4. Expanding RT @ RT by equation (7), we 

find 

so that 

It follows that 

The determinant of the upper left 2 by 2 submatrix is 

(4s4 + 4a2c2) = 4g2. 

Since this is not zero for all angles 4, X - ( and p + v arc both zero. A basis for the infinite set of 

linear combinations satisfying these conditions is provided by setting X and p equal to one, which proves the 

Proposition. I 

ncfore turning to quadratic fornls, analogous to Proposition ('3, we define a projection. operator on 

?A R~ @ RT that makes cxplicit the assumption f,, = f,,. 



Definition 2. Let D = Idij] be a 4 by 4 matrix. The projection o f D  is the 3 by 3 matrix w*: 

That is, the second and third columns as well as the second and third rows are combined by addition. 

Proposition 5. 

[a b b @[a b b clT 

is equivalent to 

where D' is the projection ofD. 

The proof is by equating terms, and is omitted. We now give the main result of this section. 

Proposition 6. The rotationally symmetric quadratic forms in &, &, &. and $ form a vector 

space. If B$j; = &, the matrices associated with the rotationally symmetric quadntic forms project to 3 by 

3 matrices of the form 

It follows that the rotationally symmetric quadratic forms that satisfy o&& = && form a vector space 

that has the quadratic variation. (&I2 $- 2(0%)2 + ($)2, andthe square Laplacian, (,% + $I2, as a 

basis. 

Proof. Since thc matrix in a quadratic form is defined to be symmetric, a quadratic form in &, 
-- $,. and ,$> can be written 



where A and C are symmetric 2 by 2 matrices, and B is 2 by 2. As usual, the quadratic form is rotationally 

symmetric if and only if 

where R is an arbitrary rotation matrix. It follows that 

and hence that 

Equating submatriccs, we find that for dl rotation angles 4 

Consider equation (10) or (11) when 4 = 3. Equating terms, we find that 



Similarly, equation (8) or (9) when 4 = 9 yields 

Expanding equation (8) for general 4 yields 

Combining equations (12) through (16) we find that in order to be rotationally symmetric, the matrix 

has the form 

A matrix of this fom projects to 

whcre cn = b l p  - a11 and j3 = b12. It is easy to show that linear combinations of matrices of this form are 

of the same fonn, so that the rotationally symmetric quadratic forms constitute a vector space. Clearly, the 

square Laplacian and the quadratic variation, corresponding to the cases a = 9 ,  = 0 and a! = 0, P = 1 
F -- 

re~pcctrvcl!i, form a basis.~ 



We show that the measure of smoothness of optical flow proposed by Horn and Schunck(l981) is rota- 

tionally symmetric. Recall from section 2 that the measure is defined by the operator 

We cxtcnd the Kronccker product operator @ to vectors, and then show how to define S(u, v )  in terms 

of vector Kronecker products. 

Definition 3. (a) Let a = [al.  . .a,] and b = [bl . . .b,] be vectors. The Kroneckerproduct of a and b is the 

mn dimensional vector [albl. . .alb, anbl. . .ambn], 

(b) By extension, if Q = [ O l .  . .Om] is a vector of operators and f - = [ f i .  . . f,] is a vector of functions, the 

Kronecker product of Q and f - is the mn dimensional vector of hnctions 

[01(fi). . .()il(fn). - .Om(fn)I. 

The components u and v of optical flow are functions of x, y, and t .  Recall that V(z,ul = [& &IT. 
According to definition 3, 

so that 

If the coordinate frame is rotated through C$ by the matrix R, the optical flow components becomeR[u vIT. 

'The Horn-Schunck measure is rotationally symmetric if and only if 



where I4 is the 4 by 4 identity matrix. The rotational symmetry is a simple consequence of Proposieion 3, 

A rotationally symmetric operator has the general form 

O(Z,,)(V, v 8 Q, Q 8 Q 69 v, . .I, 

and its application to a rotationally symmetric function f (x, y) has the form 

To see that this is rotationally symmetric, we rotate the coordinate frame to (X, Y) by a matrix R as before. 

Smcc O and f are rotationally symmetric, all the occurences o fR  (including its Kronecker square, cube, and so 

on) introduced by the frame change can be deleted. It follows that the application of a rotationafly symmetric 

operator to a rotationally symmetric function is itself rotationally symmetric. In particular, the A(G) filters of 

the Man-Hildreth theory of edge detection are rotationally symmetric. 

4. Vision as a conservative process 

The second theme of this paper is that a number of vision modules construct the mosl conservarive inter- 

pretation that is consistent with the given data, and that is subject to an appropriate sct of suitably formulated 

constraints. A major concern of Computer Vision has always been the isolation of constraints that enable the 

interpretation of an image. Constraints embody observations about the way the world is, at least, most of the 

time. Although surb observations can be as specific as cataloging familiar figures and shapes, it has proved 

more fruitful to first uncover constraints that correspond to general observations that are widely applicable. 

Constraints are used together with the data computed from the image to construct an interpretation. 'me 

rqmxnrations of the information from the image and the constraints determine, and are determined by, 

thc intc~prctiiton process. For example, carly blocks world programs sepreserlted coilstraints as catalogs of 

labcllings, an approach that Icd naturally to search proccsscs for intcrprctation (Clowcs 1971, Kanadc 1981). 



As Computer Vision has turned its attention to images of the natural world, constraints have concerned 

the smoothness of surfaces and movement. The relationship to boundary value problems of physics and 

mathematics suggests itself. The information computed from the image sets the boundary conditions, and the 

constraints determine which (and whether a) solution to the boundary value problem is found. Horn(1974) 

solved an instance of Poisson:~ problem using Green's functions to determine the lightness of an image. 

Following a different approach, Ullman(1979a) studied the perception of apparent motion generated 

by two successive frames consisting of isolated dots of equal intensity moving independently of each other. 

Without constraint, all possible pairings, or "correspondences", of dots in the first frame with dots in the 

second are equally likely. Ulman defined the "most likely" correspondence to be the one that minimized the 

sum 

where n is the number of dots in the first frarne, m is the number of dots in the second frame, and xi j  is one if 

the ith dot of the first frame Pi is paired with the jth dot of the second frarne Qj, else zero. The weight qij is 

the "cost" of pairing P, with Qj, and might, for example, be related to the image distance between the paired 

points. The problem of finding the minimal correspondence is considered in terms of integer programming. If 

correspondences are assumed to be covering mappings, the following linear constraints apply to the x i j :  

and 



Ullman restricted the set of Qj that can be paired with Pi to those whose positions were close to Pi. Foliowing 

Arrow, Hunvicz, and Uzawa(1958), he set up the iterative scheme 

The approach can be extended to mappings that are not one-one, as well as to continous motion. A major 

problem with the approach is guaranteeing the convergence of the algorithm. This is determined largely by the 

properties of the costs qi j ,  but this was not investigated, aside from a comment on the empirical determination 

of the qi j  (see also U h a n  1979b). 

One limitation of Ullman's approach is that it is restricted to minimizing a known linear objective hnc- 

tion that is subject to linear constraints. The method can be extended to constrained nonlinear programming 

in which the goal is to minimize a known function f(g) subject to a set of equality and inequality constraints 

of the form g;(z) 5 0. In general, however, criteria based on other than intuition need to be found for 

selecting the function f to be minimized. To do this, one can apply the calculus of variations (see for example 

Courant and Hilbert 1953, chapter IV). The familiar differential shows how to find a real valued parameter 

that minimizes some function. The calculus of variation extends the differential calculus by showing how one 

can determine afinction f ", which is subject to a given set of boundary conditions, and minimizes the integral 

over a givcn region of integration G+. The hnction F is called a "pcrforrnance index" and generalizes the 

notlon of cost function associated with linear and nonlinear programming. In the next section we shall con- 

sider the choice of a performance index for interpolating smooth surfaces from one-dimensional boundary 

conditions. 
Tor sitnpiicit) of presentation, we restnct attcnt~on to functjons f of one or two variables x, y 



Associated with a variational problem of the form (17) is the Euler equaiion, which provides a necessary, 

though by no means sufficient, condition which a function f must satisfy if it is to minimize the variational 

integral g(f). For the particular variational problem given in equation (17), the Euler equation is 

In the case that there is only a single dependent variable x, the partial derivatives are total and the Euler 

equation becomes 

There are two important considerations associated with the use of the calculus of variations. First, unlike 

the differential calculus, the existence of an extremum f * of the integral given in equation (17) cannot be taken 

for granted. Courant and HiIbert(1953, p. 173) note that "a characteristic difficulty of the calculus of variations 

is that problems which can be meaningfully formulated may not have solutions". Conditions for the existence 

of a minimum have recently been proposed by Grimson(l981) and will be discussed in the next section. 

Second, associated with any variational problem is a set of natural boundary conditions which imposes a 

necessary condition on any feasible solution to the Euler equation at the boundary. Courant and Hilbert(1953, 

p. 211) note that "in general, we can, by adding boundary terms or boundary integrals essentially modify 

the natural boundary conditions without altering the Euler equations". Determining the "most conservative" 

solution means finding a performance index that guarantees the existence of an extremum hnction f*  and 

providcs the tightest set of natural boundary conditions that are consistent with the given data. 

The calculus of variations has rccently been applied by a number of authors to interpolate plane and 

space curves and surfaces. We review thc applications in that order. First, Horn(1981) has recently determined 
A@- 

the curw which passes through two specified points with specified orientation while minimizing 



where R is the curvature and s is the arc length. This is the true shape of a spline used in "lofting" (Faux and 

Pratt 1979,p. 228). In a thin beam, curvature is proportional to the bending moment. The total elastic energy 

stored in a thin beam is theiefore proportional to the integral of the square of the curvature. Since the shape 

taken on by a thin beam is the one which minimizes the internal strain energy, the curve that solves equation 

(20) is called the "curve of least energy". The variational problem is to minimize 

This has the form of equation (17). Horn(1981, page 19) shows that the Euler equation is 

where 4 is the angle between the tangent to the curve and the axis of symmetry. The solution to this 

differential equation is an incomplete elliptic integral of the first kind. Bmdy, Grimson, and I~ngridge(l980) 

consider a "small angle" approximation to the curve of least energy, in which first derivatives can be ignored. 

' f i e  performance index that they use is fi,, for reasons that will become evident in the next section. They find 

that in that case the solution is a cubic. Hom(1981,page 2) notes that the fact that a curve has near minimum 

energy does not mean that it lies close to the curve of minimum energy. Note that the existence of the curve 

of least encrgy is g ~ ,  lranreed as Horn has derived an analytical formula for it. Approximations to it, such as 

Brady, Grimson, and I,angridgcls are similarly guaranteed to exist. 

Barrow and Tenenbaum(l981) investigate the problem of interpreting a line as the image of a space curve 

that is an occluding boundary. They observe that the problem has two parts: (i) determining the tangent 

vector t at each point on the space curve, and (ii) determining the surfice norma% at each point, @vcn that it is 
- 

cimstraincd to be orthogonal to the tangent. 



They suggest minimizing a performance index F that is a function of the curvature n and the torsion T 

(possibly together with their derivatives), and expresses a suitable notion of "smoothness". They first consider 

uniformity of curvature as a measure of smoothness, that is F = & = q, where s measures distance along 

the space curve. They reject this measure on the grounds that nl can be made arbitrarily small by "stretching 

out the space curve so that it approaches a twisting straight line". To overcome this difficulty, they propose 

that the space curve should also be "as planar as possible or, more precisely, that the integral of its torsion 

should be minimized". 

Barrow and Tenenbaum finally suggest finding the space curve that projects to the given image line and 

minimizes the performance index [Vl2, where h is the binormal. They report that an algorithm based on 

their analysis produced the "correct 3-D interpretations for simple and closed curves, such as an ellipse, which 

was interpreted as a circle". However, they note that the rate of convergence was slow and dependent on the 

initial data. No consideration is given to the Euler equations, to the existence of an extremum given a line 

drawing (z(s), y(s)}, or to the natural boundary conditions associated with the performance index [%l2. 
Empirical evidence that the method works on a number of simple test cases is encouraging; but there is no 

analysis of the scope of the method. 

In the same paper, Barrow and Tenenbaum(l981) consider the interpolation of a smooth surface from 

depth and local surface orientation values at all points along the surface boundary. Their approach is to 

"seek a technique that yields exact reconstructions for the special symmetric cases of spherical and cylindrical 

surfaces, as well as intuitively reasonable reconstructions for other smooth surfaces." (Barrow and Tcnenbaum 

1981). They observe that if n is the surface normal of a cylinder, then the x and y components of the normal 

n, and n, are linear functions of x and y, so long as the axis of the cylinder lies in the z - y plane. This - 

observation forms thc basis of an algorithm to estimate the surface normal by least squares fitting of the 

parameters of the partial derivatives of the normal. As before, no analysis is given of the Euler equation, the 

natural boundary conditions, nor the convergence of thcir algorithm for diffcrcnt types of surface. 



5. A performance index for surface interpolation. 

In the review of the application of the calculus of variations to visual perception in the previous section 

we drew attention to three important considerations. First, the Euler equations provide a necessasy condition 

on possible extremal functions. Second, the existence of an extremum cannot be taken for granted, even when 

the minimization problem seems plausible on some grounds. Third, the natural boundary conditions impose 

a necessary condition on any feasible solution to the Euler equation at the boundary. The most thorough 

analysis of the second of these problems in Computer Vision, framed in the context of surface interpolation, is 

due to Grimson(l981), who proves the following theorem. 

Theorem (Grimson, see Rudin(1973)) Suppose there exists a complete semi-norm F on a space of fitnc- 

tions 65, and that F satisfies the parallelogram law. Then, every non-empty closed convex set 8 C 9 contains a 

unique element f* ~f minimal. norm ~ ( f * ) ,  up to possibly an element of the null space ofF.  

A semi-norm F is a function V H IRf from a vector space V to the positive real numbers that satisfies 

Infomally, z semi-norm is a generalization of the Euclidean metric, and provides a measure of a vector. The 

second conditim generalizes the triangle inequality, for example. The null space of the semi-norm F consis% 

of all those vectors vo that map to zero. Since 

any clcmcnt of thc null space can be added to a vector of minimal norm to yield another vector of minimal 

nimn. Hence thc qualifying phrase "unique . . . up  to possibly an element of the null space of F". The 

parallelogram law statcs that 



for all vectors v ,  w. Finally, the semi-norm is complete if all Cauchy sequences converge. As is well known, 

the elements of vector spaces can be hnctions. This enables Grimson to prove the following Corollary, that 

guarantees the existence of an extremum function in calculus of variations "most conservative" interpolation 

problems. 

Corollary (Grimson 1981). Let the set of known points be {(xi, yi, z,) I 1 5 i 5 n). Let 5 be a vector 

space of possible functions on R2 and let 8 be the subset of 4 that interpolates the known data. That is, for all 

functions fr8, f(si, yi) = ri. Let F be a complete semi-norm on 8 that satisfies the parallelogram law. Then 

there exists a pnique (up to the null space of F) function f* that interpolates the data and has minimal norm. 

In particular, i f F  is a performance index then there is a function f that minimizes the integral 

In short, if the conditions of the Corollary are fulfilled, the existence of a "most conservative" surface that 

meets the boundary conditions is guaranteed. As we shall see, the condition of being a semi-norm is the most 

restrictive required of the performance index. The conditions are sufficient to guarantee the existence of a 

minimum, but they are not necessary. For example, tc2 is not a seminomt; nevertheless Horn's(l981) analysis 

shows that there is a unique minimum. It is far from clear whether Barrow and Tenenbaum's(l981) analyses of 

curve and surface interpolation have a guaranteed minimum in all cases. 

Grimson notes that several intuitively plausible performance indices are not semi-norms. For example, 

the two most popular measures of curvature are not. Suppose that KI and tc2 are the principal curvatures of 

a surface(Faux and Pratt 1979, p. I l l ) ,  then the Gaussian curvature n, is the product nlm, and the mean 

curvature r c ,  is the sum rcl + Q. For a surface f (z, y), 

- 
t Which IS why Rrady, Grimson, and Iangridgc(l980) used the mall angle approximation 2,. 



Since the curvatures can be negative, while a semi-nonn is required to be positiv 

investigate 

e, it is necessary to 

Grimson(l981) observes that n:(af) # lo[rc:(f) because of the denominator. Iff, and f, are small, the 

denominator is approximately equal to one, and the numerator is a seminorm. Note that it is 

Grimson shows that the mean curvature'rc, is also not a semi-norm for exactly the same reason. The 

analogous small angle approximation is 

the square Laplacian, which is a semi-norm. We find it convenient to denote the square Laplacian by f i .  

Grirnson(19El) chooses the quadratic variation 

an the grounds that its null space, consisting of all linear functions, is smaller than the null space of the square 

Laplacian. If we demte the quadratic variation by F,, we see that the approximation to the Gaussian curvature 

(4-F 1 @it en in equation (21) is +. 
How shall we choosc a performance index for surface interpolation, given that it has to satisf~j the condi- 

ticins of the Corollary? We have exhibited three candidates, are there more? Noticc first that each of h e  

semi-norms given above are quadratic forms in f,,, f,,, and f,,. It is easy to show that any quadratic form 

satisfies d ~ e  semi-norm and parallelogram conditions, and so &here is an infinite set of plausible scrni-nortns to 



use to find the "most conservative" interpolated surface. We need an extra condition, and the one we choose 

is rotational symmetry, since we suppose that surface interpolation is an isotropic process. Proposition 6 of 

section 3 shows that the rotationally symmetric quadratic forms in f,,, f,,, and f,, form a vector space that 

has the square Laplacian and the quadratic variation as a basis. The choice of which performance index to use 

is thus effectively reduced to the square Laplacian, the quadratic variation, and linear combinations of them. 

How shall we choose between those two? In the light of our earlier discussion, two criteria suggest themselves: 

the Euler equations and the natural boundary conditions. 

Proposition 7. All rotationally symmetric quadratic forms lead to an identical Euler equation 

Proof. We exploit the fact that the square Laplacian and the quadratic variation are a basis of the 
ps, 

rotalionally symmetric quadratic forms. 

a.Square Laplacian: The performance index is 

By equation (18) the Euler equation is 

that is 

as required. 

b.Qucldratic variafiort: The Euler equation is 



provided that f is continuous of fourth order. 

c.Linear combinaiions offi andFp: Linear combinations clearly give rise to the identical Euler equation4 

The gist of Proposition 7 is that there is no difference between F, and r;i in the interior away from the 

boundary conditions. We can see the result of Proposition 7 in an alternative interesting way. Recall that 

is the semi-nom approximation to the Gaussian curvature (equation 21). The latter expression is an instance 

of a divergence expression, and Courant and Hilbert(1953, p. 196) note "If the difference between the in- 

tegrands of two variational problems is a divergence expression, then the Euler equations and therefore the 

families of exuernals are identical for the two variational problems." 

Since F, and f i  have identical Euler equations, we analyze their natural boundary conditions in order 

to choose between them. We could approach this problem directly; but a more revealing route is available. 

Courant and Hilber*41953, p250) consider the statics of a thin plate. In particular they determine the shape it 

assumcs for a given force p(s)  along its boundary l? and bending moments m(s) normal to its boundary. 

Courant and Hilbcrt noac that the energy stored in the plate is the intcgral of a quadratic form in tfie 

principal curvatures q and ~2 of the surface, a result which can be derived from noting that the clastic energy 

a t o m !  i!l a thin strip (corresponding to any normal section) is proportional to dlc square curvdture. It follows 

that the storcd cncrgy is locally 



0 
where p = ;;. It follows that the energy stored in the thin plate is a convex linear combination of the 

square Laplacian and the quadratic variation, which formally establishes its connection to the visual percep- 

tual problem studied here. Observe that setting the weight p = 1 gives the square Laplacian, while setting it 

equal to zero gives the quadratic variation. Note also that this expression for the stored energy makes use of 

the small angle approximation to the curvature used in equation 21. 

A second source of stored energy derives fiom the boundary conditions that are represented as a %action 

p(s)  along the boundary I' of the plate and a bending moment m(s) appiied normal to the plate. Courant and 

Hilbert(1953, p. 251) show that the natural boundary conditions associated with the plate are 

that is 

where H is the Hessian matrix 

Glndwell and Wait(1979) quote version of this result due to Agmon(1365), that the biharmonic operator, 

which we showed was the natural boundary condition for the surface interpolation problem, has Dirichlet 



forms that are linear combinations of the square Laplacian and the quadratic variation. As an example of the 

constraint, consider a straight line contour aligned with the x-axis. Then [s = [I 01 and [xn yn] == [0 11. 

The natural boundary conditions reduce to 

The constraint is tightest when p is not equal to one. A similar result can be obtained for a straight line 

contour inclined at an angle a to the x-axis. The first of the natural boundary conditions is 

If p = 1, there is no constraint from the cross derivative. If p is not equal to 1, at most one of the 

terms can be zero. We conclude that interpolation problems in which the small angle approximalions used 

throughout our analysis hold it is preferable to choose p not equal to one, that is to say to not use the square 

Laplacian as a performance index. The quadratic variation is an obvious choice, but so are linear combinations 

of tke square Laplacian and the quadratic variation for which g is not equal to one. Grimson(l981) chooses 

the quadratic variation since its null space is smaller than that of the square Laplacian. This is a precise way 

of saying that it imposes a tighter constraint. For example, the function f(z, y) = xy is in the null space of 

the square Laplacie.1 but not in the null space of the quadratic variation. Since the quadratic variation has 

the smallest null space among the linear combinations of the square Laplacian and quadratic variation, this 

is an additional reason for choosing it. We would further expect that any differences between the quadratic 

variation and the square Laplacian would show up near the given boundary data but not in the interior, far 

rcmoved from the boundary. This is what Grimson(l981) finds in a set of exmfslcs that compare surfaces 
2--% 

inrer-polatcd using the quadratic variation and the square Laplacian. 
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