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Abstract: We develop a systeniatic approach to the discovery of parallel iterative 
echetnrs for soh ing  t,he sIlape-fro~i~-sl~i~;i ir lg problem on a grid. 12 standard procednse 
Sol- firltlirlg such schetncs is ontlincti, arid s~il,scqncntly usrd to cleri?.c s c ~ e r a i  new ones. 

' T l ~ c s  slli~j)e-froti1-s11i~~lir~g problcni is known to bc ~ i l a thc~ i in i  icail) etjrlivAent to a aon- 
linear first,-orJcr partial difrereutial equation in  surfc1ce elevai lo11 'I'P avoid thc  proLlc~ns 
il~hcrc.nl in ~~ le thoc t s  used to  solve such cqnations, wc follow ~ r ~ v i o ~ s  ;YO, k in r~fo:, '~it~il~iti~Igg 
t h c  pi.ol)!c~ll as one of firltlir~g a surface oricr~tntior~ ficId Ilia{ ~:iini-niist :: the integral of the  
briglitncss error. T h e  cnlculus of variations is then c~nployed to rlci.I\ 2 the nylropr ia te  
Enlcr eq~~nt , ions  on which iterat,ive scllclnes can he bnscd. 

Tlte p rob l~ l i l  of mini~nizing the iritcgral of thc br ighlnc~: :  erms t c m  is Ill poscd, sirice 
' 1 1  it has a n  infinile number of solutiom i n  terms of stdat:c oricntCiti::;l I l r lc rs .  !i prcvious 

method used a regularization tcchniqilc t o  ovcrcoruc this difliclLlty Arl cxtrn t m u  ivas 
adtled t o  rhe integral to obtain ail approximation l o  a sollilion !!!st w;:.:: as mmoth as 

possible. 
We pojrit out here thnt  surface o r i c ~ t n t i o n  has to  obey an Integrrihilliy rc::ar;traitjt if it is 

to corrcsportd to an  111idcrlying smooth si~rfacc.  Regu12riz,ttiii~i :i~riI:cii?s (Ii) llat (:n:iw-&ee 
tha t  the sarfnce orientation recovered satisfies this cnnstrnint. C'o~l~cc;<:c~ltlj., wc attempt 
to  devclop o mcthod thnt  enfolxxs int rgrability, b u t  fail to G n con: xgcni, it rsnt ive 
scheme based on the  resulting Eulcr cqnations. Jl'e hhow, howcvcr, l '!LA s~rc!i ;L whejne 
can he  ticrived if, irlstead of strictly cnforcjng the co l~s t~rn i~ l l ,  it pcnxIty t c r i n  r1crivc.d 
Croln the constraint is adopted. This new schenic, while it can be  c x p ~ c s s d  ,;;?::ply and 
clcgmtly using the surface gradicnt, unfortunately c m n o t  dcal witit ~:oil:;trail;t,s imposed 
by occluding boundaries. These constraints are c r n ~ i a l  if mlbigtlities irt t h e  boiution of 
the shape-f rom-sl~adi~ig  problem a1.e to he avoided. 

Diffcrci-it schemes result if one uses different p;unmcters to drscsibc s~lrlilcr: cricnta- 
. . 

iion. We drrive two new sclmnes, using u ~ l i t  surfncc normals, t h t  f x i ! ~ t  atc t he  i i tco lpo-  

rajior, of thc occluding boattclary information. T h e  sclle~ites, while m r m  comjltcx, have 
several acivanl ages over previons ones. 
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1. Introduction 

Wc bcgiii by reviewing the sllal)c-fi.0111-sliatlil~g proLleui, its formulittiori as a 11linimizalio11 
probiem, and tlie use of the calcitlus of variations in deriving the partial differential 
equations governing tlie solution of the nlinimization problem. 

1.1. Preview 

'rhe first study of the shape-froni-shading problenl was undertaken by Horn (1970 & 
1975). There, the partial differential equation in surface elcvatiorl fundamental to the 
problrm was converted to an equivalent set of five ordinary diffcre~~tinl cqnations called 
the characteristic strip eqtmiions. Algorithms based directly on nnillerical solution of the 
discrete a p p r o s i ~ ~ ~ ~ t i o n s  of these equations arc inherently sequential in nature and have 
dificulty with unrwoiclablc noise in the image data. 

Laier, a metliod lending itself to parallel solution on a grid was developed by Strat 
(1979) using ~nini~uization in the discrete doniain. Strat used the gradient to express 
surface orientation and so was unable to dral with occluding boundaries: wllicli are known 
to provide crucial constraint ncedcd to avoid ambiguity in the solution, as shown by Bruss 
(1983). For this reason, another approach, based on the strreographic projection of the 
Gaussian sphere, was explored by Ikeuchi nuci Born (1981). The calc~ilus of variations 
was used there for tlic first time in the analysis of the shape-from-shaditlg problem. Their 
ncthoti  deprndcci on the use of a reg-ulnriz,~tio~i tern1 in the functionnl to be minimized. 

I!i this ?2pcr, wc carefully c::nmine thc  role ni'the v:ri.%tionn! cnlcnlr~s In :he derivatim 
of iterative S C ~ C I I I C S  for shapc from shading. Previous wethods are discussed in dctaii, 
a r~d  rntio~~;tlizctl i r ~  tt.rn;s of t l~o  ncw point uf view, wherc npproprL~te. 'The application 
of rogl~lariznt~ion tcchniqiics tro  ell-posed problrnis is callcil into quest,ion. 

IS'e n ~ t c  in particular that the sulface graclient should satisfy ail integrability con- 
strnillt. C:~:ided by ?his  ohc rwt ion ,  r e  n t ~ ~ c ~ ~ i p t  to inlposr integrability in a strict sense. 
tVe arc, however, unil'olt; to  c!i=ri-\re ;L convt.rgent i t~ra t ive  schcti~e based on t1;e nppropriate 
Euler ecluation. We learn that such a schcn~e may be found if we instead incorporate a 
penally tcrnl based on the integrability constraint. This wc cle~ilonstrate first using the 
gradient to specify surface orierltntion, as has been customary. The resulting iterative 
schcnic is shown to be rclcztcd to that developed by Strat.  

As alrcady stated, use of the surface grntficnt precludes incorporation of the occluding 
boundary information. !Vc overcome this difficulty by taking the navel approach of 
adopting surface-nonnal i-cctors directly. This lcads to iterative schemes that are more 
complex, but ~ n a n a g c : ~ b l ~ .  We finally develop two such scll ellies that: 

e ensure the result is (at least approxiniatcly) integrable, 

P, avoid the sinoothing introduced by a regularizing tcrm, and 

e pesmit use of the known nonnals on the occluding boundary. 

None of the previous ~iictliods coliibincd all of thcse features. 



1.2. The shape-from-shading problem 

Monochrome imagcs of srtiootlily cnrved surfaces with l~omogeneous reflecting properties 
co~l l~i ionly  cxliibit a variation in  image irrndiance, or shading. This is due  to the inter- 
actiorl of four principal factors: the illuiiiination, the  shape of t,he surface, the reflecting 
characteristics of tlie material,  and tlie imnge pr~~jectiors.  The shape- from-shading prob- 
lem may be regarded as thn l  of extracting the  shape information encoded in the irradiance 
data .  I t  therefore entails inversion of the image-forming process. 

13ecnuse n nuaiber of factors arc confounded in irradinnce values, the shape depicted in 
a n  image cannot be determined unless aclditional infornlation is provided. Of consiclcrable 
utility in this regard lias been the reflectance m a p  (IIorn, 19771, which specifies the 
radiance of a sl~rfacc pntch as a function of its oricntntion. The  rrflectance nlap can 
b e  computed fro:ii tlic bidj~*ectionnl rcflcctc2nce-clistri~~t1tio1i function and tlie light-source 
arrxnge~neril (IIorn R r  Sjobrrg, 1979). 7~su:dly i t  is inore practical to  determine the 
rcflcctance m a p  experinlentally, by lneans of a cdibrnlion ol~jcct  of known shape,  for 
example. 111 any case: the reflectance m a p  encodes, inextricably, inforsnation about the 
reflecting properlies of the s u r f x e  and the distribution and intensity of the  light sources. 

111 adopting the  rcflectnnce map ,  wc iniplicitly make the assumption that ,  for the given 
scene conditions, the radiance emanating from a smnll surface pntch is dependent only 
tjn the orientation of the patch,  and not its position in space. This requires tha t  the light 
soarces 'and the viewer be d i s t m t .  Wc also assume tha t  the image is formed by ortho- 
graphic image projection, and that  the surfarc has hornogcneoas reflecting properties1. 

-1 Fonnnlly, given a n  ii;lagc, 1 5 ,  and a rciicctnncc lllai), I<, thc sh~~~-tc-froru-s11a~li11g prob- 
lcm may be rcgnrdeil as t h a t  of recovcri~lg a sniooth snrfaie, z ,  sntisfying the image  
irradinnce equn t ion 

E ( z ,  y) = 12 (z ,(z ,  y), z,(z, y)) 

over some cloiuair! 0 of the image, -4ny given conditions on z on thc  bo l~ndary  do  of the 
region 62 should aiso LC s;i,lislicd. Here z, and zy d ~ ~ l i ) t l ~  the first partial derivatives of z 
with rcspcct to :E 2nd y rcspcctively. Sins,? these dc r i~a t ives  will be  used frequently to  
specify surface orientation; i i  is convenient to in trochee the slior t-llai~tl no t  a t '  lon 

T h e  gradient of the surface z a t  the point (x,  y )  is just (p(x, y), q(x, y)).  The  gradient 
points in the direction of stccpest nscelit and lias a l a g ~ ~ i t u d e  equal to the slope in tha t  
direction. I t  is further uselcul to note that a norinal of the once-difFerentinb1e surface, z, 

T 
at (x, Y ,  z ( z ,  y)) can be  written 

T T 
This  follows from the fact t h a t  (1,0,  p (z ,  y))  a n  ( 0  ( , )  are t;mgcnt vectors and 
t h a t  illc norninl must  be  parallel to  their cross-product. For many p-urposes one can use 
- 



either thc surface graditnt or tlie norliial to specify surface oricritation. Each has its own 
aduantagrs, as we shall jee. 

I t  is caslomary to  choose the direction of plc).jcction to be p,~rallel to i l ~ e  z-axis. 011 
the o c c i d i n g  b o m d n r y ,  the dircction of projection is tangent to the surface. Tha t  is, the 
nornlal is ortliogonal to  a unit vector 8, parallel to the z-axis. Thus we note that  at least 
one of p and q become nnboundcd on the occluding boundary. 

1.3. Employing t h e  variational calculus 

Suppose we seek, over some tloniain, a smooth surface satisfying various constraints. I t  
is uscfiil to obtain frot~l kbe given constraints a non-negative expression tliat measures 
the departure of a partirufar s u r f i ~ e  from a satisfactory solution. We 111ay then search 
for a snrface tliat niinili~izes the expression. As the value of the expression depends on 
the choice of surface, or function, it is termed a functional.  

The search for a filsrction that  ~n in i~n izes  an intcypl  expression is the  niajor concern 
of the calculus of variat ions (Courant Sc Hilbert, 1953). Here, we find the valuable result 
that the extrcma of functionals must satisfy m associated Euler equation. This equation 
can usunlly be determined in a straightforward way from the functional. We can, as a 
result, t rmsform our surface-recovery problem from one of r~iininiizing a functional, to  one 
of solving one or more partial difrerelitinl equations. Sonle of the relevant mathematical 
details are presented in t h e  Appendix of this paper. 

In seeking a surface tha t  best matches the aforeiuentioncd constraints, we reqnire a 
global minimnni of the corrcspo~idiiig functional. ZT(,wcvc~-, li'lnler eql~nt ioils orlly spccify 
conditions on oxtrcmal vali~cs. R'c sl!n!l make the strong assirluption in this paper tha t  a 
s o l u t i o ~ ~  to  tlie Elder cquntion conititrites a globnl 11;iihirii;l of i l l<  I'uncl;onal, satisfying 
the consirailits opt,inlally. Wc shall as a result be iielutietl if we cr~co~lnter  a surface 
tha t  gives rise to either a local minili-intn, a local ~ n n x i m u n ,  or a11 inilcxion point in the 
functional, for it too will satisfy the ISuler equation2. The a~sumpt ion  here is diificult to 
avoid, given that  we shalt be dealing ~ ~ i i h  functimals involving n rc-tlectar~ce map  whose 
malyric form uiny not bc known in advance. 

Let us suppose tha t  we obtain from an Enler equation a surface that  generates a 
global ~nininiuni of the appropriate functional. I t  may be tha t  the constraints on which 
the functional was originally based are satisfied exactly by this function, fTowever, this 
need not be  so. Problems can readily be formulater1 for which there are no perfect 
solutions. But here we find a very important property of this approach: the surface tha t  
best matches the constraints will generate a global rnininl~:tn of the fnnctional. This 
is important to  vision problenis as thcy typically involve images that  are noisy. Exact 
solutions niay not exist in this situation. For exntuplc, in the  presence of noise, there may 
not be a smooth surface that  satisfies the iniagc isradiance cquntion E ( s ,  y)  = R(p,q)  
exactly. There will, llowcver, be a surface that  ininimizes the integral of the  square of 
the difference between E ( x ,  y) and 12(p, q ) 3 .  



It is i~nportant  to observe that there are typically a11 infinite number of surfaces 
siitisfying the Elllrr equation. Without further constrairit, we do not linve a well-posed 
p ~ ~ b l e n i .  In sonic cases thc  original pro1)leni includes boundary  condition^ that,  taken 
together with the resulting p x t i ; ~ l  differc~itial equi~tions, lead to a unique solution. In 
the case where the unknown function is unconstrained on the boundary, the calcul~is of 
variations itself provides so-c~illed nalurul bowtdary conditions (see Appendix). 

Care must be tnkcn when formulating the functional to enslire that it provides suf- 
ficient constraint, for otherwise thcre may be an infinite nnmber of solutions even with 
boundary conditions. Such a difficulty may be remedied by the addition of a suitable 
regularization tern1 (Poggio & Torre, 1984). This is discussed in more detail in the Ap- 
pendix. 

1.4. A procedure for der iv ing  i t e r a t ive  schemes 

We now consider a way of deriving iterative schemes for recovering surface shape. In the 
event that we seek a surface, z, best satisfying various requirements over !2, we do the 
following: 

(1) Select a functional, F ,  non-negative over Q, such that 

constitntcs n measure oC the depat,turt: of z from an itleal solution. 

(2) Abmrb i::tc F any cmstraint that z sliould satkfjr ovcr Q, using Lsgra;lgian 
multipLcrs if appropriatt?. 

( 3 )  If the problem is not wcll poscd as it stands, add a .;uitat~le regularization term. 

(4) Find the E~ilcr cquation that ~ n ~ ~ s t  1)e satisfied by the surface t nlinimizicg the 
f u n c t i o d  I. 

(5) Detcnnir:c whn t  boanchry conditions are ncedcd to ensure a unjque solution. If 
there are no constraints on the function around the bouridary d o ,  detcr~ninc the 
appropriate natural boundary conditions. 

(6) Develop a discrete approximation of the associatcd Euler ecpation, using finite- 
difference methods. 

(7) lhsign an iterative scheliie that converges to the solution of the discrete approxi- 
mation of the Euler equation. 

The approach, of course, follows the same pattern if the surface is parameterized in 
a diRercnt way4. Also, similar results can Le o'nlainecl by applying t h e  finite-clement 
mctliod directly to Ihc functional I. 

As we shall sce later, the most dificficult step here is typicrtlly the discovery of an 
iterative scheme that enables one to recover n solution of thc cliscrete npproximation of 
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the E n l ~ r  equation. Sllcll a schenle should be elfrcient, convergent, and preferably lend 
itself to pnrallcl implement a t '  ton. 

Note  that it is better to work with a functional that evaluates to zero for perfect 
solutions. In this way, one is relieved of the onus of showing that tlllere are no unwanted 
surfaces that cn,use the functional to have a smaller value than that generated by a 
satisfactory solution. An additionnl advantage of functionals cvnluating to zero is that 
one may use them to check how clase an iterntivr scheme is to  a solution. This is c1iKc1ilt 
with other functionals, as the ~ninimum value is usually unknown. 

2. Previous work 

Only one shape-from-shading scheme (Iltcuchi &. Horn, 1981), prior to this work, has been 
devised by explicit recotme to the calculus of variations. Two other schemes, however, 
(Strat 1'379, Slnith 1982) can be rationalized by application of the calculus of variations. 
We now exainine these three schemes in historical sequence. 

2..1. Strat's method 

Strat (1979) arrived at his method by application of the standard calculus to the discrete 
domain. We present his analysis here as we wish to show later how it can be related to 
a new schane we develop using the calculus of variations. Rr~tionalizing Strat's scheae 
dircctly in 'Lcrlus of tho ~ar-iational calcidu; is cornplicntcd by the f x t  that it is based on 
an integral (rnthcr than n t f i fTc.~~~ti i~l)  iiltegralility term. 

First, iet the b r i g f i l w s ~  c t w r  nt a point ( r c ,  y j  be 

This i s  the tliiferencr bc t,ween tlt: observcd irratliancc E ( L ,  y) and that prcdictccl from the 
~stim;i,teil gr.rdicut jp(x, iij, q(xl 9)) .  In the discrete case, ive might wnsidcr nrininlising 
the total brightness crrnr5 

n m 

by suitable choice of the gradient at  each picture cell in the image0. In this vein, then, 
by setting the derivntive of the expression with respect to pkl and qn.1 equal to  zero, we 
obtain, for 1 5 k _< n and 1 _< ! _< m,  the two sets of equations 



wlierc RI, and R, are the  partinl derivatives of R with respect to p and q respectively. 
These contlitjons can be trivially sntisficcl if we choose p,] m d  qTJ so that 

Since this equation represents but one constraint on the two unknowns pZJ and q;j, we 
expect that,  in general, an infinite nulnber of grnciient values will satisfy it, for a particular 
i and j .  Many solutions can then be constructed by combining arbitrary choices from . 
these sets of possibilities at each picture cell. 

The problem is clearly not well posed as stated. We can, however, make use of the fact 
that the gradients at neigllboring points arc related. Consider an infinitcsi~nal segment, 
6C, of a curve on the surface. The change in z nlong the segment is given by 

where 6s nncl 5y  are the changes in s and y nlong tlie segmcnt. The total change in z 
along a curve then is just the integral of (pdx -t qdy).  7n the case of a closed curve, C ,  
this integral should be zero. Tlms, if ( p ( z ,  Y), q(x, y) )  is the gradient of a silrface z(x, Y) 
then 

for all closed cwves, C, in the region C17 
Tlet E denote the spacing bctwcen picture cells. Consirlcr an clm:ant;lry square path, 

with t ~ I P  p i c t ~ ~ r e  cvll ( i .  j )  in ihc Inner I ~ f i  hand corncr. If' w p  !ct .i: colrr_.qxmcl to _r nlld j 
corrt:spond to y, then the integral counter-ciockwise aronllcl this p t t h  can be estimated 

by 

This cspression can be o b t a i ~ ~ d  by ~ p p r o x h a t i r i g  the dope nlorq; each of the four sides 
by the aivcrage af thc slopes nt thc beginning nntl c11d of each side. The rcsult is exactly 
equal to zero when z is quadratic, as can be secil using 'I'aylor series cxpam~sion8. The 
difference between this expression and the exact loop integral is (perhaps surprisingly) 
of order e4. 

On s discrete grid, we wish to mi~liniize two errcm: the hrightness error, summed over 
al! grid points, and the error in the loop integrals, su~ilmed over all dementary square 
paths constructed by connecting the renters of mighboring picture cells9. 

The total contribution of tho first error term clearly depends 011 the number of nodes 
in tllc grid, that is, it depends invcrscly on c2 for a fixed image size. We show later 
that the second term, on the other hand, varies directly as c2.  To make the relative 
contribution of the two terms independent of the grid spacing, we multiply the first term 

* To ( ' x ~ L c ~ .  it c(~wI.I~ zvso \VII('II 2 1 ) ~  w i t t t ~ l  i ts  R p ~ l p ~ ~ m i i l l  ~ ~ ~ l t i ~ i ~ l j l l g  0111~ ~ ~ ' I I I ~ S  of thc form 
r2?j1,  for i < 2 itlld j < 3, for i = j ,  fi)r i = O wit11 j ii~.hitri~ry: i ~ l d  for j -- O with k nrl~itrary. 
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by t2  and divide the second term by c 2 .  The quantity to Lc ~nininiized then 

IIerc X is a factor that  weights tlie relative contributions of the brightness error and 
the errors in the elementary loop integrals. It can be made small when the irradiance 
measure~nents nre accurate, and the reflectance map is known with precision". 

For the composite error t9errn to be a niinimum, the dcrivntives of the error sum with 
respect to pkl and qkl must be zero. Now, pxl arid q k l  occur in tlie expressions for e k , l ,  

ek-l,l, ek-1.1-1 and ek,l-l. So perfornling the indicated differentiations and equating the 
~esu l t s  to zero, one obtains, for 1 < k < n arid 1 < 1 < m, 

where Rp and A, are the partinl derivatives of R(p, q )  with respect to p and q, as beforei2. 
We can changc d u n m y  variables again m d  gather terms in a particular way to obtain 

a m  discrete esti~nates of the second partial derivatives pliY a11d q I ,  respectively (times e2). 
(Notc again that the  subscript i in the discrete wrsion corrcsponds to x in the continuous 
case, while the subscript j corrcsponds to y.) Strnt wrote his result in terms of various 



intermediate expressions, so the equivalence to discrete estimates of partial derivatives 
was not apparent. 

At illis poirit we can isol;~te the t e r m  in pZI from one eqnation, and the term in g,j 
from the other, if we let 

where and qi,j are given by 

respectively. In this way, we obtain 

An iterative scheme can now be developed in which the tmms pZJ and 9%) on the  left-hand 
sidc of tlie equations are considered to be new values that are to be computed by inserting 
the cilrrent values into the riglit-hand sides. Then we obtain: 

This schcme appears to work rcnsonably wcll, having good stability and convergence 
proper lics. 

It is clear t?iat one has to do something special about the boundary, since the above 
resalt applies only for 1 < k < n and 1 < 1 < m. On the bour~dary, different expressions 
apply, which can be obtained by carefully determining wllich of the terms are missing 
from the result o f the  initial differentiation, Pnt  anotl~cr way, the expressions for g3, E j ,  
- - 
v,,, and h,] require thc old values of pa3 and qII at picture cells bordcri~ig on the region 
in which one is applying the iterative scheme. That  is, bcforc the scheme can be applied, 
p and q  nus st be known on a border that is one picture cell wide. 

Note that one cannot incorporate occluding boundary information in this scheme 
because, on the occluding boundary. at  least one of p and q lxcomes n n b o u ~ ~ l e d .  Strat ,  in 
fact, was forced in his cxamplcs to specify the gradient along some closed curve other than 
the occlucling boundary. This kind of information is not 11sualiy available in applications 
of machine vision. 

2.2. The method of Iket~chi-Horn 

Ikcuchi a ~ i d  IIorn (1981) were thc first to apply the rnlculns of variations to the shnpe- 
from-shading problem. They eflcctivcly solved n functional mininiization problem in 
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recovering object surface nrientn tion. T t  is known t h ~ t  the occhltling bountfary provides 
iinport;tut, c~ns t ra in ts  on the solution of thc sliape-fro~~~-sll:~ding prohle~n (I3russ1 1983). 
Thi: difiiciilty with using the gindicnt to sjir.cif~- ss-sface oricntaiion is t l i ~ t ,  as already 
mentioned, at  least onc of p and q is unbonndcd on tlie occludirlg boulidary. 

This problem can be ovcrco~iie by specifying s ~ ~ r f a c e  orientation in another way. Con- 
sider the mapping from pq space to fg spacc specified by tlie equations 

2~ - f = -  and g = - -  24 

1 + fi -t p2 + q2 1 + d-. 
It  is easy to verify that f 2  -t g 2  5 4 for all visible parts of a s~irface. The orientation 
of a point on the occluding boundary cor~wpontfs to a point on a circle of radius two 
in fg space. Thus occluding bo~lndxries present no dificulties now, The correspondence 
between pq space and the Gaussian sphere of possible orientations can be rationalized 
in terms of the gnomonic projection frolil the ccrlter of thc sphere onto a tangent plane. 
T,ilicwise, the correspondence between fg spacc and the Gaussian sphere can be thought 
of in terms of the stereographic projection from a point on the sphere onto a plane tangent 
to the sphere at  tlie opposite point (see Ikc\~chi and IIorn, 1981). 

We now seek appropriate f and g  values at  ex11 point in the iaiage. This we may 
r e g a d  as a search for two fi~nctions, f and g, defined ovcr 0, that corrcsporid to a sn~ooth  
surface satisfying the image irradiance equation 

E ( x ,  ?I) = q f ( x ,  $4, g(a ,  Y))  

(Note that the rcriectnncc map here has been paraiuetcrized on f and g. )  . .w 

\iaie now cicv~iop an approj)rizt~ f t ln~t imai .  I';oting ti1;l.t J and g ~h0t1Id 
rcspond to a surface that not:ld produce tlic image if illutninatcd the same 
actual surface, we adopt the integral of thc brightness error 

// ( ~ 3 ( x ; ~ )  - ~ ( ~ ( x , ~ ~ , ~ ( x ,  y ) ) ) ? d x d p .  
I1 

idcaiiy cor- 
way as the 

We could, at this point, try to add a tern1 tha t ,  depends or1 the loop integrals, as Strat 
did. A problem with the use of stereographic coordinates is that the expression for the 
loop integrals becomes complicated. We have 

so that py - q, == 0 yields 

This expressjon, even when mi~ltiplied by (4 - f2 - g2)2,  is quite colnplex a i d  leads to  
even more complicated Euler equations. 

Yet without additional constraint the problem is not 1 ~ 1 1  posed. As we saw earlier, 
the minimisation of the total brightness error done  does not constit t ~ t e  a well-posed 
problcm. In the above case TVC can choose, st each point (z, y), any f and g  for which 



R(f ,  g) = E ( x ,  y) .  I11 general, there is a one-diiiie~~sional family of possibilities--contours 
of constant I? in fg space. 

We ii.oilld expect, hott-ever, that neighboring points have siliiilaz orientations, so that 
a typical "solution" of this form would not be reasonable. Ikcuchi and Horn dccided to 
add the nieasure of "lack of smootliness" given by 

-4 solution that produces a small value will be one that keeps the fllictuations in f and g 
small. Adding this term to the brightness error, we obtain the functional 

that is to be minimizecl by choosing f and g. Here, again, X is a scalar that assigns a 
relative weighting to the terms. 

The additional expression can he thought of as a regularization term13. Such rt term 
can be addcd to a functional in order to obtain a solution in the case that a ininimization 
problem does not have a unique solution. 

The Euler equations for this minin~ization problem can be simplified to read 

whrrc R j  and I?, arc the partial derivatives of Z($, 5 ~ )  with rcspcct to f and g and 

is the  Laplacian operator. 
These Eulcr cqt~ations do nofl t ixw a unique solution without ncldit,ional constrnint. 

in 
i t-ltl constraints avnilnble to us here arc the ~ a l n c s  of f and g on :he occluding 1)ot:ndary. 

Finding the solution of the E d e r  eqmtions with this particular set of boundary conditions 
l~sually consti1,utes a well-posed prob1e111-a!thougl this depends on the exact nature of 
the reflectance map, R,  and the image, E. 

At this point we introduce a discrete approxin~ition of the Lnplacian. The J,nplacian 
of a function at a given point is appsoxiniatcly ~ q l ~ r l l  to a constnllt tiincs the difference 
between a loci~l average of the function and its value at the point. Tlic factor of propor- 
tionality depends on the way in which the local avorage is computed. So, for example, if 
we use the simple finite-diffcrcnce approximation 



2. l'rovio~~s work 

- 
where the local nvcrage, f i3, is given by 

The same can be done for g ,  of course14. I:sing these finitedifference npproximations in 
the Euler equations derivcd above, we obtain 

where we have isolnt,cd the tcrms in fCJ and gT7. An itcrative schelne can now be developed 
in which these pnrticulnr terms are considcrcci to be new values to be co~iiputed by 
inserti~!g the current values into the renlaindcr of the expression. In this fashion, we 
finally arrive at the scheme 

IIere, as before, E clcnotes the spnci~lg betwwn picture cells, while 7 m d  17 are the local 
a-erages of f and 9 .  

~ P L  l lb l : ,  : S C ~ C ' I I I C  , I I)~>~APS i o  worL rc;~sorlnlly ~ o l l ,  having good stability imd convergence 
propcr~ics. JVc sh3U scc I;tti:r, however, that thc solntions Tor swface oricutation may not 
correspo~id to art undcrlyir!g 317100th st~rfacc a d  that solt~tions may be d i s lo r td  by thc 
prrsencc of t h e  regularizing term. The degrcc of distol-tiori depends on thc parameter A.  

2.3. Smith's approach 

Smith's method (Smith 1982) was derivcd by npplication of the standard calculus to the 
discrete domain. We now rationalixc his method using the variational calculus. Surface 
orie~ltrrtion can he parameterized in lrn space, where 

P I = --- . and m = - 9 
I- v l  + p 2  + q2 d-. 

This corresponds to an orthograpliic projection of the Gaussian sphere onto a plane 
tangent to the spherc nt one of the poles. We ncxt adopt a rcgulnrizing term and minimize 
the ftmc t i o d  



From the associated Ealcr eqnations, we obtain 

where v4 is the biharmonic ~ p e r a t o r ' ~ .  
We need, once again, to impose boundriry conditions to avoid ambiguity in the so- 

lution. Fi)r the biharmonic equation we need to specify l and m on the boundary, as 
well as the norn~al  derivatives of 1 and m. The nornzul d e ~ i v n t i t ' e  is tlie derivative in the 
direction of the outward rlortlial to the boundary curve dR. Note that while the values of 
1 and rn otl the occl~itling boundnry arc known, it may not be obvious what tlie normal 
derivatives of 1 and m ought to be. Since they are not sprcified they must obey the 
appropriate mtura l  boundary condition. 

We can now use the simple finite-diifcrence npproxim a t '  ]on 

where 

The sauie can be done for m, of c o ~ i r s ~ ' ~ .  Isolating t h e  t e ln~s  irt E z 3  ai~c! m,;, me obtain 

which lcatls to the iterative scheme 

The biharmonic eqmt,ion and its variants nrc known to require careful treatment. In 
the iterative schenle as written above, for exanlplc, the new values are based directly 
on old values. This is called the Jacobi ~licthod, and is appropriate for parallel itnple- 
mentation. But this met,liod is unst'iblc for computational niolccules that arc discrete 
approxirnntio~is of the bihnnnonic operato:. A stable iteration can be achieved if one uses 
insieatl the Gauss-Seiclel nlcthotl, in which t ? ~ e  coniputstion of a n c ~ ~  value at one picture 
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cell uses the new values of those picture cells already visited in a raster scan of the image. 
This riletliod, horvever, does not lerld itself to paridlri i~npl t~~i~enta t ion .  An alternative 
stabilizing technique ctcpcnds on :he use of slii~othiilg between steps of a Jacobi iteration. 

The more complex boundary conditions mentiol~cd above are reflected in the fact 
that the computntional ~nolecule used as the discrete approxinlation of the biharnlonic 
operator requires values for 1 and m in a band two picture cells wide bordering on the 
region in which the iterative sclienle is applied. It is not enough to know the values of I 
and m on the occluding boundaryi7. 

Smith reported difficulties with the above scheme and incorrectly concluded that 
smoothness constraints fail to propagate boundivy conditions by more than a few pixels 
in the image. In fact, by a suitable application of the nforcn~e~itioned stabilization tech- 
niques, the schenle can be made to work. Note that fewer p r o l ) I ~ ~ n s  are encountered if 
(1: -+ 1; A rn; A mi)  is used in the above functioa;tl as the regularization term. This is, in 
part ,  because the Eulcr equalions then contain the I q l n c i m  operator, for which simple 
iterative schemes exist that are well behaved; but mainly because the treatment of the 
boundary is simpler. 

2.4. Depth from gradient 

A use of the variational calculus in a subsiduary problem arises in the proble~n of recov- 
ering depth froui the surface gradient. Let us suppose that we have determined surface 
orientntion over the region $2. The relative depth of surface points may be determined 
from thc gradient (p, q) by n w w s  of the equality 

that relates infinitesinla1 changes in s, y and z .  Integrating along a curve C fro111 (so, yo) 
to (x ,g ) ,  we obtain 

Z ( X >  Y) = 4 x 0 ,  YO) + 1 (P dz t q dg). 
C 

This simple method of integration performs badly when thc data, are noisy. A depth value 
obtained at some point will, in these circunistances, depend on the integration path that 
was taker! to get there. 

It is better to find a best-fit surface z to the given compone~its of the gradient, p and 
q. This we can accoinplish by mininiizing the fnnctional 

whose Euler equation reduces to 

Once again, note that this cquation docs not uniquely specify a solution without further 
constraint, In fact, we can add any Imr~iionic functionl"o a solution to obtain a different 



solution also satisfyi~lg the given Enler equation. In the case here there are no a priori 
boundnry conditions ~ I v e n  to 11s. Titilt is, the function sought is not restrained or1 the 
boanctary. The calcultis of variations provides lis in this situation with natiird boiliidary 
conditions that ~i lust  Ijc satisfied by the  solution. For this particular problenl, the natural 
boundary conditions t u r n  out to be (see Appendix) 

where 

is a normal vector to the boundary curve an and s is arc-length along the boundary. So 
the component of (z,, zy) norriial to the chosen boundary curve must match the norlnal 
component of (p, q)19.  

With these boundary conditions, the solution is still not quite unique, since an ar- 
bitrary constant can be xddcd to z without changing the functional. This reflects the 
fact that one cannot recover absolute depth from the gradient (and thus from shading 
information). To get a particular answer, one can fix one of the depth values, or fix their 
average. 

Using the discrcte approxilnation to the Laplacian employed earlier, we obtain the 
iterative scheme 

is a local average of z ,  while 

arc e: t im~tes  of tile partial derivatives pR. and q ,  respectively. This is as derived by Horn 
and reported Ly lltelichi (1983). (Note again that the subscript i in the discrete version 
corresponds to n: in the colitinuous case, while the subscript j corresponds to y.) 

In addition t,o finding the ciiscrete approximation of the Euler equation, we also must 
find the discrcte approximati011 of the bonnclary condition. This can be done easily, 
provided that 11ie houndary curve is polygonid, with horizontal and vertical segnicnts 
only. This rcslriction does not provide n proliem in o w  simple situatio~i. Now z, = p 
on vertical scg~ucnts of the boundary, while zy = q on the horizontal segments. These 
conditions may be translated into 



respectively. These relationsliips can be 11scd to modify ihe con~putakion of the average, 
-. 
z, , ,  for points on thc edge of the region ill which depth is to bc ~~cconstructetl .  Altcrna- 
tively, these equations can be used to providc phniltolli deptlt vnlilcs on a border of one 
picture cell width around that  region. In this case the coutputntion of the average can 
proceed in the saliie fashion for all points. 

3. Smoothness and integrability 

Methods tha t  a t tempt  to  recover shape inforr~lation encoded in an image usunliy confine 
their attention to smooth, or piece-wise snzooth, solutions. Sn~ootliness, however, is a 
loose term that  may be interpreted in many ways. 'So he specific, we here define a graph, 
z ( z ,  y) ,  to  be  slnooth over a region R in the xy-plme if py = q r ,  tha t  is, if 

This is a property of c2 surfacesxO. Because they must be twice-differentiable under this 
definition, surfaces tha t  have edges (like polyhcclra) are excluded, and it may be argued 
tha t  this accords with our intuitions on smoothness21. 

Let us now look more closely at  the "lack-of-smoothness" term used in the Ikeuchi- 
Horn method. Suppose that  we present n shape-from-shading problem to the program by 
providing it with an image, a reflectance map,  and the occluding boundary. The image 
just happcns tc, bc tha t  of a Lambertian sphere illu~ninatcd Ly a n  o~.~erheacl point soilrce 
a t  the  vicwcr. This is n well-posccl problcni with two sclutions, a concave bowl m d  a 
convex hail. I t  turns out that  tho ;dgor i th i  wil! coxvcrge to a scnlcwtint fiatt c l i ~ d  sphere, 
givcn a planar initial estimate. htcrcstingly, it conyergcs to  almost the same solution 
whcn givcn the correct shape initially. ?'hat is, t he  algorithm mows away l i o ~  the right 
answer. It is interesting to consider why this should be so. 

Rccall the functional that  is used to d r r iw  the lkcuchi-IIorn  neth hod. M7e ,zrc required 
to minilnize 

2 
It is clear that  minimizing the integral of ( E  - E ( f ,  g))  is desirable; we wish to  make 
the brightness error as small as possible. Howevcr, it is not obvious just what is achieved 
by minimizing the remainder of the overdl integral. Certainly, it is not srnootl~aess as 



dcfinetf above. In fact, if f and g are solutions to the Euler equations for this problem, 
it uill in gcrleral be the casc that there exists no physical surface correspontling exactly 
to the siirfnce orientatio~i specified by f and g (Brooks, 1982). 

The expression (/: + fi + g: + gf) is instead best regarded as a regularizing term 
that is primarily intended as a means of finding a particularly smooth shape that is close 
to a solution of tlie original problem (Poggio Sc: Torre, 1984). Different surfaces will give 
rise to different values for 

Those that fluctuate in dcpth the least will likely give rise to small values. When a 
sliape-fro~ii-shading problem is Iliglily ambignous, in that therc is an infinite number of 
possible solutions, a regularizing term is precisely what is needed to get close to one of 
them. If, howe~er ,  the probleln is unambigaons, regularization will usually result in loss 
of accuracy, as the correct solution is unlikcly to nlinimizc the integral of tlie regularizing 
term. 

The distort,ion due to reg~llarization depends on the para~netcr  A. A large value of A, 
appropriate whcn the image data  is very noisy, leads to large errors, since the emphasis 
will be on prodacing as smooth a surface as possible, wliile pem~i t t ing  considerable error 
in brightness. Conversely, a snlall value for X causes brightness errors to be weighted 
more. In this case, a more undulating surfacc is acceptable since the contribution of the 
regularizing term to the overall functional is relatively 

4. Impo,dng integrability as a constraint 

In any casc, it is clcsirablc to Iiavc a shape-from-shading rnct hcd that neither moves away 
freni corscct solutions, nor converges to surt'nccs that, are not solutions. To derive such 
a ~nethotl ,  wc ~ c c d  to impose the smoothness conditio11 dcfincd cr7rlier, instead of using 
regt t l i~r izat ion,  W c  firat consider forcing the soiution to satisfy the conditio;; exactly, 

T,ot us suppusc that a shape-from-shading nlctliod recowrs smooth functions p(x, y) 
and q(z ,  g) defined over the image, thereby specifying the grndicnt. Tn general, therc will 
be no smooth surface that corresponds to this gradient. This is because the functions 
p and q must be related in a special way if they are to correspond to a snlooth surface 
(Brooks, 1982). Noting once again that 

it follows that,  for our earlier definition of snioothness to be satisfied, we mnst have 

or zXy = zy,. This is lrnown as the constraint of integrability. If the gradient does not 
possess this property, there exists no c2 sur fxc  that could give rise to it. Thus we shall 
now attempt to ensure that solutions are integl.able. 

2' Thr itvrirtivc s c l ~ c w c ~  b c ~ o r ~ i c s  ~ in s td J r ,  horvevcr, w11(>11 the ~ U P  of X is rrtfuccd too much. 



4.1. Direct recovery of relative depth 

With the cxccption of the 11iet1:od of characteristic stlrips (Horn, 1975)) all shape-from- 
shading progratns have rccoverctl surface orientation in a sepu-ate step, prior to recovering 
rclative depth. We saw cr~rlier an iterative sclie~ne that determines dcpth values from the 
surface gradient. Of i~itcrest here is the direct recovery of dcpth infor~nation, achieved 
without the explicit nlaniyulation of surface orientation. 

I~ollowing t h e  guidciincs listed earlier, our initial task is to formulate an appropriate 
functional. The brightr~css crror is readily expressed as 

Now we are to ensure the sntisf:~ction of the constraint z,?, = z,,. ?Ve might therefore 
consider adding the functional 

It is easy to veryfy that such a term makes no contribution to the subsequent Euler 
equation. This is Lccansc the integrand is a divergence expression (Courant & IIilbert, 
1953)23. In our terms, by clefinition, we seek a sn~ooth  sul-face satisfying the partial 
difierential equation. The integrability constraint is redundant. Pu t  yet another way, 
we can:lot, avoid imposing the intcgrahility constraint if we'look for a scheme that gives 
11s ,?(~:.?!j dircctty. This was not the ci~se when we used p autl q as parameters. The 
functior:~ p ; L I I ( ~  q h i 1  to he rclatcd in CL special w?y to satisfy i~itegrabiiity. 

Ai tc r  s i~upl i t i~at inr~ m d  reordering 01 terms, the Euier cquntion for the brightness- 
error functior~al alone is 

where we have ased the condition z,, = z,,. Note that p and q replace z, and zy as 
sltbscripts of R to improve re;tclnbility. 11 solution to this equation will give the functional 
an extrcmal value. By converting the E d e r  equation to discrete lonn, employing discrete 
approximations of the derivatives of x, arid isolating t e rn~s  in x,,, we obtain the complex 
sche~nc 



is a discrete estimate of the cross derivative of z (times e 2 ) ,  and 

are horizontal and vertical averages of z respectively. This sclleme, unfortunately, is not 
convergent. Other schemes tried also failed. W e  found little in itlie literature about how 
one might discover S U C C C S S ~ I I ~  iterative schenies for complicatecl non-linear equations such 
as the one above. Certainly, as far as the variationrd approach is conccrncd, the above 
Euler equation n u s t  be regarded as f~tndanie~ltnl to the problem: the original functional 
is not easily formulated in a more basic way. 

4.2. An a l t e rna t ive  approach 

Not surprisingly, if we parametcrise thc surface on p and q, and impose the integrability 
condition py = q,, we obtain an Tl;uler equation idelltical to the one obtained above. The 
functional to be mini~nized is in this case 

where p is a Lagrangian multiplier used to enforce the constraint pY = q,. The associated 
Eder equations lead to 

In order to eliminate p ,  we take the (total) derivative of the first equation with respect 
to  z and the (total) derivative of the second will1 respect ta p. Adding the rcsillts we 
obtain 

( ~ C p i  t fil,Rq(py t qr) + R,ZqY) - (EJRp + EyRq) 

== (3 - -  R)(RljT,p, i- Rll,(py + qz) -t- Rqqqy). 

Taken together with the constrniilt py = q,, this is the same result as l h n i  obtained in 
the previous section. 

5. An in tegrabi l i ty  penalty t e r m  

It  appears to be diEcult to extrnct convergent iterative schenies from Eider equations ob- 
tained through the imposition of intcgrnbiiity. Consequently, we now assess the usefulness 
of the pcnalty term, (py - P,)~, appcarlng in the functional 

This has thc desirable property that if s ~ ~ i o o t h  functions p(x, y)  and q(x, y) are found that 
cause this integral to evaluate to zero, we will, by definition, have solved our problem, 
for the surface will generate the imagc, and will bc smooth e v ~ r y w h e r e ~ ~ .  



5. Ari i r i tc~gri~ldi ty  pcr~idly trrrn 

The Euler equations for this problem yield 

Upon isolation of the center term in the discrete approximation of the highest-order, even 
partial derivatives, we arrive a t  the iterative scheme 

are the vertical average of p and the llorizontal average of q,  respectively, while & and - 
qtJ are estimates of tlie cross derivatives (times e2) obtained using the npproxim;ttions 

respectively. 
This iterative schenie appears to work ~ l l .  Only very small depa r t~~res  from the 

correct initial solutions have been observed, these being d u e  to the fact that the finite- 
rnl diffeiel~ce expsi~ssions are approxi~ilatiorls l o  duivat ivrs. i ne scheme does not converge 

to a flattened surface as is the case with the  Ikcuchi-Horn ~nctllod. Rather, we obtain 
aqmptot ic  convergence to the c G m c t  sohrtion. Note once again, however, that this 
lalethod req~tircs that the gradient (p, q )  be supplied on some c!oscd curve other than the 
occluding boundary. 

This itc3r;iiive schmie procluccd w r y  accurate results in tests conciucted on synthetic 
images, nlthough, like most sliape-from-shaciil-~gig methods, it typicnily takes many iter- 
ations to converge. The observed slow convergence could be alleviated by the recently 
popularized multi-grid technique of processing images and gradient fields a t  various res- 
olutions (Terzoponlos 1984). 

It  appcnrs that the use of a penalty tcrm based on a const,raint leads to iterative 
schemes that adjust the present estimates in tlic directicn that reduces the penalty term. 
This is in distinction to tlie bchavioul of the schemes that result from attempts to strictly 
cnforce the constraint itsclf. The use of t,?le penalty term gives a sclicnle sonle direction- 
nlity or "push" towards the desired solution. This may be why we were unsliccessful 
in discovering convergent itcrative schemes Lascd or, the Eulcr cquntion derived in the 
previous section. 

5.1, Relationship to Strat's scheme 

It  is interesting to observe how similar the iterative method we derived here is to that  
obtained by Strnt. We can see in retrospect why this should be so, by applying Gauss's 



integral forn~ula to Strnt's ele~nentary loop integrals. We have 

for a simply connected region R ,  where the boundary 3R is traversed in a counter- 
clockwise direction. 

Now, if c is constant in the region R, then 

where A ( R )  is the area of the rcgion R. For a smootlx suxfxe, p ,  2nd q, arc continuous, 
so that, for 2r small enough region I I ,  we can colisider then1 to be nearly constant. That 
is, 

where SR is a square region with sides of length E .  Consequently, we can consider the 
sum of the error tcrms squared, 

or, writ ten more suggestively, 

to be a discrete npproxinlation of 

Our  final result in the previom section looks n little ciifferer~t from that of Strat ,  in part  
becn-use we end up with simpler estiliiates for the seco:ld partial derivatives pYV and qIEZ,  

5.2. Constraints and penalty terms 

We have two equalities: the inlage irrndiancc equation, E = R,  and the integrability 
condition, py = q,. If we enforce both strictly, we obtain TIorn's original characteristic 
strip equations. Wc have seen that a convcrgerit iterative schenle can bc obtained if we 
instead Itmild a functional based on the penalty tcr~ils, (i': - 1 2 ) ~  and (Py - q J ) 2 .  We also 
described our lack of success in deriving schcmes for minimizing the intrgral of (E - R ) ~  



while enforcing the constraint p, = q,. We have not yet cxplorcd the fourth alternative 
of minitllizing the integral of ( p ,  - q , ) 2  while enforcing the constraint E = R. That is, 
miniinizing 

The resulting Euler equ a t' ions are 

which, upon elimination of p lead to 

This equation is to be solved subject to the constraint E = I? ,  of course. We were unable 
to convince ourselves of the ~it~ili ty of' pursuit of this particular approach, since we know 
that brightness measurenients will be corrupted by noise in practice. 

6. I n c o r p o r a t i n g  occ luding  b o u n d a r y  in fo rma t ion  

One problem not easily coped with is that of dealing with the occluding bonndary. Recall 
that !,he Iliet~hi-I-Iorn method plxccd consiclcrnble cmphnsis on the ability to be able 
to  I m d l e  the occluding boundary. So, althot~gll wc have talien a stcp forward in the 
a?,ovc by incorporr~ting integrabili~y, wc liarre niso tnkcn n step 1 d w ; l r d s  in tliat we 
a re  no longer ablc to use the occinding bou~ic?arj. Kotc, however, i hat the integrability 
con~trnint  can b e  cxpresscd using pr~ramcterizations tliat permit iiicorporation of the 
occluding boundary infornlation. 

Suppose that instead of scclting surface orientation ~~ns~~rne t~e r i zed  on p(x, y )  and 
q(n., y), we at t rmpt  to rccowr directly a field of nilit nosnla! wctoss n(x: y).  We need to 
express l hc  il~lcg~xbilil y corisl mint in terms of tlie unit normal and its derivatives. Let 
2, f and b denote unit vectors in the r ,  I/ and z directions, respectively. We have that 

so it follows that 

using the identity (c . a)b - ( 3 .  b ) c  = a x (b x c). Noting that 2 x 2 = -3 we ohtain25 

*' I h r e  [a b c]  dcmotcss tllc vector triple product a . (b x c). 



F7c conclude that the constraint ( p ,  - q r )  = 0 can be written in the form 

1 
-. ([n r lL  21 -1 [n  n, $ 1 )  = 0 .  
(n . 2 )z  

As it stands, this form of the constraint will lend to numericnl problems in the im- 
p1einent:~tion of an iterative schcnle, since (n 8) beconies very small near the occluding 
boundary. It niakes sense tlieil to use instead a constraint obtained by niultiplying the 
one above by (n i)', giving 

I' = [n n, 21 -t [n ny  j l ] .  

One could, of course, t d d e  this problem using other parnlnetrizations for surface 
orientation, sticli 3s f and g. We saw earlier that the integ~xbilit~y constraint expressed in 
terms of f  and g is quite con~plex, and the derivation of the corresponding Euler equations 
soniewhat tedious. We felt that the compnctness of vcct or notation provided sufficient 
incentive to tackle the probleni the way we did. There is nn advantage to using f and 
g, however: one can avoid the  redundancy inlicrcnt in the use of a vcctor to represent 
surface orientation, a quantity that has only two degrees of freedom. It is this redundancy 
that leads us to consideration of the psendo-inverse of a matrix later on. 

6.1. Using a penalty term based on I' 

'iVe are to ~niriinlizr a functional of the form 

IIcre we .use the Lngra~lginn nlilltiplicr, p ,  to enforce the constraint ri2 - I. The corre- 
sponding Euler eqmtion can be silnplificd tc; read 

is the derivative of I' with respect to n7 while 

I 
I;c = [n n,, 21 + [n, n, 91 t [n n,, $1, 
I; = in n,, j.] + [n, n, l] + [n n,, l], 

are tlie derivatives of I' with respect to x and y respectively. We can find the Lagrangian 
multiplier ,LL by taking tlie dot product of the Ealer equation will1 n, to give 

where we use the fact that I; n = I ' .  We can now eliminate p by substitcting back into 
the E d e r  equation. The result is 

- (  - R )  - j - ( I  x 2 )  i I;(n x j . ) )  = 0, 



where 
12; - Rn - (R,, . n)n = n x (R ,  x n) 

is the component of R, perpendicular to n 2nd 

Note that  j l .n  = 0, since Ih.n = 1'. I11 fact, each term in the abovc equation is orthogonal 
to  n. This vector equation thus provides onIy two const,rnints on n. The necessary third - 
constmint is given by n2 = 1. 

Now let  

J ,  = (n, x n, + n x ny,) - jr and Jy = (ny x n, + n x nXy) .2. 

Then 
I 

1; = [n n,, 21 + J, and ly -: [n nyy 91 + J,, 

and the Euler equation can be rewritten in the form 

where 
l =  J,(n x 2 )  -1 J,(n x 9 ) .  

So we can write 

where 
M , = ( n ~ ? ) ( n x 2 ) ~  and M B - ( " ~ 9 ) ( n ~ j r ) '  

axe thc so-callcd clyc~clic p r o c h c f s  of the vcctors (11 x ?) and (n x 3;) with t h c m s e l ~ c s ~ ~ .  We 
nom7 have a non-lincnr second orclcr pnrtinl rlilfcrential equation for the ncrmal n(x, 9).  

We can use tl ic i'ollowing finite-dilf'crrr~ce approxi~nations for the derivatives that 
appear: 

1 1 
n x - ( n  - n )  and ny = - (ni,j+l - ni,j-1) , 2€ 2& 

as well as 

Tllcsr dyadic protll~cts arc rntttriws of rank one. 



are lio~izont~al and vertical averages of n respcctivcly. 
We now develop an iterative scltcu~e Lased on the isolation of the center term in the 

discrete approximations of the highcst-ordcr, eve11 partial derivatives. For convenience, 
let mt3, say, be the new value of the nonnal lo be calculated in the iterative step. Then 

L - L 
n Z  - h i  - m , )  and n y ,  o - ( G , ,  - m . . ) .  

€2 2 1  E 2  2 3  

If we let M = M, + My, then the new value is obtained using the equation 

and the constraint m3 - 1. Here we omit subscripts in order to simplify the notation. 
Let r denote the right hand side of the equation above. All terms in r can be easily 
computed using the old estimate of the nomial, 11, in the expressions for M,, My, fi, T, 
1: j', 1', R and RA. The remaining problem is the solution of the equation for the new 
estimate of the normal, m. 

6.2. Solving the equations M m - r and m m = 1 

Tlie equation M m = r is underdetermined, since M here only has rank two. Tlie matrix 
is singular a i d  SO does not liavc an inverse in the ~isual  sense. There are an infinite 
number of solulions that can be written in terms of the psewlo-inverse,  Mf. They are 

for arbitrary x (Albert, 1982), where I is thc 3 x 3 idenl~ty ~ m t r i x .  Of these solutions, 
we seek the one with unit norm, rnZ = 1. 

Tlie psendo-inverso o i  a nlatrix M can hc defined as the limit 

Alternatively, it can bc defined using the condi'&ns of Pem-ose (Albert, 108%), which 
state that the niatrix MS is the pseudo-inverse of the niatrix IL1 if, and only if, 

e MM" and M f M  are symnietric, and 

e Mi M M+ - M, as well as, 

e NI.MtM=Mt.  
The pseudo-inverse may also be found using s ~ ~ e ~ t r a l  decomposition. The eigcnvectors of 
the pseudo-inverse are the same as those of the origix~al matrix, while the corresponding 
non-zero eigenvalues are the inverses of the non-zero eigenvalues of the original matrix. 

Now, in our case, 

so one can show that 



It is also possible to verify that 

T MSM = I -- nn , 
from which it follows that  

and so 

for some v chosen 
by noting that 

Let this be called 
calculation of the 
wlien I M - ~ ~ I  > 1, 

m = IWSr $- v n ,  

to make m2 = 1. In our case r i n ,  so we can further simplify matters 

p. Since p 1 n ,  we have that m2 = p2 -t v2. This co~nplctes tlie 
new estimate of the normal, m. The only potcnti;d problem occurs 
as may happen when lahe c~zrrent estimate of the solution is far from 

the correct one. In this case it is advisable to limit tlie acijustment of the local normal 
away from its previous value, n2'. 

6.3. Using a penalty term based on I 

Implementat ions of the above iterative schemc work well except for minor prnblenls near 
the oc,cluc!ing boundary. ? T h t  happens is that the conipo~ents of n, and nl/ become 
u~l i~oundcd otl the occluding boundary, so that i h c  inclividr~nl terms in 

tend to become very l a ~ * g e ~ ~ .  It may be better to use the sliglltly Inore complicatetl 
expression 

I = (n %)I' - (n .i) (b n, 21 4- [n ny 91). 
This can bc viewed as the diRerence of two quanLities that remain bounded, provided 
that the curvat tire of the surface is bounded. 

We now are to niininlize a functional of tlie form 

The c,orresponding Euler equation can be simplified to read 



where 
k = (n, .2)(n x 2) -t (ny .2)(n x f ) ,  

and I;, I: and I; are as defined before. 
We can find the 1,:tgrangian multiplier p by taking the dot product of the Euler 

equation with n. Thus we have 

Now we eliminate p by substituting hack into the Enler equation. The result is 

where 
j - I '2 -t 2(n . ? ) I ;  - 3 I n ,  

and Rk is the colnponcnt of R, perpendicular to n ns before. Now 1L.n  - I ' ,  so j . r i  = 0. 
In fact,, each term in the above equntion is orthogonal to n. This vector equation thus 
provides only two constraints on n. The necessary third constraint is again given by 
n2 = 1. 

Now let J, and J y  be defined as before. Then the Zuler equation can be rewritten in 
the form 

= A(n . [(n x i ) ( n  x i)'n,, + (n x f ) ( n  x j.)*n,,] , 

where I - J,jn x 2 )  $- Jy(n x f ) .  So wc obtain 

where At,  and Piv arc defimled as before. We now have a nor,-linear second order partial 
r2iTere1lti;~l e ip~;~t ic+j~ fi)r the normal n(s, y). 

 not^ that 1)oth sides of this equation are orthogonal to n, since 1 n  = 0, k . n = 0, 
j n = 0, and TCi n = 0. So the equation provides two constraints only, with the third 
coming fro111 n2 = 1. 

if we nse the same discrete approximations as before, and isolate the central value 
in the finite-difference approximations of the highest order even partial derivatives, we 
obtain 

We once again obtain an undcrclctcrmine equation, of the forln M m  = r, together with 
a constraint r n 3  = I. We can solve for the new estilnatc of the surface nornral using the 
pseudo-inverse of the niatrix M, as before. 

It is curious that sevcral of the t e rn~s  involvc division by (n . i), a term tha t  becomes 
large near the occluding Lonndary. Wc rnuitipIiet1 11ic penalty tcrni by this expression 
in the first placc in order to avoid problems near the occluding bountfary. Apparently, 



however, the terms so affected are all small near the occluding boundary anyway. In 
fact, we dcternlined cxpcriincntally that severid of the terms on the right hand side are 
vesy sjiidl iomparccl to ilie others, particu1;~sl~ as one approttches the correct solution. 
We found that one can leave them ou t  without noticably affecting convergence, or the 
surface arrived at ultiniately. Preliminary testing of the scheme on synthetic images 
yielded promising results. Comprehensive assessment of the pcrfornmnce of the two 
scllcnies has, however, been left for future work. 

7. Summary 

The shape-from-shading probtcm was regarded here as one of finding a surface that 
minin~izes an integral expression involving the briglitncss error. The expression we used 
has tile form of a functio~ial measuring the departure of a hypothesized surface from 
a solution surface, Iterative schemes for solving the shape-frorn-sliatfing problem were 
based on the appropriate Euler equation. 

We reviewed (he use of a regularization term in an existing iterative scheme. Rcgu- 
larimtion techniques allow one to obtain results when f r ~ c d  with ill-posed problems. We 
arguecl, however, that the addition of a regularization term is not appropriate when one 
is dealing with a well-posed problem. The additional term tends to flatten and distort 
the solution. 

We next discussed tlie fact that surface orientation must satisfy an integrability con- 
stmint if it is to correspond to an nndcrlying smooth surface. The ~nc thod  using the 
rrgularjzaticn twtn does not gunrantee this. We attempted to usc the integrability con- . . . , 
stra~nt,  ms!cnd of n rcgulnr!zni!(~n term, b t ~ t  hiled l o  find ccr~vergent itcrntive S C ! I ~ I C C  

for so!ving tiic sedulting Eulcr equations. 
A converge~~i iterative scheme was obtained, however, when, instead of enforcing 

i~;tcgsrtl)ility, we htroduced a prnalty Icnl; derived from the integrabili1,y constraint. It 
seem:, that t h t  pcnnlty t c n : ~  provide:i tilt. rtcracive process with J "sensc of djrection" that  
helps it heaG towards thc: ~ . h t i o n .  This :~ppronch d l o w ~  one to recover surface gradients 
that x e  apyroxiuiat,ely integrabl,.. 'L"l~c scl~clne so clcrivetf was shown to be similar to 
that obtained in the discrete domain by Strat.  A drawback of his schelne is its inability 
to incorporate occluding Lourltlnry infoxii;rt,ion. 

We overcame this difficulty by employing n M e r e n t  parametrization for surface ori- 
entation. The integrability pcnaltty term car1 bc  expressed in ~CFI I IS  of the unit surface 
norn~al  and its derivatives. Snbscqnent application of the variational calcul~ls proved to 
be somewhat involved, but two usable iterative schemes were finally obtained. Initial 
tests indic~dc that they perform well. Oar  new schemes are the first to make use of the 
iritcgrability constraint whilr allowing incorporation of the occluding boundary nc r~~ ia l s .  
I'?:t::re tvcrk will assess the r:'!ntiw pzrformai:cc of the new schcn~es in detail. 
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Appendix 

A. Minimizing Functionals 

Let F ( z ,  y ,  z,  z,, zy)  measure the distance of a surface, z, from a satisfactory solution a t  
a point (s, y) .  For now, assume t?mt F is dependent not only on z ,  but also on the first 
partial derivatives z, and zy. Civen that we scek a sl~rfacc defined over some region in 
the plane, and that F is everywhere non-negative, we may regard 

as a;i overall measure of error whose vnhie is to be nlinimizcd. This is not a conventional 
rniiiimizatio~i problem since we search over a space of furi~t~ions nr:d not a region of 
coovilinr~te spilcc. The T ~ I I C  of Il depends on thc choice of [,he function z ,  and for this 
rcasoli ii is tcrmed a functinntrl. hlinilnizillg I ,  is a psoh1r:m in the ca lcu l~~s  of variations. 

A f;~nclnmentnl rcsult of the calculus of variations is 1li;tt the cxtrenia of functionals 
must satisfy an i~ssociatecl Euler equation over the doiilnin of interest, For the above form 
of the hnct io~inl ,  the equation is 

This is a necessary condition for the existence of an extremum, z (p. 185, Courant & 
IIilbcrt, 1953). I t  is not a suficient condition. Note that local niinima, global minima, 
local maxima, global ~ n a x i n ~ a ,  and inflexion points nre all examples of extrema. 

It will prove uscful to note two other Enler equations corresponding to other forms 
for F. In  the event that  F is dependent also on the secorld partial derivatives as in 

the Enlcr equation expands to 

Sometitues we scek a surface that is paramctcrized not in  t,ernls of rclntive depth, but 
in terms of surface nonnals. Two parar~ietcrs arc nceded in this case. If the functions p 



and q are used to describe surface orientation and if the associated functional incorporates 
tlicir first partial derivalivcs in z and y, the cxprcssioli to be minilnized thcn takes the 

which has two corresponding Euler eq~zations given by 

In general, these constitute a pair of couplcd part id  differential equations in p and q .  A 
pair of fimctions satisfying these equations will grncrate an cxtreruuni of 13. As before, 
the extremum may be n niinimuin, niaximuni or inflexion point. 

Note that if the ftinctionnl involves higher derivntives of p and q, the Euler equations 
generalize in a straightforward way. Courant and IIilbert (1953) provide an excellent 
chapter on the variatio~ial calculus. 

B. Boundary Conditions 

In general, a probleni involving partial differential equations is ill posed in the absence 
of suitable boundary conditions bccausc the sohtion is not unique without ndditional 
c011rtr;~;i:t. Tile t y ~ c  of hunclary cor~c!itiou t h a t  cnsui-es a gkcn  problenl is well posed 
dixpei13~ on ;he par t~culsr  t;jvpt> of partial difIerciiti~1 ccluatio~i. 'rhr>re 111,zy be lliore than 

a .  

oric. way 01 ac!dil:g boundary C O X C ~ ~ ! O ~ I S  to a partial tiifl'esentinl c~jiiation in order to force 
a unique so111 tion. 

Jn our casr,  boundary zmilitions 1 1 t i 3 j r  b~ given as part  of tlie bnsic minimization 
r 7 problem. i hat is, thc  s o l t ~ ~ i o n  songht tilust mini~nizc thc  func t io~~a?  s~i t~ jcc t  to additional 

collrtraint;;. sncl! as prcscrihcd vait!es on the  Immdary of the rcgion of integration. In 
the c:~bc that the functioli is not cnnstrnincd on the b o u i ~ J a ~ y ,  howwer, the ,-nlcnli~s of 
variations provides so calicd natural bocirdury corlditions that tlie solution illi~st satisfy. 
For cxample, for the fnuctional JI given &ove, a suitable boundary condition is the value 
of x along tho boundary dl1 of the region St. Thc natural boundary condition in this case 
is just 

(LF,,) . n = 0, 

where the normal to the boundary, n, is given by 

and s is arc-length mensurcd dong  tLe boundnry df2. So the co~nponcnt of the vector 
(FZL,li',,,) normal to the 1~ounda;;y sl~oltld be  cverywhcre zero. 

In the case of the func,tional I3 givcn abovt, the values of p arld q along the 1)onndary 
will ~zsu:~lly be suitable. Thc natural bountlary conditions in this case happen to be 



C. Regularizing Terms 

At times, the problem of' nlinitnizing a functional is not well posed as there is an infinite 
number of solutions, even with constrnints on the boundary. One can then find a surface 
that  is close to a solution, while minimizing some lllensurc of dcpart,i~re from smoothness, 
by regularization (see Poggio & Torre, 1984). The regularization method of interest to us 
here involves the addition of a regularizing term to the functionnl. If we deal with the 
problem of recovering a surface z ( s ,  y) from shading, we may wish to include a regularizing 
term s~icli as the square Laplacinn appearing in 

or the quadratic variation in 

Each of these has the desirable property of rotational invariance (Brady and Horn, 1983). 
The lower order rotationally-sym~netric regularizing term 

leads to excessive flattening of solutions. The latter form may weil be appropriate when 
app!it:d t o  wrface or;cntnt,icin parameters, such as p and q ,  or f and g ,  bui this is not the 
caw wilh a dcpth p a r ~ ~ ~ n e ~ c r ,  st~cli as 2. 

D. Enforcing Constraints 

Soi~ictimes wc seek a mini~m.n:l of a functionni subject to scnie indepcntf cnt constraint. 
Suppose, for example, that wr arc requircd to  miriiniize the previously defined l l ( x ) ,  
subjcc t to the corist mint that  

g(x, U ,  X ,  177, zy) = 0. 

In this case we may use the Lagrangian mul f ip l ier  method in which ~e minimize not Il 
but the augnlcntcd functional 

We now seek  solution^ to the nsmcinted Euler equation. Note that the Lagrangian mul- 
tiplier p is a funiclion of x and y nnd must be treated as snch when deriving the Euler 
eyu a t '  lon. 

If we di&rentintc the f*finci,io~lnl with respect to p ( x ,  y), for a particular x and y ,  and 
set the result equal to zero, we get back the original constraint eqnatio:~. This equation 
is rcquircd to help solve for j ~ :  s011i~thing we typicdiy llavc to do in order to elinlinate it 
F r o ~ r ~  Lhe Euler cq~intion. At times, this may take some skill. Ifore importantly, however, 
t h e  equations that r c s~d t  often (lo not sug@ convcrgcnt iterative schemes. In any case, 
n solution of the resulting E d c r  eclxntion will h m c  the property t h t  g(z, y, z ,  z l ,  zy) = 0 ,  
with T4 hnvi:ig an extremal vdiie on the ninnifoId g ( s ,  y: z ,  z,, zyf = 0. 



E. Penalty t e r m s  based on c o n s t r a i n t s  

In. view of the difficulties experienccd when attempting to impose constraints exactly, we 
often corAcler an altcrnativc method. I11 this approach, a penalty term derived from the 
contraint is employed. Thus we might rely on the Euler equation corresponding to the 

Here, X is a scalar that  aligns the arbitrary scales of F and g. Alternatively, it may be 
regarded as a weighting of the relative importance of the components of the functional. 
I t  is, of course, not necessary to squarc g if it is already guarnntccd to be non-negative 
over fl for all functions z .  

Solutions to the Thlcr cquatiou for 1.5 now specify surfaces that  generate an ex- 
trema! value of Is. However, these surfxcs wiil not, in general, satisfy the constraint 
9(2,2/,2,2,,z1,) = 0 exactly. Rather, it will be the casc that the value of g is small, 
a lo~lg will1 the values of the other expressions being ~ninii~iizcd. This is usually an ac- 
ceptable con~promise. More often tlian not,  this approach proves more tract,able than the 
Lagrangian method as there is no multiplier to he eliminated. 


